Citation: Liu Xiaolong, Wang Qiang, Wang Chao, Xu Jun, Deng Feng. Hydrogen-Bond Induced Crystallization of Silicalite-1 Zeolite as Revealed by Solid-State NMR Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2020, 36(4): 190503. doi: 10.3866/PKU.WHXB201905035 shu

Hydrogen-Bond Induced Crystallization of Silicalite-1 Zeolite as Revealed by Solid-State NMR Spectroscopy

  • Corresponding author: Xu Jun, xujun@wipm.ac.cn Deng Feng, dengf@wipm.ac.cn
  • Received Date: 8 May 2019
    Revised Date: 13 June 2019
    Accepted Date: 14 June 2019
    Available Online: 20 April 2019

    Fund Project: the National Natural Science Foundation of China 21473246The project was supported by the National Natural Science Foundation of China (21473246, 21622311, 21573278, 21673282), Key Program for Frontier Science of the Chinese Academy of Sciences (QYZDB-SSW-SLH027) and Hubei Provincial Natural Science Foundation, China (2017CFA032)the National Natural Science Foundation of China 21622311Key Program for Frontier Science of the Chinese Academy of Sciences QYZDB-SSW-SLH027the National Natural Science Foundation of China 21673282the National Natural Science Foundation of China 21573278Hubei Provincial Natural Science Foundation, China 2017CFA032

  • The flexible chemical composition of the frameworks with tunable pore size and geometry of molecular dimensions makes zeolites widely used in chemical and petrochemical industry fields. The understanding of crystallization mechanism is important for a rational design of new zeolite with target structure and property, which however is still a big challenge in the field of material science. In this work, the specific spatial correlations/interactions between the SiO-···HO―Si hydrogen bonds within the charged framework of silicalite-1 (MFI topology) zeolite and the alkyl chains of tetrapropylammonium ion (TPA+) organic structure direction agents (OSDAs) were studied by one-dimensional (1D) and two-dimensional (2D) solid state-NMR spectroscopy in combination with other techniques, with the aim to shed light into the crystallization mechanism of silicalite-1. The "solvent-free" route was used to study the crystallization process. Silicalite-1 crystals were also prepared following the hydrothermal synthesis route. The structural properties of as-synthesized TPA-silicalite-1 samples during the crystallization were characterized by XRD and scanning electron microscopy (SEM) images, which showed the evolution of long-range periodic structure and cyrtal growth. The 1H-29Si CP/MAS NMR experiments showed that the reorganization of the silica or silicates occurred in the crystallization process. The lH-13C CP/MAS NMR experiments performed on the samples synthesized with different time indicated that the TPA+ ions in the amorphous samples experienced a constrained environment, forming the inorganic-organic composites. The splitting of the methyl carbon signal from TPA+ ions was observed in the 13C NMR spectra, which is the direct reflection of the interactions between the methyl groups and the silicate framework in the straight and zig-zag channels of silicalite-1. Two types of SiO-···H―OSi hydrogen bonds (SiO-···H―OSi hydrogen bond in-cage and SiO-···H―OSi hydrogen bond between lamellae) have been identified by 2D 1H double quantum (DQ)-single quantum (SQ) MAS NMR and 2H MAS NMR during the crystallization of silicalite-1. The SiO-···H―OSi hydrogen bonds between lamellae are formed and gradually transformed into the in-cage ones during the crystallization process. Their functions have been revealed in the formation of silicalite-1: the SiO-···H―OSi hydrogen bond in-cage provides the stereoscopic counterbalance for the positive charges from TPA+ ions and this stereoscopic electrostatic interaction is the key factor to transform inorganic-organic composites with the MFI structure property, even though the long-range periodic MFI structures have not been established yet; the SiO-···H―OSi hydrogen bond between lamellae acts as a connector to assemble the silicate species together to generate the zeolite framework. 2H MAS NMR spectra show that the SiOH nests exist in the zeolite framework even though the long-range periodic structures have been fully established.
  • 加载中
    1. [1]

