Citation: Xu Laiqiang, Li Jiayang, Liu Cheng, Zou Guoqiang, Hou Hongshuai, Ji Xiaobo. Research Progress in Inorganic Solid-State Electrolytes for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2020, 36(5): 190501. doi: 10.3866/PKU.WHXB201905013 shu

Research Progress in Inorganic Solid-State Electrolytes for Sodium-Ion Batteries

  • Corresponding author: Ji Xiaobo, xji@csu.edu.cn
  • Received Date: 2 May 2019
    Revised Date: 3 June 2019
    Accepted Date: 1 July 2019
    Available Online: 4 May 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (51622406)the National Natural Science Foundation of China 51622406

  • Sodium batteries have drawn increasing attention from multiple researchers owing to the abundant reserves and low cost of sodium resources. However, traditional sodium batteries based on organic solvent electrolyte systems have safety risks. Thus, the utilization of solid electrolyte materials instead of organic electrolytes could effectively resolve safety issues and ensure the safe performance of the battery. Solid sodium-ion battery is a promising energy storage device. The sodium ion solid-state electrolytes mainly includes Na-β-Al2O3, Na super ionic conductor (NASICON), sulfide, polymer, and borohydride. Inorganic solid electrolytes have the advantage of ionic conductivity compared with polymer solid electrolyte. This paper summarizes the research progress on three common inorganic sodium ion solid electrolytes: Na-β-Al2O3, NASICON, and sulfide. Research efforts have mainly focused on increasing ionic conductivity and interface stability. Na-β-Al2O3 has been successfully commercialized in high-temperature Na-S and ZEBRA batteries with molten electrodes. Pure β″-Al2O3 is difficult to prepare owing to its low thermodynamic stability. The synthesized β″-Al2O3 based on traditional solid-state reaction generally contains impurities such as β-Al2O3 and NaAlO2 (around the boundaries). Further improvements are required to develop favorable methods for fabricating pure β″-Al2O3 with high production yield, low cost, and well-controlled microstructure. NASICON, one of the most promising ionic conductors for solid sodium-ion batteries, has attracted considerable attention for its high ionic conductivity at room temperature. The general method to enhance ionic conductivity is to increase the bottleneck size by introducing proper substituents. However, the substitution of synthetic elements could result in different optimal calcination temperatures, which would lead to a change in the density of ceramic sintering. β″-Al2O3 and NASICON have higher ionic conductivity at room temperature but cannot achieve good performance in the field of high power densities and long-term cycling owing to the poor interface contact with electrode materials. Because the high polarizability and large ionic radius of sulfur atoms weaken the interaction between skeleton and sodium ions, sulfide solid electrolytes often provide higher ionic conductivity at room temperature than analogous oxides. At the same time, sulfide solid electrolytes can be easily pressed into a mold at room temperature. However, sulfide electrolytes have low chemical stability in air because of hydrolysis by water molecules with the generation of H2S gas, which should be handled in inert gas atmosphere. In conclusion, this review discusses the recent progress in different aspects of ionic conductivity and interface stability.
  • 加载中
    1. [1]

      Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. Nature 2000, 407, 496. doi: 10.1038/35035045  doi: 10.1038/35035045

    2. [2]

      Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. Nat. Mater. 2006, 5, 567. doi: 10.1038/nmat1672  doi: 10.1038/nmat1672

    3. [3]

      Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Mater. Today 2015, 18, 252. doi: 10.1016/j.mattod.2014.10.040  doi: 10.1016/j.mattod.2014.10.040

    4. [4]

      Li, M.; Lu, J.; Chen, Z.; Amine, K. Adv. Mater. 2018, 30, 1800561. doi: 10.1002/adma.201800561  doi: 10.1002/adma.201800561

    5. [5]

      Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Nat. Energy 2018, 3, 267. doi: 10.1038/s41560-018-0107-2  doi: 10.1038/s41560-018-0107-2

    6. [6]

      Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. Renewable Sustainable Energy Rev. 2018, 89, 292. doi: 10.1016/j.rser.2018.03.002  doi: 10.1016/j.rser.2018.03.002

    7. [7]

