Citation: Deng Jing, Ma Tao, Chang Ziwei, Zhao Weijing, Yang Jun. Determination of Three-Dimensional Structures of Protein Assemblies via Solid-State NMR[J]. Acta Physico-Chimica Sinica, ;2020, 36(4): 190501. doi: 10.3866/PKU.WHXB201905019 shu

Determination of Three-Dimensional Structures of Protein Assemblies via Solid-State NMR

  • Corresponding author: Yang Jun, yangjun@wipm.ac.cn
  • Received Date: 2 May 2019
    Revised Date: 10 June 2019
    Accepted Date: 17 June 2019
    Available Online: 24 April 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (21425523, 31770798, 31600613, 21603269)the National Natural Science Foundation of China 21603269the National Natural Science Foundation of China 31600613the National Natural Science Foundation of China 31770798the National Natural Science Foundation of China 21425523

  • Biological assemblies with specific function or pathogenicity are widespread within organisms; however, their insolubility, amorphous properties, and large size are the major obstacles for structure determination via solution NMR spectroscopy and X-ray crystallography. In contrast, solid-state NMR (ssNMR) spectroscopy is not limited by the solubility or crystallinity of the sample and is a potent method to determine the structure of protein assemblies at atomic resolution. High magnetic field, fast magic-angle spinning (MAS), isotope labeling schemes, and improved methodology in ssNMR have enabled resonance assignment and restraints in structure determination among protein assemblies. This review first discusses methods of obtaining structural restraints by ssNMR. Optimization of sample preparation is an effective approach to increase homogeneity in the conformation, thus also improving the resolution of ssNMR spectra. Furthermore, the resolution of 13C spectra can be further improved by using 13C sparse labeling strategies with selective labeling of carbon sources during protein expression. Structure characterization by ssNMR is based on structural restraints via multidimensional experiments correlating resonance between 13C and 15N. Protein secondary structure can be ascertained through chemical shifts involving 13Cα, 13Cβ, 13C', and 15N. The backbone torsion angle can be predicted using TALOS+ based on these chemical shifts. Site-specific structural restraints are accessible from 2D experiments such as 13C-13C, e.g., proton-driven spin diffusion (PDSD), dipolar-assisted rotational resonance (DARR), proton-assisted recoupling (PAR) and 13C-15N, e.g., transferred-echo double-resonance (TEDOR), rotational-echo double-resonance (REDOR). An additional issue is to distinguish inter-molecular and intra-molecular restraints. Preparations of mixed labeled samples (e.g., 50% 13C uniformly labeled subunits and 50% uniformly 15N labeled subunits) have yielded abundant structural restraints from ssNMR data, facilitating high-resolution structural analysis. Further, hybrid approaches based on ssNMR are discussed. Electron microscopy (EM) is a suitable method to investigate structural features including the diameter of the protein assemblies, which is "invisible" through ssNMR analysis. Scanning transmission electron microscopy (STEM) can help determine the mass-per-length parameters (MPL) of unbranched fibrils, thus confirming the number of subunits in a layer of fibrils. Cryo-EM is a powerful technique to describe the molecular envelope of protein assemblies. Cryo-EM potentially yields the density map and long-range symmetry parameters, while ssNMR provides atomic-level structural details; hence, Cryo-EM and ssNMR are highly complementary methods. X-ray diffraction can help determine the distance (4.5–4.7 Å, 1 Å = 0.1 nm) along the fibril axis between adjacent polypeptide chains in β-strand conformation, generally referred to as the "cross-β" structure. Rosetta has simulated the protein structure in accordance with structural data obtained from protein data bank (PDB) with the same peptide sequence. On combining ssNMR with those methods, more abundant structural information may be obtained, thus shortening the structural calculation cycle. Finally, a detailed description of the ssNMR structural data on amyloid-β (Aβ) fibrils and T3SS needles are provided as examples. Various structural characteristics of Aβ40/Aβ42 were reported by several groups, including the trimeric or dimeric conformations, parallel or antiparallel, in-register or out-of-register arrangements of the β-strands, demonstrating the structural polymorphism of Aβ40/Aβ42. Atomic-resolution structures of T3SS needles were analyzed on the basis of high-resolution spectra, using 13C sparse-labeled and ssNMR-Cryo-EM-Rosetta hybrid approaches, indicating that hybrid approaches based on ssNMR are a powerful tool to determine the high-resolution structure of protein assemblies.
  • 加载中
    1. [1]

