Citation: Sun Wanjun, Lin Junqi, Liang Xiangming, Yang Junyi, Ma Baochun, Ding Yong. Recent Advances in Catalysts Based on Molecular Cubanes for Visible Light-Driven Water Oxidation[J]. Acta Physico-Chimica Sinica, ;2020, 36(3): 190502. doi: 10.3866/PKU.WHXB201905025 shu

Recent Advances in Catalysts Based on Molecular Cubanes for Visible Light-Driven Water Oxidation

  • Corresponding author: Ding Yong, dingyong1@lzu.edu.cn
  • Received Date: 6 May 2019
    Revised Date: 11 June 2019
    Accepted Date: 20 June 2019
    Available Online: 24 March 2019

    Fund Project: the Natural Science Foundation of China 21572084Fundamental Research Funds for the Central Universities lzujbky-2018-k08The project was supported by the Natural Science Foundation of China (21773096, 21572084), Fundamental Research Funds for the Central Universities (lzujbky-2018-k08), Natural Science Foundation of Gansu (17JR5RA186) and Higher Education Institution Research Project of Gansu Province (2018A-123)the Natural Science Foundation of China 21773096Higher Education Institution Research Project of Gansu Province 2018A-123Natural Science Foundation of Gansu 17JR5RA186

  • Increasing climate change and environmental pollution caused by the excessive use of fossil fuels have prompted intensive research into clean and efficient renewable sources as a substitute for traditional fossil fuels. A very promising approach is to mimic the water splitting process that occurs in plants during photosynthesis, in order to convert solar energy into chemical energy. A successful water splitting reaction, which comprises two half reactions (water oxidation and the reduction of protons), can generate H2 and O2 from water. Hydrogen is a promising renewable energy carrier because of its clean combustion and high calorific value. Light-driven water splitting is considered to be a feasible way to transform water and solar energy into hydrogen energy. However, water oxidation is considered to be the bottleneck process of water splitting because it advances in a thermodynamically uphill manner with the involvement of 4e and 4H+. Inspired by the nature of Mn4CaO5 in photosystem Ⅱ (PS Ⅱ), the comprehensive understanding of its key features for use in active molecular water oxidation catalysts (WOCs) remains challenging. Extensive effort has been devoted to researching and manufacturing the structure and biomimicking the catalytic activity of Mn4CaO5 clusters that contain the Mn3CaO4 cubane structure, for the construction of low-cost and robust WOCs. WOCs can be divided into heterogeneous and homogeneous catalysts. Although heterogeneous WOCs are convenient for recycling and are easily prepared on a large scale, homogeneous WOCs, especially complexes based on organic ligands or polyoxometalates (POMs), have more advantages owing to their catalytic efficiency, structural modifications, and mechanistic understanding. Thus, recently, some molecules with an M4O4 (M = transition metals, mainly Mn, Co, Ni, and Cu) cubic structure have been reportedly used as photocatalytic WOCs. In this review, we present an overview of the most important and recent advances based on M4O4 cubic WOCs that contain first-row transition metal cubanes for visible light-driven water oxidation. Our main focus is on the structure of cubane catalysts, including metal complexes, POMs, and a system containing BiVO4 or polymeric carbon nitride (PCN) as a photosensitizer, and cubic complexes as WOCs. Results have shown that the activity and stability of the catalyst can be tuned by the ligand stability, metal center, coordination environment, and other factors. This review will be helpful for designing new cubane catalysts for photocatalytic water oxidation that are highly efficient and stable.
  • 加载中
    1. [1]

      Berardi, S.; Drouet, S.; Francàs, L.; Gimbert-Suriñach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Chem. Soc. Rev. 2014, 43, 7501. doi: 10.1039/c3cs60405e  doi: 10.1039/c3cs60405e

    2. [2]

      Song, F.; Ding, Y.; Ma, B.; Wang, C.; Wang, Q.; Du, X.; Fu, S.; Song, J. Energy Environ. Sci. 2013, 6, 1170. doi: 10.1039/C3EE24433D  doi: 10.1039/C3EE24433D

    3. [3]

      Gong, J.; Li, C.; Wasielewski, M. R. Chem. Soc. Rev. 2019, 48, 1862. doi: 10.1039/c9cs90020al  doi: 10.1039/c9cs90020al

    4. [4]

      Wang, J. -W.; Zhong, D. -C.; Lu, T. -B. Coord. Chem. Rev. 2018, 377, 225. doi: 10.1016/j.ccr.2018.09.003  doi: 10.1016/j.ccr.2018.09.003

    5. [5]