      Nayak, P. K.; Yang, L.; Brehm, W.; Adelhelm, P. Angew. Chem. Int. Ed. 2018, 57, 102. doi: 10.1002/anie.201703772  doi: 10.1002/anie.201703772

    8. [8]

      Wood Ⅲ, D. L.; Li, J.; Daniel, C. J. Power Sources 2015, 275, 234. doi: 10.1016/j.jpowsour.2014.11.019  doi: 10.1016/j.jpowsour.2014.11.019

    9. [9]

      Meister, P.; Jia, H.; Li, J.; Kloepsch, R.; Winter, M.; Placke, T. Chem. Mater. 2016, 28, 7203. doi: 10.1021/acs.chemmater.6b02895  doi: 10.1021/acs.chemmater.6b02895

    10. [10]

      Song, W. X.; Hou, H. S.; Ji, X. B. Acta Phys. -Chim. Sin. 2017, 33, 103.  doi: 10.3866/PKU.WHXB201608303

    11. [11]

      Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636. doi: 10.1021/cr500192f  doi: 10.1021/cr500192f

    12. [12]

      Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. Angew. Chem. Int. Ed. 2015, 54, 3431. doi: 10.1002/chin.201521309  doi: 10.1002/chin.201521309

    13. [13]

      Yang, Y. Q.; Chang, Z.; Li, M. X.; Wang, X. W.; Wu, Y. P. Solid State Ionics 2015, 269, 1. doi: 10.1016/j.ssi.2014.11.015  doi: 10.1016/j.ssi.2014.11.015

    14. [14]

      Hu, Z.; Liu, Q.; Chou, S. L.; Dou, S. X. Adv. Mater. 2017, 29, 1700606. doi: 10.1002/adma.201700606  doi: 10.1002/adma.201700606

    15. [15]

      Hou, H.; Banks, C. E.; Jing, M.; Zhang, Y.; Ji, X. B. Adv. Mater. 2015, 27, 7861. doi: 10.1002/adma.201503816  doi: 10.1002/adma.201503816

    16. [16]

      David, L.; Bhandavat, R.; Singh, G. ACS Nano 2014, 8, 1759. doi: 10.1021/nn406156b  doi: 10.1021/nn406156b

    17. [17]

      Jin, Y.; Sun, X.; Yu, Y.; Ding, C.; Chen, C.; Guan, Y. Prog. Chem. 2014, 26, 582.  doi: 10.7536/PC130914

    18. [18]

      http://newsxmwb.xinmin.cn/kechuang/2019/03/25/31506485.html (accessed June 29, 2019)

    19. [19]

      Huang, Y.; Zhao, L.; Li, L.; Xie, M.; Wu, F.; Chen, R. Adv. Mater. 2019, 31, 1808393. doi: 10.1002/adma.201808393  doi: 10.1002/adma.201808393

    20. [20]

      Ponrouch, A.; Dedryvère, R.; Monti, D.; Demet, A. E.; Mba, J. M. A.; Croguennec, L.; Masquelier, C.; Johansson, P.; Palacín, M. R. Energy Environ. Sci. 2013, 6, 2361. doi: 10.1039/c3ee41379a  doi: 10.1039/c3ee41379a

    21. [21]

      Monti, D.; Jónsson, E.; Palacín, M. R.; Johansson, P. J. Power Sources 2014, 245, 630. doi: 10.1016/j.jpowsour.2013.06.153  doi: 10.1016/j.jpowsour.2013.06.153

    22. [22]

      Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J. M.; Palacin, M. R. Energy Environ. Sci. 2012, 5, 8572. doi: 10.1039/c2ee22258b  doi: 10.1039/c2ee22258b

    23. [23]

      Kim, J. K.; Lim, Y. J.; Kim, H.; Cho, G. B.; Kim, Y. Energy Environ. Sci. 2015, 8, 3589. doi: 10.1039/C5EE01941A  doi: 10.1039/C5EE01941A

    24. [24]

      Zhang, Z.; Zhang, Q.; Shi, J.; Chu, Y. S.; Yu, X.; Xu, K.; Ge, M.; Yan, H.; Li, W.; Gu, L. Adv. Energy Mater. 2017, 7, 1601196. doi: 10.1002/aenm.201601196  doi: 10.1002/aenm.201601196

