Citation: Ji Yi, Liang Lixin, Guo Changmiao, Bao Xinhe, Polenova Tatyana, Hou Guangjin. Zero-Quantum Homonuclear Recoupling Symmetry Sequences in Solid-State Fast MAS NMR Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2020, 36(4): 190502. doi: 10.3866/PKU.WHXB201905029 shu

Zero-Quantum Homonuclear Recoupling Symmetry Sequences in Solid-State Fast MAS NMR Spectroscopy

  • Corresponding author: Hou Guangjin, ghou@dicp.ac.cn
  • Received Date: 6 May 2019
    Revised Date: 29 May 2019
    Accepted Date: 3 June 2019
    Available Online: 10 April 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (21773230), the Liaoning Revitalization Talents Program, China (XLYC1807207), DICP Innovation Foundation, China (Y7611105T5), and the National Institutes of Health of United States (P50GM082251, P30GM103519, P30GM110758)the National Institutes of Health of United States P30GM110758DICP Innovation Foundation, China Y7611105T5the National Institutes of Health of United States P50GM082251the National Institutes of Health of United States P30GM103519the National Natural Science Foundation of China 21773230the Liaoning Revitalization Talents Program, China XLYC1807207

  • The considerable demand of robust solid-state nuclear magnetic resonance (NMR) sequences has been met by the development in solid-state NMR hardware and probe design, particularly for fast magic angle spinning (MAS). Fast MAS enhances spectral resolution, however, it makes many conventional methods unusable because of the need of significantly high radiofrequency (RF) field strength and the intrinsic inefficiencies under such condition. Dipolar-based homonuclear recoupling sequences are widely used for structural analysis, and radio-frequency driven recoupling (RFDR) is one of the most popular zero-quantum (ZQ) homonuclear recoupling sequence. Previous studies demonstrated that RFDR efficiency strongly depends on factors such as MAS frequency, resonance offset, RF field inhomogeneity, and chemical shift anisotropy (CSA). To alleviate these dependencies, different RFDR phase cycles have been proposed. To completely understand the principle of ZQ recoupling sequences and achieve uniform broadband homonuclear recoupling under fast MAS conditions, we herein utilize the theory of symmetry sequences and propose a series of RNN1 (N ≥ 4, N is even) sequences with various phase cycles under both moderate and fast MAS conditions. We simulated the influence of MAS rate, resonance offset, RF field strength, RF mismatch, and heteronuclear decoupling on ZQ homonuclear polarization transfer efficiency. We verified the ZQ dipolar recoupling efficiencies of various RN symmetry sequences using U-13C, 15N-labeled L-histidine and microcrystalline U-13C, 15N-labeled dynein light chain (LC8) protein. The basic R4 sequence showed the worst broadband ZQ polarization transfer performance theoretically and experimentally, while the basic R6 sequence could efficiently achieve ZQ dipolar recoupling within moderate bandwidth. Under low to moderate MAS conditions, high-power 1H decoupling could considerably enhance the polarization transfer efficiency, while homonuclear recoupling sans heteronuclear decoupling is recommended under fast MAS conditions. Super phase cycling enhanced ZQ polarization transfer efficiency and bandwidth and resulted in significantly reduced sensitivity to RF mismatch. RNixy3 and RNixy4 sequences with 6*N and 8*N phase cycling steps, respectively, were preferred. The R4ixy3 sequence with fewer phase cycling steps showed comparable, or even slightly better, performance to the R4ixy4 sequence. As shown in the simulations, by choosing proper RF field strengths, 1.5*ωr < ω1 < 3*ωr, uniform broadband ZQ recoupling with R4ixy3 or R4ixy4 sequences could be achieved under fast MAS conditions, which would be significant for the accurate determination of spatial proximities and internuclear distances. By prolonging the mixing time, the RN ZQ scheme could provide more cross peaks, where medium- to long-range spatial correlations could be included; these correlations are essential for structural determination in complex systems.
  • 加载中
    1. [1]

      Lin, Y. L.; Cheng, Y. S.; Ho, C. I.; Guo, Z. H.; Huang, S. J.; Org, M. L.; Oss, A.; Samoson, A.; Chan, J. C. C. Chem. Commun. 2018, 54, 10459. doi: 10.1039/c8cc05882b  doi: 10.1039/c8cc05882b

    2. [2]