      Loquet, A.; Sgourakis, N. G.; Gupta, R.; Giller, K.; Riedel, D.; Goosmann, C.; Griesinger, C.; Kolbe, M.; Baker, D.; Becker, S.; et al. Nature 2012, 486 (7402), 276. doi: 10.1038/nature11079  doi: 10.1038/nature11079

    2. [2]

      Jeon, J.; Qiao, X.; Hung, I.; Mitra, A. K.; Desfosses, A.; Huang, D.; Gor'kov, P. L.; Craven, R. C.; Kingston, R. L.; Gan, Z.; et al. J. Am. Chem. Soc. 2017, 139 (5), 2006. doi: 10.1021/jacs.6b11939  doi: 10.1021/jacs.6b11939

    3. [3]

      Vasa, S.; Lin, L.; Shi, C.; Habenstein, B.; Riedel, D.; Kuehn, J.; Thanbichler, M.; Lange, A. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (2), E127. doi: 10.1073/pnas.1418450112  doi: 10.1073/pnas.1418450112

    4. [4]

      Chiti, F.; Dobson, C. M. Annu. Rev. Biochem. 2006, 75, 333. doi: 10.1146/annurev.biochem.75.101304.123901  doi: 10.1146/annurev.biochem.75.101304.123901

    5. [5]

      Wälti, M. A.; Ravotti, F.; Arai, H.; Glabe, C. G.; Wall, J. S.; Bockmann, A.; Guentert, P.; Meier, B. H.; Riek, R. Proc. Natl. Acad. Sci. U.S.A. 2016, 113 (34), E4976. doi: 10.1073/pnas.1600749113  doi: 10.1073/pnas.1600749113

    6. [6]

      Spillantini, M. G.; Schmidt, M. L.; Lee, V. M. Y.; Trojanowski, J. Q.; Jakes, R.; Goedert, M. Nature 1997, 388 (6645), 839. doi: 10.1038/42166  doi: 10.1038/42166

    7. [7]

    8. [8]

      Morag, O.; Sgourakis, N. G.; Baker, D.; Goldbourt, A. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (4), 971. doi: 10.1073/pnas.1415393112  doi: 10.1073/pnas.1415393112

    9. [9]

      Habenstein, B.; Loquet, A.; Hwang, S. H.; Giller, K.; Vasa, S. K.; Becker, S.; Habeck, M.; Lange, A. Angew. Chem. Int. Ed. 2015, 54 (40), 11691. doi: 10.1002/anie.201505065  doi: 10.1002/anie.201505065

    10. [10]

      Thiriot, D. S.; Nevzorov, A. A.; Opella, S. J. Protein Sci. 2005, 14 (4), 1064. doi: 10.1110/ps.041220305  doi: 10.1110/ps.041220305

    11. [11]

      Schwieters, C. D.; Kuszewski, J. J.; Tjandra, N.; Clore, G. M. J. Magn. Reson. 2003, 160 (1), 65. doi: 10.1016/s1090-7807(02)00014-9  doi: 10.1016/s1090-7807(02)00014-9

    12. [12]

      Brunger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.; Grosse-Kunstleve, R. W.; Jiang, J. S.; Kuszewski, J.; Nilges, M.; Pannu, N. S.; et al. Acta Crystallograph. Sec. D-Biolog. Crystallography 1998, 54, 905.. doi: 10.1107/s0907444998003254  doi: 10.1107/s0907444998003254