    25. [25]

      Ma, Q.; Hu, Y.; Li, H.; Chen, L.; Huang, X.; Zhou, Z. Acta Phys. -Chim. Sin. 2018, 34, 213.  doi: 10.3866/PKU.WHXB201707172

    26. [26]

      Zhang, Q.; Liang, F.; Yao, Y.; Ma, W.; Yang, B.; Dai, Y. Prog. Chem. 2019, 31, 210.  doi: 10.7536/PC180434

    27. [27]

      Hou, W.; Guo, X.; Shen, X.; Amine, K.; Yu, H.; Lu, J. Nano Energy 2018, 52, 279. doi: 10.1016/j.nanoen.2018.07.036  doi: 10.1016/j.nanoen.2018.07.036

    28. [28]

      Gao, H.; Xin, S.; Xue, L.; Goodenough, J. B. Chemistry 2018, 4, 833. doi: 10.1016/j.chempr.2018.01.007  doi: 10.1016/j.chempr.2018.01.007

    29. [29]

      Zhou, W.; Li, Y.; Xin, S.; Goodenough, J. B. ACS Cent. Sci. 2017, 3, 52. doi: 10.1021/acscentsci.6b00321  doi: 10.1021/acscentsci.6b00321

    30. [30]

      Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G. Chem. Mater. 2015, 28, 266. doi: 10.1021/acs.chemmater.5b04082  doi: 10.1021/acs.chemmater.5b04082

    31. [31]

      Wenzel, S.; Leichtweiss, T.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J. ACS Appl. Mater. Interfaces 2016, 8, 28216. doi: 10.1021/acsami.6b10119  doi: 10.1021/acsami.6b10119

    32. [32]

      Hueso, K. B.; Armand, M.; Rojo, T. Energy Environ. Sci. 2013, 6, 734. doi: 10.1039/C3EE24086J  doi: 10.1039/C3EE24086J

    33. [33]

      Lu, X.; Xia, G.; Lemmon, J. P.; Yang, Z. J. Power Sources 2010, 195, 2431. doi: 10.1016/j.jpowsour.2009.11.120  doi: 10.1016/j.jpowsour.2009.11.120

    34. [34]

      Chen, G.; Lu, J.; Li, L.; Chen, L.; Jiang, X. J. Alloys Compd. 2016, 673, 295. doi: 10.1016/j.jallcom.2016.03.009  doi: 10.1016/j.jallcom.2016.03.009

    35. [35]

      Xu, D.; Jiang, H.; Li, Y.; Li, L.; Li, M.; Hai, O. Eur. Phys. J. Appl. Phys. 2016, 74, 10901. doi: 10901.10.1051/epjap/2016150466  doi: 10.1051/epjap/2016150466

    36. [36]

      Park, J. H.; Kim, K. H.; Lim, S. K. J. Mater. Sci. 1998, 33, 5671. doi: 10.1023/A:100448880  doi: 10.1023/A:100448880

    37. [37]

      Lu, X. C.; Li, G. S.; Kim, J. Y.; Meinhardt, K. D.; Sprenkle, V. L. J. Power Sources 2015, 295, 167. doi: 10.1016/j.jpowsour.2015.06.147  doi: 10.1016/j.jpowsour.2015.06.147

    38. [38]

      Chen, G. Y.; Lu, J. C.; Zhou, X. H.; Chen, L. X.; Jiang, X. B. Ceram. Int. 2016, 42, 18055. doi: 10.1016/j.ceramint.2016.07.115  doi: 10.1016/j.ceramint.2016.07.115

    39. [39]

      Zhu, C. F.; Hong, Y. F.; Huang, P. J. Alloys Compd. 2016, 688, 746. doi: 10.1016/j.jallcom.2016.07.264  doi: 10.1016/j.jallcom.2016.07.264

    40. [40]

      Xu, D.; Jiang, H. Y.; Li, M.; Hai, O.; Zhang, Y. Ceram. Int. 2015, 41, 5355. doi: 10.1016/j.ceramint.2014.12.094  doi: 10.1016/j.ceramint.2014.12.094

