Copper-based Conductive Metal Organic Framework In-situ Grown on Copper Foam as a Bifunctional Electrocatalyst
- Corresponding author: PENG Yang, ypeng@suda.edu.cn
Citation: ZHANG Chufeng, CHEN Zhewei, LIAN Yuebin, CHEN Yujie, LI Qin, GU Yindong, LU Yongtao, DENG Zhao, PENG Yang. Copper-based Conductive Metal Organic Framework In-situ Grown on Copper Foam as a Bifunctional Electrocatalyst[J]. Acta Physico-Chimica Sinica, ;2019, 35(12): 1404-1411. doi: 10.3866/PKU.WHXB201905030
Chen, Z.; Yu, A.; Higgins, D.; Li, H.; Wang, H. J.; Chen, Z. W. Nano Lett. 2012, 12, 1946. doi: 10.1021/nl2044327
doi: 10.1021/nl2044327
Lee, D. U.; Xu, P.; Cano, Z. P.; Kashkooli, A.G.; Park, M. G.; Chen, Z. W. J. Mater. Chem. A 2016, 4, 7107. doi: 10.1039/C6TA00173D
doi: 10.1039/C6TA00173D
Mamaca, N.; Mayousse, E.; Arrii-Clacens, S.; Napporn, T. W.; Servat, K.; Guillet, N.; Kokoh, K. B. Appl. Catal. B 2012, 111, 376. doi: 10.1016/j.apcatb.2011.10.020
doi: 10.1016/j.apcatb.2011.10.020
Huang, Y. Y.; Wang, Y. Q.; Tang, C.; Wang, J.; Zhang, Q.; Wang, Y. B.; Zhang, J. T. Adv. Mater. 2019, 31, 803800. doi: 10.1002/adma.201803800
doi: 10.1002/adma.201803800
Shinde, S. S.; Lee, C. H.; Sami, A.; Kim, D. H.; Lee, S. U; Lee, J. H. ACS Nano 2017, 17, 347. doi: 10.1021/acsnano.6b05914
doi: 10.1021/acsnano.6b05914
Zhang, H.; Wang, T. T.; Sumboja, A.; Zang, W. J.; Xie, J. P.; Gao, D. Q.; Pennycock, S. J.; Liu, Z. L.; Guan, C.; et al. Adv. Funct. Mater. 2018, 28, 1804846. doi: 10.1002/adfm.201804846
doi: 10.1002/adfm.201804846
Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. J. Am. Chem. Soc. 2014, 136, 13925. doi: 10.1021/ja5082553
doi: 10.1021/ja5082553
Fu, G. T.; Cui, Z. M.; Chen, Y. F.; Li, Y. T.; Tang, Y. W.; John, B. G. Adv. Energy Mater. 2017, 7, 1601172. doi: 10.1002/aenm.201601172
doi: 10.1002/aenm.201601172
Li, S.; Cheng, C.; Zhao, X. J.; Schmidt, J.; Thomas, A. Angew. Chem. Int. Ed. 2018, 57, 1856. doi: 10.1002/aenm.201702900
doi: 10.1002/aenm.201702900
Jiang, Y.; Deng, Y. P.; Fu, J.; Lee, D. U.; Liang, R. L.; Zachary, P. C.; Liu, Y. S.; Bai, Z. Y.; Sooyeon, H.; Yang, L.; et al. Adv. Energy Mater. 2018, 8, 1702900. doi: 10.1002/anie.201710852
doi: 10.1002/anie.201710852
Chen, G. B.; Zhang, J.; Wang, F. X.; Wang, L. L.; Liao, Z. Q.; Zschech, E.; Müllen, K.; Feng, X. L. Chemistry 2018, 24, 18413. doi: 10.1002/chem.201804339
doi: 10.1002/chem.201804339
Shinde, S. S.; Lee, C. H.; Yu, J. Y.; Kim, D. H.; Lee, S. U.; Lee, J. H. ACS Nano 2018, 12, 596. doi: 10.1021/acsnano.7b07473
doi: 10.1021/acsnano.7b07473
Wang, C. H.; Liu, X. L.; Demir, N. K.; Chen, J. P.; Li, K. Chem. Soc. Rev. 2016, 45, 5107. doi: 10.1039/c6cs00362a
doi: 10.1039/c6cs00362a
Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444. doi: 10.1126/science.1230444
doi: 10.1126/science.1230444
Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450. doi: 10.1039/b807080f
doi: 10.1039/b807080f
Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Adv. Mater. 2011, 23, 249. doi: 10.1002/adma.201002854
doi: 10.1002/adma.201002854
Stock, N.; Biswas, S. Chem. Rev. 2012, 112, 933. doi: 10.1021/cr200304e
doi: 10.1021/cr200304e
Schneemann, A.; Bon, V.; Schwedler, I.; Senkovska, I.; Kaskel, S.; Fischer, R. A. Chem. Soc. Rev. 2014, 43, 6062. doi: 10.1039/c4cs00101j
doi: 10.1039/c4cs00101j
Yang, X. D.; Chen, C.; Zhou, Z. Y.; Sun, S. G. Acta Phys. –Chim. Sin. 2019, 35 (5), 472.