    13. [13]

      Guntert, P.; Buchner, L. J. Biomol. NMR 2015, 62 (4), 453. doi: 10.1007/s10858-015-9924-9  doi: 10.1007/s10858-015-9924-9

    14. [14]

      Van Melckebeke, H.; Wasmer, C.; Lange, A.; Ab, E.; Loquet, A.; Bockmann, A.; Meier, B. H. J. Am. Chem. Soc. 2010, 132 (39), 13765. doi: 10.1021/ja104213J  doi: 10.1021/ja104213J

    15. [15]

      Luhrs, T.; Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Doeli, H.; Schubert, D.; Riek, R. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (48), 17342. doi: 10.1073/pnas.0506723102  doi: 10.1073/pnas.0506723102

    16. [16]

      Colvin, M. T.; Silvers, R.; Ni, Q. Z.; Can, T. V.; Sergeyev, I.; Rosay, M.; Donovan, K. J.; Michael, B.; Wall, J.; Linse, S.; et al. J. Am. Chem. Soc. 2016, 138 (30), 9663. doi: 10.1021/jacs.6b05129  doi: 10.1021/jacs.6b05129

    17. [17]

      Schutz, A. K.; Vagt, T.; Huber, M.; Ovchinnikova, O. Y.; Cadalbert, R.; Wall, J.; Guntert, P.; Bockmann, A.; Glockshuber, R.; Meier, B. H. Angew. Chem. Int. Ed. 2015, 54 (1), 331. doi: 10.1002/anie.201408598  doi: 10.1002/anie.201408598

    18. [18]

      Habenstein, B.; Loquet, A. Biophys. Chem. 2016, 210, 14. doi: 10.1016/j.bpc.2015.07.003  doi: 10.1016/j.bpc.2015.07.003

    19. [19]

      (a) Niu, Z.; Zhao, W. J.; Zhang, Z. F.; Xiao, F. S.; Tang, X. Q.; Yang, J. Angew. Chem. Int. Ed. 2014, 53 (35), 9294. doi: 10.1002/anie.201311106
      (b) Niu, Z.; Zhang, Z. F.; Zhao, W. J.; Yang, J. Biochim. Biophys. Acta-Biomembranes 2018, 1860 (9), 1663. doi: 10.1016/j.bbamem.2018.04.004

    20. [20]

      (a) Lacabanne, D.; Meier, B. H.; Bockmann, A. J. Biomol. NMR 2018, 71 (3), 141. doi: 10.1007/s10858-017-0156-z
      (b) Higman, V. A.; Flinders, J.; Hiller, M.; Jehle, S.; Markovic, S.; Fiedler, S.; van Rossum, B. J.; Oschkinat, H. J. Biomol. NMR 2009, 44 (4), 245. doi: 10.1007/s10858-009-9338-7
      (c) Hong, M. J. Magn. Reson. 1999, 139 (2), 389. doi: 10.1006/jmre.1999.1805
      (d) Lundstrom, P.; Teilum, K.; Carstensen, T.; Bezsonova, I.; Wiesner, S.; Hansen, D. F.; Religa, T. L.; Akke, M.; Kay, L. E. J. Biomol. NMR 2007, 38 (3), 199. doi: 10.1007/s10858-007-9158-6

    21. [21]

      (a) Ladizhansky, V. Solid State Nucl. Magn. Reso. 2009, 36 (3), 119. doi: 10.1016/j.ssnmr.2009.07.003
      (b) De Paepe, G. Dipolar Recoupling in Magic Angle Spinning Solid-State Nuclear Magnetic Resonance. In Annual Review of Physical Chemistry; Johnson, M. A.; Martinez, T. J. Eds. 2012; Vol. 63, pp. 661–684. doi: 10.1146/annurev-physchem-032511-143726
      (c) Griffin, R. G. Nat. Struct. Biol. 1998, 5, 508. doi: 10.1038/749