      Corma, A. Chem. Rev. 1995, 95, 559. doi: 10.1021/cr00035a006  doi: 10.1021/cr00035a006

    2. [2]

      Davis, M. E. Nature 2002, 417, 813. doi: 10.1038/nature00785  doi: 10.1038/nature00785

    3. [3]

      Flanigen, E. M.; Bennett, J. M.; Grose, R. W.; Cohen, J. P.; Patton, R. L.; Kirchner, R. M.; Smith, J. V. Nature 1978, 271, 512. doi: 10.1038/271512a0  doi: 10.1038/271512a0

    4. [4]

      Chao, K. -J.; Lin, J. C.; Wang, Y.; Lee, G. H. Zeolites 1986, 6, 35. doi: 10.1016/0144-2449[86]90009-6  doi: 10.1016/0144-2449[86]90009-6

    5. [5]

      Chang, C. D.; Bell, A. T. Catal. Lett. 1991, 8, 305. doi: 10.1007/BF00764192  doi: 10.1007/BF00764192

    6. [6]

      Burkett, S. L.; Davis, M. E. J. Phys. Chem. 1994, 98, 4647. doi: 10.1021/j100068a027  doi: 10.1021/j100068a027

    7. [7]

      Koller, H.; Lobo, R. F.; Burkett, S. L.; Davis, M. E. J. Phys. Chem. 1995, 99, 12588. doi: 10.1021/j100033a036  doi: 10.1021/j100033a036

    8. [8]

      Burkett, S. L.; Davis, M. E. Chem Mater. 1995, 7, 920. doi:10.1021/cm00053a017  doi: 10.1021/cm00053a017

    9. [9]

      Burkett, S. L.; Davis, M. E. Chem. Mater. 1995, 7, 1453. doi: 10.1021/cm00056a009  doi: 10.1021/cm00056a009

    10. [10]

      Fyfe, C. A.; Brouwer, D. H.; Lewis, A. R.; Chézeau, J. -M. J. Am. Chem. Soc. 2001, 123, 6882. doi: 10.1021/ja010532v  doi: 10.1021/ja010532v

    11. [11]

      Liu, X.; Ravon, U.; Tuel, A. Angew. Chem. Int. Ed. 2011, 50, 5900. doi: 10.1002/anie.201101237  doi: 10.1002/anie.201101237

    12. [12]

      Liu, X.; Luo, Q. J. Phys. Chem. C 2017, 121, 13211. doi: 10.1021/acs.jpcc.7b03350  doi: 10.1021/acs.jpcc.7b03350

    13. [13]

      Shantz, D. F.; Lobo, R. F. J. Am. Chem. Soc. 1998, 120, 2482. doi: 10.1021/ja974211o  doi: 10.1021/ja974211o

    14. [14]

      Shantz, D. F.; Lobo, R. F. Chem. Mater. 1998, 10, 4015. doi: 10.1021/cm9804517  doi: 10.1021/cm9804517

    15. [15]

      Ikuno, T.; Chaikittisilp, W.; Liu, Z.; Iida, T.; Yanaba, Y.; Yoshikawa, T.; Kohara, S.; Wakihara, T.; Okubo, T. J. Am. Chem. Soc. 2015, 137, 14533. doi: 10.1021/jacs.5b11046  doi: 10.1021/jacs.5b11046

    16. [16]

      Schmidt, J. E.; Fu, D.; Deem, M. W.; Weckhuysen, B. M. Angew. Chem. Int. Ed. 2016, 55, 16044. doi: 10.1002/anie.201609053  doi: 10.1002/anie.201609053

    17. [17]

      Brunklaus, G.; Koller, H.; Zones, S. I. Angew. Chem. Int. Ed. 2016, 55, 14459. doi: 10.1002/anie.201607428  doi: 10.1002/anie.201607428

    18. [18]