      Xiao, A.; Lu, H.; Zhao, Y.; Luo, G. G. Acta Phys. -Chim. Sin. 2016, 32 (12), 2968.  doi: 10.3866/PKU.WHXB201609194

    6. [6]

      Yu, L.; Ding, Y.; Zheng, M.; Chen, H.; Zhao, J. Chem. Commun. 2016, 52, 14494. doi: 10.1039/C6CC02728h  doi: 10.1039/C6CC02728h

    7. [7]

      Dismukes, G. C.; Brimblecombe, R.; Felton, G. A.; Pryadun, R. S.; Sheats, J. E.; Spiccia, L.; Swiegers, G. F. Acc. Chem. Res. 2009, 42, 1935. doi:10.1021/ar900249x  doi: 10.1021/ar900249x

    8. [8]

      Tian, T.; Gao, H.; Zhou, X.; Zheng, L.; Wu, J.; Li, K.; Ding, Y. ACS Energy Lett. 2018, 3, 2150. doi: 10.1021/acsenergylett.8b01206  doi: 10.1021/acsenergylett.8b01206

    9. [9]

      Zhang, B.; Sun, L. Chem. Soc. Rev. 2019, 48, 2216. doi: 10.1039/c8cs00897c  doi: 10.1039/c8cs00897c

    10. [10]

      Gersten, S. W.; Samuels, G. J.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4029. doi: 10.1021/ja00378a053  doi: 10.1021/ja00378a053

    11. [11]

      Umena, Y.; Kawakami, K.; Shen, J. -R.; Kamiya, N. Nature 2011, 473, 55. doi: 10.1038/nature09913  doi: 10.1038/nature09913

    12. [12]

      Zhang, C. X.; Chen, C. H.; Dong, H. X.; Shen, J. R.; Dau, H.; Zhao, J. Q. Science 2015, 348, 690. doi: 10.1126/science.aaa6550  doi: 10.1126/science.aaa6550

    13. [13]

      Kok, B.; Forbush, B.; McGloin, M. Photochem. Photobiol. 1970, 11, 457. doi: 10.1111/j.1751-1097.1970.tb06017.x  doi: 10.1111/j.1751-1097.1970.tb06017.x

    14. [14]

      Suga, M.; Akita, F.; Sugahara, M.; Kubo, M.; Nakajima, Y.; Nakane, T.; Yamashita, K.; Umena, Y.; Nakabayashi, M.; Yamane, T.; et al. Nature 2017, 543, 131. doi: 10.1038/nature21400  doi: 10.1038/nature21400

    15. [15]

      Suga, M.; Akita, F.; Hirata, K.; Ueno, G.; Murakami, H.; Nakajima, Y.; Shimizu, T.; Yamashita, K.; Yamamoto, M.; Ago, H.; et al. Nature 2015, 517, 99. doi: 10.1038/nature13991  doi: 10.1038/nature13991

    16. [16]

      Chen, C.; Chen, Y.; Yao, R.; Li, Y.; Zhang, C. Angew. Chem. Int. Ed. 2019, 58, 3939. doi: 10.1002/anie.201814440  doi: 10.1002/anie.201814440

    17. [17]

      Lin, J.; Han, Q.; Ding, Y. Chem. Rec. 2018, 18, 1531. doi: 10.1002/tcr.201800029  doi: 10.1002/tcr.201800029

    18. [18]

      Buriak, J. M.; Kamat, P. V.; Schanze, K. S. ACS Appl. Mater. Interfaces 2014, 6, 11815. doi: 10.1021/am504389z  doi: 10.1021/am504389z

    19. [19]

      Lin, J.; Meng, X.; Zheng, M.; Ma, B.; Ding, Y. Appl Catal B: Environ 2019, 241, 351. doi: 10.1016/j.apcatb.2018.09.052  doi: 10.1016/j.apcatb.2018.09.052

    20. [20]

      Parent, A. R.; Crabtree, R. H.; Brudvig, G. W. Chem. Soc. Rev. 2013, 42, 2247. doi: 10.1039/C2CS35225G  doi: 10.1039/C2CS35225G

    21. [21]

      Yamada, Y.; Yano, K.; Hong, D.; Fukuzumi, S. Phys. Chem. Chem. Phys. 2012, 14, 5753. doi: 10.1039/c2cp00022a  doi: 10.1039/c2cp00022a

    22. [22]

      McCool, N. S.; Robinson, D. M.; Sheats, J. E.; Dismukes, G. C. J. Am. Chem. Soc. 2011, 133, 11446. doi: 10.1021/ja203877y  doi: 10.1021/ja203877y