      Penzel, S.; Oss, A.; Org, M. L.; Samoson, A.; Bockmann, A.; Ernst, M.; Meier, B. H. J. Biomol. NMR 2019, 73, 19. doi: 10.1007/s10858-018-0219-9  doi: 10.1007/s10858-018-0219-9

    3. [3]

      Nishiyama, Y.; Malon, M.; Ishii, Y.; Ramamoorthy, A. J. Magn. Reson. 2014, 244, 1. doi: 10.1016/j.jmr.2014.04.008  doi: 10.1016/j.jmr.2014.04.008

    4. [4]

      Nishiyama, Y.; Zhang, R.; Ramamoorthy, A. J. Magn. Reson. 2014, 243, 25. doi: 10.1016/j.jmr.2014.03.004  doi: 10.1016/j.jmr.2014.03.004

    5. [5]

      Scholz, I.; van Beek, J. D.; Ernst, M. Solid State Nucl. Magn. Reson. 2010, 37, 39. doi: 10.1016/j.ssnmr.2010.04.003  doi: 10.1016/j.ssnmr.2010.04.003

    6. [6]

      Bloembergen, N. Physica 1949, 15, 386. doi: 10.1016/0031-8914[49]90114-7  doi: 10.1016/0031-8914[49]90114-7

    7. [7]

      Takegoshi, K.; Nakamura, S.; Takehiko, T. Chem. Phys. Lett. 2001, 344, 631. doi: 10.1016/S0009-2614[01]00791-6  doi: 10.1016/S0009-2614[01]00791-6

    8. [8]

      Hou, G.; Yan, S.; Sun, S.; Han, Y.; Byeon, I. J.; Ahn, J.; Concel, J.; Samoson, A.; Gronenborn, A. M.; Polenova, T. J. Am. Chem. Soc. 2011, 133, 3943. doi: 10.1021/ja108650x  doi: 10.1021/ja108650x

    9. [9]

      Hou, G.; Yan, S.; Trebosc, J.; Amoureux, J. P.; Polenova, T. J. Magn. Reson. 2013, 232, 18. doi: 10.1016/j.jmr.2013.04.009  doi: 10.1016/j.jmr.2013.04.009

    10. [10]

      Lu, X.; Guo, C.; Hou, G.; Polenova, T. J. Biomol. NMR 2015, 61, 7. doi: 10.1007/s10858-014-9875-6  doi: 10.1007/s10858-014-9875-6

    11. [11]

      Hu, B.; Lafon, O.; Trebosc, J.; Chen, Q.; Amoureux, J. P. J. Magn. Reson. 2011, 212, 320. doi: 10.1016/j.jmr.2011.07.011  doi: 10.1016/j.jmr.2011.07.011

    12. [12]

      Weingarth, M.; Bodenhausen, G.; Tekely, P. Chem. Phys. Lett. 2010, 488, 10. doi: 10.1016/j.cplett.2010.01.072  doi: 10.1016/j.cplett.2010.01.072

    13. [13]

      Hu, B.; Trebosc, J.; Lafon, O.; Chen, Q.; Masuda, Y.; Takegoshi, K.; Amoureux, J. P. ChemPhysChem 2012, 13, 3585. doi: 10.1002/cphc.201200548  doi: 10.1002/cphc.201200548

    14. [14]

      Shen, M.; Liu, Q.; Trebosc, J.; Lafon, O.; Masuda, Y.; Takegoshi, K.; Amoureux, J. P.; Hu, B.; Chen, Q. Solid State Nucl. Magn. Reson. 2013, 5556, 42. doi: 10.1016/j.ssnmr.2013.07.001  doi: 10.1016/j.ssnmr.2013.07.001

    15. [15]

      Veshtort, M.; Griffin, R. G. J. Chem. Phys. 2011, 135, 134509. doi: 10.1063/1.3635374  doi: 10.1063/1.3635374

    16. [16]

      Grommek, A.; Meier, B. H.; Ernst, M. Chem. Phys. Lett. 2006, 427, 404. doi: 10.1016/j.cplett.2006.07.005  doi: 10.1016/j.cplett.2006.07.005

    17. [17]

      Dumez, J. N.; Emsley, L. Phys. Chem. Chem. Phys. 2011, 13, 7363. doi: 10.1039/c1cp00004g  doi: 10.1039/c1cp00004g

    18. [18]