    22. [22]

      Nishiyama, Y.; Endo, Y.; Nemoto, T.; Utsumi, H.; Yamauchi, K.; Hioka, K.; Asakura, T. J. Magn. Reson. 2011, 208 (1), 44. doi: 10.1016/j.jmr.2010.10.001  doi: 10.1016/j.jmr.2010.10.001

    23. [23]

      Demers, J. P.; Chevelkov, V.; Lange, A. Solid State Nucl. Magn. Reson. 2011, 40 (3), 101. doi: 10.1016/j.ssnmr.2011.07.002  doi: 10.1016/j.ssnmr.2011.07.002

    24. [24]

      Zhang, Z.; Liu, H.; Deng, J.; Tycko, R.; Yang, J. J. Chem. Phys. 2019, 150 (15), 154201. doi: 10.1063/1.5092986  doi: 10.1063/1.5092986

    25. [25]

      (a) Zhang, Z. F.; Li, J. P.; Chen, Y. K.; Xie, H. Y.; Yang, J. J. Magn. Reson. 2017, 285, 79. doi: 10.1016/j.jmr.2017.10.012
      (b) Zhang, Z. F.; Chen, Y. K.; Yang, J. J. Magn. Reson. 2016, 272, 46. doi: 10.1016/j.jmr.2016.09.003

    26. [26]

      Shen, Y.; Delaglio, F.; Cornilescu, G.; Bax, A. J. Biomol. NMR 2009, 44 (4), 213. doi: 10.1007/s10858-009-9333-z  doi: 10.1007/s10858-009-9333-z

    27. [27]

      Luca, S.; Filippov, D. V.; van Boom, J. H.; Oschkinat, H.; de Groot, H. J. M.; Baldus, M. J. Biomol. NMR 2001, 20 (4), 325. doi: 10.1023/a:1011278317489  doi: 10.1023/a:1011278317489

    28. [28]

      Szeverenyi, N. M.; Sullivan, M. J.; Maciel, G. E. J. Magn. Reson. 1982, 47 (3), 462. doi: 10.1016/0022-2364(82)90213-x  doi: 10.1016/0022-2364(82)90213-x

    29. [29]

      Takegoshi, K.; Nakamura, S.; Terao, T. Chem. Phys. Lett. 2001, 344 (5–6), 631. doi: 10.1016/s0009-2614(01)00791-6  doi: 10.1016/s0009-2614(01)00791-6

    30. [30]

      Hou, G. J.; Lu, X. Y.; Vega, A. J.; Polenova, T. J. Chem. Phys. 2014, 141 (10), 104202. doi: 10.1063/1.4894226  doi: 10.1063/1.4894226

    31. [31]

      (a) Michal, C. A.; Jelinski, L. W. J. Am. Chem. Soc. 1997, 119 (38), 9059. doi: 10.1021/ja9711730
      (b) Jaroniec, C. P.; Filip, C.; Griffin, R. G. J. Am. Chem. Soc. 2002, 124 (36), 10728. doi: 10.1021/ja026385y

    32. [32]

      (a) Lange, A.; Luca, S.; Baldus, M. J. Am. Chem. Soc. 2002, 124 (33), 9704. doi: 10.1021/ja026691b
      (b) Lange, A.; Seidel, K.; Verdier, L.; Luca, S.; Baldus, M. J. Am. Chem. Soc. 2003, 125 (41), 12640. doi: 10.1021/ja034555g

    33. [33]