    23. [23]

      Dismukes, G. C.; Brimblecombe, R.; Felton, G. A. N.; Pryadun, R. S.; Sheats, J. E.; Spiccia, L.; Swiegers, G. F. Acc. Chem. Res. 2009, 42, 1935. doi: 10.1021/ar900249x  doi: 10.1021/ar900249x

    24. [24]

      Smith, P. F.; Kaplan, C.; Sheats, J. E.; Robinson, D. M.; McCool, N. S.; Mezle, N.; Dismukes, G. C. Inorg. Chem. 2014, 53, 2113. doi: 10.1021/ic402720p  doi: 10.1021/ic402720p

    25. [25]

      Dimitrou, K.; Folting, K.; Streib, W. E.; Christou, G. J. Am. Chem. Soc. 1993, 115, 6432. doi: 10.1021/ja00067a077  doi: 10.1021/ja00067a077

    26. [26]

      Sumner, E. C. Inorg. Chem. 1988, 27, 1320. doi: 10.1021/ic00281a004  doi: 10.1021/ic00281a004

    27. [27]

      La Ganga, G.; Puntoriero, F.; Campagna, S.; Bazzan, I.; Berardi, S.; Bonchio, M.; Sartorel, A.; Natali, M.; Scandola, F. Faraday Discuss. 2012, 155, 177. doi: 10.1039/c1fd00093d  doi: 10.1039/c1fd00093d

    28. [28]

      Berardi, S.; La Ganga, G.; Natali, M.; Bazzan, I.; Puntoriero, F.; Sartorel, A.; Scandola, F.; Campagna, S.; Bonchio, M. J. Am. Chem. Soc. 2012, 134, 11104. doi: 10.1021/ja303951z  doi: 10.1021/ja303951z

    29. [29]

      Zhou, X.; Li, F.; Li, H.; Zhang, B.; Yu, F.; Sun, L. ChemSusChem 2014, 7, 2453. doi: 10.1002/cssc.201402195  doi: 10.1002/cssc.201402195

    30. [30]

      Ullman, A. M.; Liu, Y.; Huynh, M.; Bediako, D. K.; Wang, H.; Anderson, B. L.; Powers, D. C.; Breen, J. J.; Abruña, H. D.; Nocera, D. G. J. Am. Chem. Soc. 2014, 136, 17681. doi: 10.1021/ja5110393  doi: 10.1021/ja5110393

    31. [31]

      Nguyen, A. I.; Ziegler, M. S.; Oña-Burgos, P.; Sturzbecher-Hohne, M.; Kim, W.; Bellone, D. E.; Tilley, T. D. J. Am. Chem. Soc. 2015, 137, 12865. doi: 10.1021/jacs.5b08396  doi: 10.1021/jacs.5b08396

    32. [32]

      Wang, H. -Y.; Mijangos, E.; Ott, S.; Thapper, A. Angew. Chem. Int. Ed. 2014, 53, 14499. doi: 10.1002/anie.201406540  doi: 10.1002/anie.201406540

    33. [33]

      Wang, J. -W.; Sahoo, P.; Lu, T. -B. ACS Catal. 2016, 6, 5062. doi: 10.1021/acscatal.6b00798  doi: 10.1021/acscatal.6b00798

    34. [34]

      Evangelisti, F.; More, R.; Hodel, F.; Luber, S.; Patzke, G. R. J. Am. Chem. Soc. 2015, 137, 11076. doi: 10.1021/jacs.5b05831  doi: 10.1021/jacs.5b05831

    35. [35]

      Folkman, S. J.; Soriano-Lopez, J.; Galan-Mascaros, J. R.; Finke, R. G. J. Am. Chem. Soc. 2018, 140, 12040. doi: 10.1021/jacs.8b06303  doi: 10.1021/jacs.8b06303

    36. [36]

      Evangelisti, F.; Guttinger, R.; More, R.; Luber, S.; Patzke, G. R. J. Am. Chem. Soc. 2013, 135, 18734. doi: 10.1021/ja4098302  doi: 10.1021/ja4098302

    37. [37]

      Song, F.; Moré, R.; Schilling, M.; Smolentsev, G.; Azzaroli, N.; Fox, T.; Luber, S.; Patzke, G. R. J. Am. Chem. Soc. 2017, 139, 14198. doi: 10.1021/jacs.7b07361  doi: 10.1021/jacs.7b07361

    38. [38]