doi: 10.3866/PKU.WHXB201806131
Sun, L.; Campbell, M. G.; Dinca, M. Angew. Chem. Int. Ed. 2016, 55, 3566. doi: 10.1002/ange.201506219
doi: 10.1002/ange.201506219
Sheberla, D.; Bachman, J. C.; Elias, J. S.; Elias, J. S.; Sun, C. J.; Yang, S. H. Nat. Mater. 2017, 16, 220. doi: 10.1038/NMAT4766
doi: 10.1038/NMAT4766
Zhong, H. X.; Wang, J.; Zhang, Y. W.; Xu, W. L.; Xing, W.; Xu, D.; Zhang, Y. F.; Zhang, X. B. Angew. Chem. Int. Ed. 2014, 53, 14235. doi: 10.1002/anie.201408990
doi: 10.1002/anie.201408990
Wang, L.; Feng, X.; Ren, L. T.; Piao, Q. H.; Zhong, J. Q.; Wang, Y. B.; Li, H. W.; Chen, Y. F.; Wang, B. J. Am. Chem. Soc. 2015, 137, 4920. doi: 10.1021/jacs.5b01613
doi: 10.1021/jacs.5b01613
Jahan, M.; Liu, Z.; Loh, K. P. Adv. Funct. Mater.2013, 23, 5363. doi: 10.1002/adfm.201300510
doi: 10.1002/adfm.201300510
Sheberla, D.; Sun, L.; Blood-Forsythe, M.A.; Er, S.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A.; Dinca, M. J. Am. Chem. Soc. 2014, 136, 8859. doi: 10.1021/ja502765n
doi: 10.1021/ja502765n
Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dinca, M. Angew. Chem. Int. Ed. 2015, 54, 4349. doi: 10.1002/ange.201411854
doi: 10.1002/ange.201411854
Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dinca, M. J. Am. Chem. Soc. 2015, 137, 13780. doi: 10.1021/jacs.5b09600
doi: 10.1021/jacs.5b09600
Dou, J. H.; Sun, L.; Ge, Y.; Li, W. B.; Hendon, C. H.; Li, J.; Gul, S.; Yano, J.; Stach, E. A.; Dinca, M. J. Am. Chem. Soc. 2017, 139, 13608. doi: 10.1021/jacs.7b07234
doi: 10.1021/jacs.7b07234
Feng, D. W.; Lei, T.; Lukatskaya, M. R.; Park, J.; Huang, Z. H.; Lee, M.; Shaw, L.; Chen, S. C.; Yakovenko, A. A.; Kulkarni, A. Nat. Energy 2018, 3, 30. doi: 10.1038/s41560-017-0044-5
doi: 10.1038/s41560-017-0044-5
Miner, E. M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dinca, M. Nat. Commun. 2016, 7, 10942. doi: 10.1038/ncomms10942
doi: 10.1038/ncomms10942
Bao, J. Z.; Wang, S. L. Acta Phys. –Chim. Sin. 2011, 27, 2849.
doi: 10.3866/PKU.WHXB20112849
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037