      Wittmann, J. J.; Hendriks, L.; Meier, B. H.; Ernst, M. Chem. Phys. Lett. 2014, 608, 60. doi: 10.1016/j.cplett.2014.05.057  doi: 10.1016/j.cplett.2014.05.057

    19. [19]

      Hohwy, M.; Rienstra, C. M.; Jaroniec, C. P.; Griffin, R. G. J. Chem. Phys. 1999, 110, 7983. doi: 10.1063/1.478702  doi: 10.1063/1.478702

    20. [20]

      De Paepe, G.; Lewandowski, J. R.; Griffin, R. G. J. Chem. Phys. 2008, 128, 124503. doi: 10.1063/1.2834732  doi: 10.1063/1.2834732

    21. [21]

      Bennett, A. E.; Griffin, R. G.; Ok, J. H.; Vega, S. J. Chem. Phys. 1992, 96, 8624. doi: 10.1063/1.462267  doi: 10.1063/1.462267

    22. [22]

      Ishii, Y. J. Chem. Phys. 2001, 114, 8473. doi: 10.1063/1.1359445  doi: 10.1063/1.1359445

    23. [23]

      Brinkmann, A.; Schmedt auf der Günne, J.; Levitt, M. H. J. Magn. Reson. 2002, 156, 79. doi: 10.1006/jmre.2002.2525  doi: 10.1006/jmre.2002.2525

    24. [24]

      Verel, R.; Ernst, M.; Meier, B. H. J. Magn. Reson. 2001, 150, 81. doi: 10.1006/jmre.2001.2310  doi: 10.1006/jmre.2001.2310

    25. [25]

      Bayro, M. J.; Huber, M.; Ramachandran, R.; Davenport, T. C.; Meier, B. H.; Ernst, M.; Griffin, R. G. J. Chem. Phys. 2009, 130, 114506. doi: 10.1063/1.3089370  doi: 10.1063/1.3089370

    26. [26]

      Shen, M.; Hu, B.; Lafon, O.; Trebosc, J.; Chen, Q.; Amoureux, J. P. J. Magn. Reson. 2012, 223, 107. doi: 10.1016/j.jmr.2012.07.013  doi: 10.1016/j.jmr.2012.07.013

    27. [27]

      Zhang, R.; Nishiyama, Y.; Sun, P.; Ramamoorthy, A. J. Magn. Reson. 2015, 252, 55. doi: 10.1016/j.jmr.2014.12.010  doi: 10.1016/j.jmr.2014.12.010

    28. [28]

      Li, C.; Shen, M.; Hu, B. Acta Phys. -Chim. Sin. 2020, 36, 1902019.  doi: 10.3866/PKU.WHXB201902019

    29. [29]

      Hellwagner, J.; Wili, N.; Ibanez, L. F.; Wittmann, J. J.; Meier, B. H.; Ernst, M. J. Magn. Reson. 2018, 287, 65. doi: 10.1016/j.jmr.2017.12.015  doi: 10.1016/j.jmr.2017.12.015

    30. [30]

      Brinkmann, A.; Levitt, M. H. J. Chem. Phys. 2001, 115, 357. doi: 10.1063/1.1377031  doi: 10.1063/1.1377031

    31. [31]

      Bak, M.; Rasmussen, J. T.; Nielsen, N. C. J. Magn. Reson. 2011, 213, 366. doi: 10.1016/j.jmr.2011.09.008  doi: 10.1016/j.jmr.2011.09.008

    32. [32]

      Vega, S.; Gullion, T. Chem. Phys. Lett. 1992, 194, 423. doi: 10.1016/0009-2614[92]86076-T  doi: 10.1016/0009-2614[92]86076-T

    33. [33]

      Bayro, M. J.; Ramachandran, R.; Caporini, M. A.; Eddy, M. T.; Griffin, R. G. J. Chem. Phys. 2008, 128, 052321. doi: 10.1063/1.2834736  doi: 10.1063/1.2834736

  • 加载中
    1. [1]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    2. [2]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    3. [3]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    4. [4]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    5. [5]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    6. [6]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    7. [7]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    8. [8]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    9. [9]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    10. [10]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    11. [11]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    12. [12]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    13. [13]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    14. [14]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

    15. [15]

      Xiao ZhuYanbing MoJiawei ChenGaopan LiuYonggang WangXiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146

    16. [16]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    17. [17]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    18. [18]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    19. [19]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    20. [20]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

Metrics
  • PDF Downloads(5)
  • Abstract views(344)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return