      Xie, W. -F.; Guo, L. -Y.; Xu, J. -H.; Jagodič, M.; Jagličić, Z.; Wang, W. -G.; Zhuang, G. -L.; Wang, Z.; Tung, C. -H.; Sun, D. Eur. J. Inorg. Chem. 2016, 2016, 3253. doi.10.1002/ejic.201600510

    39. [39]

      Xu, J. -H.; Guo, L. -Y.; Su, H.-F.; Gao, X.; Wu, X. -F.; Wang, W. -G.; Tung, C. -H.; Sun, D. Inorg. Chem. 2017, 56, 1591. doi: 10.1021/acs.inorgchem.6b02698

    40. [40]

      Zhao, Y.; Lin, J.; Liu, Y.; Ma, B.; Ding, Y.; Chen, M. Chem. Commun. 2015, 51, 17309. doi:10.1039/C5CC07448g  doi: 10.1039/C5CC07448g

    41. [41]

      Jiang, X.; Li, J.; Yang, B.; Wei, X. Z.; Dong, B. W.; Kao, Y.; Huang, M.; Tung, C.; Wu, L. Angew. Chem. Int. Ed. 2018, 57, 7850. doi: 10.1002/anie.201803944  doi: 10.1002/anie.201803944

    42. [42]

      Lin, J.; Liang, X.; Cao, X.; Wei, N.; Ding, Y. Chem. Commun. 2018, 54, 12515. doi: 10.1039/c8cc06362a  doi: 10.1039/c8cc06362a

    43. [43]

      Song, F.; Ding, Y.; Zhao, C. Acta Chim Sinica 2014, 72, 133.  doi: 10.6023/a13101052

    44. [44]

      Lv, H.; Geletii, Y. V.; Zhao, C.; Vickers, J. W.; Zhu, G.; Luo, Z.; Song, J.; Lian, T.; Musaev, D. G.; Hill, C. L. Chem. Soc. Rev. 2012, 41, 7572. doi: 10.1039/C2CS35292C  doi: 10.1039/C2CS35292C

    45. [45]

      Du, X.; Zhao, J.; Mi, J.; Ding, Y.; Zhou, P.; Ma, B.; Zhao, J.; Song, J. Nano Energy 2015, 16, 247. doi: 10.1016/j.nanoen.2015.06.025  doi: 10.1016/j.nanoen.2015.06.025

    46. [46]

      Yu, L.; Ding, Y.; Zheng, M. Appl. Catal. B: Environ. 2017, 209, 45. doi: 10.1016/j.apcatb.2017.02.061  doi: 10.1016/j.apcatb.2017.02.061

    47. [47]

      Yu, L.; Lin, J.; Zheng, M.; Chen, M.; Ding, Y. Chem. Commun. 2018, 54, 354. doi: 10.1039/C7CC08301G  doi: 10.1039/C7CC08301G

    48. [48]

      Du, X.; Ding, Y.; Song, F.; Ma, B.; Zhao, J.; Song, J. Chem. Commun. 2015, 51, 13925. doi: 10.1039/c5cc04551g  doi: 10.1039/c5cc04551g

    49. [49]

      Yin, Q.; Tan, J. M.; Besson, C.; Geletii, Y. V.; Musaev, D. G.; Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L. Science 2010, 328, 342. doi: 10.1126/science.1185372  doi: 10.1126/science.1185372

    50. [50]

      Han, Z.; Bond, A. M.; Zhao, C. Sci. China Chem. 2011, 54, 1877. doi: 10.1007/s11426-011-4442-4  doi: 10.1007/s11426-011-4442-4

    51. [51]

      Sartorel, A.; Carraro, M.; Scorrano, G.; Zorzi, R. D.; Geremia, S.; McDaniel, N. D.; Bernhard, S.; Bonchio, M. J. Am. Chem. Soc. 2008, 130, 5006. doi: 10.1021/ja077837f  doi: 10.1021/ja077837f

    52. [52]

      Geletii, Y. V.; Botar, B.; Kögerler, P.; Hillesheim, D. A.; Musaev, D. G.; Hill, C. L. Angew. Chem. Int. Ed. 2008, 47, 3896. doi: 10.1002/anie.200705652  doi: 10.1002/anie.200705652

    53. [53]

      Geletii, Y. V.; Huang, Z.; Hou, Y.; Musaev, D. G.; Lian, T.; Hill, C. L. J. Am. Chem. Soc. 2009, 131, 7522. doi: 10.1021/ja901373m  doi: 10.1021/ja901373m

    54. [54]