    41. [41]

      Wang, M. C.; Hon, M. H.; Yen, F. S. J. Cryst. Growth 1987, 84, 638. doi: 10.1016/0022-0248(87)90055-8  doi: 10.1016/0022-0248(87)90055-8

    42. [42]

      Lange, F. F.; Miller, K. T. J. Am. Ceram. Soc. 1987, 12, 896. doi: 10.1111/j.1151-2916.1987.tb04913.x  doi: 10.1111/j.1151-2916.1987.tb04913.x

    43. [43]

      Wei, X.; Cao, Y.; Lu, L.; Yang, H.; Shen, X. J. Alloys Compd. 2011, 509, 6222. doi: 10.1016/j.jallcom.2011.03.0  doi: 10.1016/j.jallcom.2011.03.0

    44. [44]

      Takahashi, T.; Kuwabara, K. J. Appl. Electrochem. 1980, 10, 291. doi:10.1007/BF00617203  doi: 10.1007/BF00617203

    45. [45]

      Chi, C.; Katsui, H.; Goto, T. Ceram. Int. 2017, 43, 1278. doi: 10.1016/j.ceramint.2016.10.077  doi: 10.1016/j.ceramint.2016.10.077

    46. [46]

      Yamaguchi, S.; Terabe, K.; Iguchi, Y.; Imai, A. Solid State Ionics 1987, 25, 171. doi: 10.1016/0167-2738(87)90117-2  doi: 10.1016/0167-2738(87)90117-2

    47. [47]

      Pekarsky, A.; Nicholson, P. S. Mater. Res. Bull. 1980, 15, 1517. doi: 10.1016/0025-5408(80)90111-7  doi: 10.1016/0025-5408(80)90111-7

    48. [48]

      Park, H. C.; Lee, Y. B.; Lee, S. G.; Lee, C. H.; Kim, J. K.; Hong, S. S.; Park, S. S. Ceram. Int. 2005, 31, 293. doi: 10.1016/j.ceramint.2004.05.019  doi: 10.1016/j.ceramint.2004.05.019

    49. [49]

      Yi, E.; Temeche, E.; Laine, R. M. J. Mater. Chem. A 2018, 6, 12411. doi: 10.1039/C8TA02907E  doi: 10.1039/C8TA02907E

    50. [50]

      Goodenough, J.; Hong, H. P.; Kafalas, J. Mater. Res. Bull. 1976, 11, 203. doi: 10.1016/0025-5408(76)90077-5  doi: 10.1016/0025-5408(76)90077-5

    51. [51]

      Chen, M.; Hua, W.; Xiao, J.; Cortie, D.; Chen, W.; Wang, E.; Hu, Z.; Gu, Q.; Wang, X.; Indris, S. Nat. Commun. 2019, 10, 1480. doi: 10.1038/s41467-019-09170-5  doi: 10.1038/s41467-019-09170-5

    52. [52]

      Zhao, C.; Liu, L.; Qi, X.; Lu, Y.; Wu, F.; Zhao, J.; Yu, Y.; Hu, Y. S.; Chen, L. Adv. Energy Mater. 2018, 8, 1704012. doi: 1703012.10.1002/aenm.201703012

    53. [53]

      Boilot, J.; Collin, G.; Colomban, P. Mater. Res. Bull. 1987, 22, 669. doi: 10.1016/0025-5408(87)90116-4  doi: 10.1016/0025-5408(87)90116-4

    54. [54]

      Zhu, Y. S.; Li, L. L.; Li, C. Y.; Zhou, L.; Wu, Y. P. Solid State Ionics 2016, 289, 113. doi: 10.1016/j.ssi.2016.02.021  doi: 10.1016/j.ssi.2016.02.021

    55. [55]

      Shao, Y.; Zhong, G.; Lu, Y.; Liu, L.; Zhao, C.; Zhang, Q.; Hu, Y. S.; Yang, Y.; Chen, L. Energy Storage Mater. 2019. doi: 10.1016/j.ensm.2019.04.009  doi: 10.1016/j.ensm.2019.04.009