      (a) Linser, R.; Bardiaux, B.; Andreas, L. B.; Hyberts, S. G.; Morris, V. K.; Pintacuda, G.; Sunde, M.; Kwan, A. H.; Wagner, G. J. Am. Chem. Soc. 2014, 136 (31), 11002. doi: 10.1021/ja504603g
      (b) Andreas, L. B.; Jaudzems, K.; Stanek, J.; Lalli, D.; Bertarello, A.; Le Marchand, T.; Paepe, D. C. D.; Kotelovica, S.; Akopjana, I.; Knott, B.; et al. Proc. Natl. Acad. Sci. U.S.A. 2016, 113 (33), 9187. doi: 10.1073/pnas.1602248113
      (c) Huber, M.; Hiller, S.; Schanda, P.; Ernst, M.; Boeckmann, A.; Verel, R.; Meier, B. H. ChemPhysChem 2011, 12 (5), 915. doi: 10.1002/cphc.201100062

    34. [34]

      Sengupta, I.; Nadaud, P. S.; Helmus, J. J.; Schwieters, C. D.; Jaroniec, C. P. Nat. Chem. 2012, 4 (5), 410. doi: 10.1038/nchem.1299  doi: 10.1038/nchem.1299

    35. [35]

      Li, J.; Pilla, K. B.; Li, Q.; Zhang, Z.; Su, X.; Huber, T.; Yang, J. J. Am. Chem. Soc. 2013, 135 (22), 8294. doi: 10.1021/ja4021149  doi: 10.1021/ja4021149

    36. [36]

      (a) Nelson, R.; Sawaya, M. R.; Balbirnie, M.; Madsen, A. O.; Riekel, C.; Grothe, R.; Eisenberg, D. Nature 2005, 435 (7043), 773. doi: 10.1038/nature03680
      (b) Sawaya, M. R.; Sambashivan, S.; Nelson, R.; Ivanova, M. I.; Sievers, S. A.; Apostol, M. I.; Thompson, M. J.; Balbirnie, M.; Wiltzius, J. J. W.; McFarlane, H. T.; et al. Nature 2007, 447 (7143), 453. doi: 10.1038/nature05695

    37. [37]

      Madine, J.; Jack, E.; Stockley, P. G.; Radford, S. E.; Serpell, L. C.; Middleton, D. A. J. Am. Chem. Soc. 2008, 130 (45), 14990. doi: 10.1021/ja802483d  doi: 10.1021/ja802483d

    38. [38]

      (a) Goldsbury, C.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Wall, J. S.; Aebi, U.; Muller, S. A. J. Struct. Biol. 2011, 173 (1), 1. doi: 10.1016/j.jsb.2010.09.018
      (b) Sen, A.; Baxa, U.; Simon, M. N.; Wall, J. S.; Sabate, R.; Saupe, S. J.; Steven, A. C. J. Biol. Chem. 2007, 282 (8), 5545. doi: 10.1074/jbc.M611464200
      (c) Chen, B.; Thurber, K. R.; Shewmaker, F.; Wickner, R. B.; Tycko, R. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (34), 14339. doi: 10.1073/pnas.0907821106

    39. [39]

      Naito, A.; Nagao, T.; Norisada, K.; Javkhlantugs, N.; Mishima, D.; Kawamura, I.; Ueda, K. Biophys. J. 2018, 114 (3), 453A. doi: 10.1016/j.bpj.2017.11.2506  doi: 10.1016/j.bpj.2017.11.2506

    40. [40]

      Rohl, C. A.; Strauss, C. E. M.; Misura, K. M. S.; Baker, D., Protein Structure Prediction Using Rosetta. In Numerical Computer Methods, Part D; Brand, L.; Johnson, M. L. Eds. 2004; Vol. 383, pp. 66–93. doi: 10.1016/s0076-6879(04)83004-0

    41. [41]

      Demers, J. P.; Habenstein, B.; Loquet, A.; Vasa, S. K.; Giller, K.; Becker, S.; Baker, D.; Lange, A.; Sgourakis, N. G. Nat. Commun. 2014, 5, 4976. doi: 10.1038/ncomms5976  doi: 10.1038/ncomms5976

    42. [42]