      Han, X. -B.; Zhang, Z. -M.; Zhang, T.; Li, Y. -G.; Lin, W.; You, W.; Su, Z. -M.; Wang, E.-B. J. Am. Chem. Soc. 2014, 136, 5359. doi: 10.1021/ja412886e

    55. [55]

      Du, P.; Kokhan, O.; Chapman, K. W.; Chupas, P. J.; Tiede, D. M. J. Am. Chem. Soc. 2012, 134, 11096. doi: 10.1021/ja303826a  doi: 10.1021/ja303826a

    56. [56]

      Wei, J.; Feng, Y.; Zhou, P.; Liu, Y.; Xu, J.; Xiang, R.; Ding, Y.; Zhao, C.; Fan, L.; Hu, C. ChemSusChem 2015, 8, 2630. doi: 10.1002/cssc.201500490  doi: 10.1002/cssc.201500490

    57. [57]

      Chen, W. C.; Wang, X. L.; Qin, C.; Shao, K. Z.; Su, Z. M.; Wang, E. B. Chem. Commun. 2016, 52, 9514. doi: 10.1039/c6cc03763a  doi: 10.1039/c6cc03763a

    58. [58]

      Al-Oweini, R.; Sartorel, A.; Bassil, B. S.; Natali, M.; Berardi, S.; Scandola, F.; Kortz, U.; Bonchio, M. Angew. Chem. Int. Ed. 2014, 53, 11182. doi: 10.1002/anie.201404664  doi: 10.1002/anie.201404664

    59. [59]

      Schwarz, B.; Forster, J.; Goetz, M. K.; Yücel, D.; Berger, C.; Jacob, T.; Streb, C. Angew. Chem. Int. Ed. 2016, 55, 6329. doi: 10.1002/anie.201601799  doi: 10.1002/anie.201601799

    60. [60]

      Han, X. -B.; Li, Y. -G.; Zhang, Z. -M.; Tan, H. -Q.; Lu, Y.; Wang, E. -B. J. Am. Chem. Soc. 2015, 137, 5486. doi: 10.1021/jacs.5b01329

    61. [61]

      Stewart, A. C.; Bendall, D. S. Biochem. J. 1980, 188. 351. doi: 10.1042/bj1880351  doi: 10.1042/bj1880351

    62. [62]

      Xiang, R.; Ding, Y.; Zhao, J. Chem. Asian J. 2014, 9, 3228. doi: 10.1002/asia.201402483  doi: 10.1002/asia.201402483

    63. [63]

      Probs, B.; Kolano, C.; Hamm, P.; Alberto, R. Inorg. Chem. 2009, 48, 1836. doi: 10.1021/ic8013255  doi: 10.1021/ic8013255

    64. [64]

      Liang, X.; Lin, J.; Cao, X.; Sun, W.; Yang, J.; Ma, B.; Ding, Y. Chem. Commun. 2019, 55, 2529. doi: 10.1039/c8cc09807g  doi: 10.1039/c8cc09807g

    65. [65]

      Ye, C.; Wang, X. -Z.; Li, J. -X.; Li, Z. -J.; Li, X. -B.; Zhang, L. -P.; Chen, B.; Tung, C. -H.; Wu, L. -Z. ACS Catal. 2016, 6, 8336. doi: 10.1021/acscatal.6b02664

    66. [66]

      Li, Y.; Kong, T.; Shen, S. Small 2019, 1900772. doi: 10.1002/smll.201900772  doi: 10.1002/smll.201900772

    67. [67]

      Chang, X. X.; Gong, J. L. Acta Phys. -Chim. Sin. 2016, 32 (1), 2.  doi: 10.3866/PKU.WHXB201510192

    68. [68]

      Wang, Y.; Li, F.; Li, H.; Bai, L.; Sun, L. Chem. Commun. 2016, 52, 3050. doi: 10.1039/c5cc09588c  doi: 10.1039/c5cc09588c

    69. [69]

      Ye, S.; Chen, R.; Xu, Y.; Fan, F.; Du, P.; Zhang, F.; Zong, X.; Chen, T.; Qi, Y.; Chen, P.; et al. J. Catal. 2016, 338, 168. doi: 10.1016/j.jcat.2016.02.024  doi: 10.1016/j.jcat.2016.02.024

    70. [70]

      Luo, Z. S.; Zhou, M.; Wang, X. C. Appl. Catal. B: Environ. 2018, 238, 664. doi: 10.1016/j.apcatb.2018.07.056  doi: 10.1016/j.apcatb.2018.07.056

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    3. [3]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    10. [10]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    12. [12]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    13. [13]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    16. [16]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(10)
  • Abstract views(626)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return