      Dib, E.; Grand, J.; Mintova, S.; Fernandez, C. Chem. Mater. 2015, 27, 7577. doi: 10.1021/acs.chemmater.5b03668  doi: 10.1021/acs.chemmater.5b03668

    19. [19]

      Ren, L.; Wu, Q.; Yang, C.; Zhu, L.; Li, C.; Zhang, P.; Zhang, H.; Meng, X.; Xiao, F. -S. J. Am. Chem. Soc. 2012, 134, 15173. doi: 10.1021/ja3044954  doi: 10.1021/ja3044954

    20. [20]

      Mafra, L.; Siegel, R.; Fernandez, C.; Schneider, D.; Aussenac, F.; Rocha, J. J. Magn. Reson. 2009, 199, 111. doi: 10.1016/j.jmr.2009.04.004  doi: 10.1016/j.jmr.2009.04.004

    21. [21]

      Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J. -O.; Bujoli, B.; Gan, Z.; Hoatson, G. Magn. Reson. Chem. 2002, 40, 70. doi: 10.1002/mrc.984  doi: 10.1002/mrc.984

    22. [22]

      Wolf, I.; Gies, H.; Fyfe, C. A. J. Phys. Chem. B 1999, 103, 5933. doi: 10.1021/jp990216r  doi: 10.1021/jp990216r

    23. [23]

      Vortmann, S.; Rius, J.; Siegmann, S.; Gies, H. J. Phys. Chem. B 1997, 101, 1292. doi: 10.1021/jp962162g  doi: 10.1021/jp962162g

    24. [24]

      Feng, F.; Balkus, K. J. Micropor. Mesopor. Mat. 2004, 69, 85. doi: 10.1016/j.micromeso.2003.12.024  doi: 10.1016/j.micromeso.2003.12.024

    25. [25]

      Feng, F.; Balkus, K. J. J. Por. Mater. 2003, 10, 235. doi: 10.1023/B:JOPO.0000011384.86964.e5  doi: 10.1023/B:JOPO.0000011384.86964.e5

    26. [26]

      Lupulescu, A. I.; Rimer, J. D. Science 2014, 344, 729. doi: 10.1126/science.1250984  doi: 10.1126/science.1250984

    27. [27]

      Trzpit, M.; Soulard, M.; Patarin, J.; Desbiens, N.; Cailliez, F.; Boutin, A.; Demachy, I.; Fuchs, A. Langmuir 2007, 23, 10131. doi: 10.1021/la7011205  doi: 10.1021/la7011205

    28. [28]

      Trebosc, J.; Wiench, J. W.; Huh, S.; Lin, V. S. -Y.; Pruski, M. J. Am. Chem. Soc. 2005, 127, 7587. doi: 10.1021/ja0509127  doi: 10.1021/ja0509127

    29. [29]

      Pinto, R. R.; Borges, P.; Lemos, M.; Lemos, F.; Védrine, J.; Derouane, E.; Ribeiro, F. R. Appl. Catal. A-Gen. 2005, 284, 39. doi: 10.1016/j.apcata.2005.01.021  doi: 10.1016/j.apcata.2005.01.021

    30. [30]

      Zhang, L.; Chen, K.; Chen, B.; White, J. L.; Resasco, D. E. J. Am. Chem. Soc. 2015, 137, 11810. doi: 10.1021/jacs.5b07398  doi: 10.1021/jacs.5b07398

    31. [31]

      Jeffrey, G.; Yeon, Y. Acta Crystallogr. B 1986, 42, 410. doi: 10.1107/S0108768186098038  doi: 10.1107/S0108768186098038

  • 加载中
    1. [1]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    2. [2]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    3. [3]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    4. [4]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    5. [5]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    6. [6]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    7. [7]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    8. [8]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    9. [9]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    10. [10]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    11. [11]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    12. [12]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    13. [13]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    14. [14]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    15. [15]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    16. [16]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    17. [17]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    18. [18]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    19. [19]

      Dong SuiJiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417

    20. [20]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

Metrics
  • PDF Downloads(15)
  • Abstract views(629)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return