      Fitzpatrick, A. W. P.; Debelouchina, G. T.; Bayro, M. J.; Clare, D. K.; Caporini, M. A.; Bajaj, V. S.; Jaroniec, C. P.; Wang, L.; Ladizhansky, V.; Mueller, S. A.; et al. Proc. Natl. Acad. Sci. U.S.A. 2013, 110 (14), 5468. doi: 10.1073/pnas.1219476110  doi: 10.1073/pnas.1219476110

    43. [43]

      Sborgi, L.; Ravotti, F.; Dandey, V. P.; Dick, M. S.; Mazur, A.; Reckel, S.; Chami, M.; Scherer, S.; Huber, M.; Boeckmann, A.; et al. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (43), 13237. doi: 10.1073/pnas.1507579112  doi: 10.1073/pnas.1507579112

    44. [44]

      Loquet, A.; Giller, K.; Becker, S.; Lange, A. J. Am. Chem. Soc. 2010, 132 (43), 15164. doi: 10.1021/ja107460j  doi: 10.1021/ja107460j

    45. [45]

      Xiao, Y. L.; Ma, B. Y.; McElheny, D.; Parthasarathy, S.; Long, F.; Hoshi, M.; Nussinov, R.; Ishii, Y. Nat. Struct. Mol. Biol. 2015, 22 (6), 499. doi: 10.1038/nsmb.2991  doi: 10.1038/nsmb.2991

    46. [46]

      Petkova, A. T.; Ishii, Y.; Balbach, J. J.; Antzutkin, O. N.; Leapman, R. D.; Delaglio, F.; Tycko, R. Proc. Natl. Acad. Sci. U.S.A. 2002, 99 (26), 16742. doi: 10.1073/pnas.262663499  doi: 10.1073/pnas.262663499

    47. [47]

      Petkova, A. T.; Yau, W. M.; Tycko, R. Biochemistry 2006, 45 (2), 498. doi: 10.1021/bi051952q  doi: 10.1021/bi051952q

    48. [48]

      Bertini, I.; Gonnelli, L.; Luchinat, C.; Mao, J. F.; Nesi, A. J. Am. Chem. Soc. 2011, 133 (40), 16013. doi: 10.1021/ja2035859  doi: 10.1021/ja2035859

    49. [49]

      Paravastu, A. K.; Leapman, R. D.; Yau, W. M.; Tycko, R. Proc. Natl. Acad. Sci. U.S.A. 2008, 105 (47), 18349. doi: 10.1073/pnas.0806270105  doi: 10.1073/pnas.0806270105

    50. [50]

      Loquet, A.; Lv, G.; Giller, K.; Becker, S.; Lange, A. J. Am. Chem. Soc. 2011, 133 (13), 4722. doi: 10.1021/ja200066s  doi: 10.1021/ja200066s

    51. [51]

      Loquet, A.; Habenstein, B.; Chevelkov, V.; Vasa, S. K.; Giller, K.; Becker, S.; Lange, A. J. Am. Chem. Soc. 2013, 135 (51), 19135. doi: 10.1021/ja411362q  doi: 10.1021/ja411362q

  • 加载中
    1. [1]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    2. [2]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    3. [3]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    4. [4]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    5. [5]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    6. [6]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    7. [7]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    12. [12]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    13. [13]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    14. [14]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

    15. [15]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    16. [16]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    17. [17]

      Xiping Luo Xing Wang Shengxiang Yang Jianzhong Guo Yuxuan Wang Xuejuan Yang . Innovative “One Body, Dual Wings” Embedded Talent Cultivation Model: Practice in the Construction of Applied Chemistry Major at Zhejiang Agriculture and Forestry University. University Chemistry, 2024, 39(3): 205-209. doi: 10.3866/PKU.DXHX202309058

    18. [18]

      Li Zhou Dongyan Tang Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037

    19. [19]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    20. [20]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

Metrics
  • PDF Downloads(20)
  • Abstract views(611)
  • HTML views(152)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return