    56. [56]

      Imanaka, N.; Kuwabara, S.; Adachi, G. Y.; Shiokawa, J. Solid State Ionics 1987, 23, 15. doi: 10.1016/0167-2738(87)90076-2  doi: 10.1016/0167-2738(87)90076-2

    57. [57]

      Agrawal, D. K. Trans. Indian Ceram. Soc. 1996, 55, 1. doi: 10.1080/0371750X.1996.10804741  doi: 10.1080/0371750X.1996.10804741

    58. [58]

      Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G. Y. Solid State Ionics 1991, 47, 257. doi: 10.1016/0167-2738(91)90247-9  doi: 10.1016/0167-2738(91)90247-9

    59. [59]

      Zhang, Z. Z.; Zhang, Q. H.; Shi, J. A.; Chu, Y. S.; Yu, X. Q.; Xu, K. Q.; Ge, M. Y.; Yan, H. F.; Li, W. J.; Gu, L.; et al. Adv. Energy Mater. 2016, 7, 1601196. doi: 10.1002/aenm.201601196  doi: 10.1002/aenm.201601196

    60. [60]

      Deng, Y.; Eames, C.; Nguyen, L. H.; Pecher, O.; Griffith, K. J.; Courty, M.; Fleutot, B.; Chotard, J. N.; Grey, C. P.; Islam, M. S. Chem. Mater. 2018, 30, 2618. doi: 10.1021/acs.chemmater.7b05237  doi: 10.1021/acs.chemmater.7b05237

    61. [61]

      Samiee, M.; Radhakrishnan, B.; Rice, Z.; Deng, Z.; Meng, Y. S.; Ong, S. P.; Luo, J. J. Power Sources 2017, 347, 229. doi: 10.1016/j.jpowsour.2017.02.04  doi: 10.1016/j.jpowsour.2017.02.04

    62. [62]

      Tatsumisago, M.; Hayashi, A. Int. J. Appl. Glass Sci. 2014, 5, 226. doi: 10.1111/ijag.12084  doi: 10.1111/ijag.12084

    63. [63]

      Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M. Nat. Commun. 2012, 3, 856. doi: 10.1038/ncomms1843  doi: 10.1038/ncomms1843

    64. [64]

      Hu, P.; Zhang, Y.; Chi, X.; Kumar Rao, K.; Hao, F.; Dong, H.; Guo, F.; Ren, Y.; Grabow, L. C.; Yao, Y. ACS Appl. Mater. Interfaces 2019, 11, 9672. doi: 10.1021/acsami.8b19984  doi: 10.1021/acsami.8b19984

    65. [65]

      Yue, J.; Zhu, X.; Han, F.; Fan, X.; Wang, L.; Yang, J.; Wang, C. ACS Appl. Mater. Interfaces 2018, 10, 39645. doi: 10.1021/acsami.8b12610  doi: 10.1021/acsami.8b12610

    66. [66]

      Takeuchi, S.; Suzuki, K.; Hirayama, M.; Kanno, R. J. Solid State Chem. 2018, 265, 353. doi: 10.1016/j.jssc.2018.06.023  doi: 10.1016/j.jssc.2018.06.023

    67. [67]

      Dive, A.; Benmore, C.; Wilding, M.; Martin, S. W.; Beckman, S.; Banerjee, S. J. Phys. Chem. B 2018, 122, 7597. doi: 10.1021/acs.jpcb.8b04353  doi: 10.1021/acs.jpcb.8b04353

    68. [68]

      Wu, E. A.; Kompella, C. S.; Zhu, Z.; Lee, J. Z.; Lee, S. C.; Chu, I. H.; Nguyen, H.; Ong, S. P.; Banerjee, A.; Meng, Y. S. ACS Appl. Mater. Interfaces 2018, 10, 10076. doi: 10.1021/acsami.7b19037  doi: 10.1021/acsami.7b19037

    69. [69]

      Wan, H.; Mwizerwa, J. P.; Qi, X.; Liu, X.; Xu, X.; Li, H.; Hu, Y. S.; Yao, X. ACS Nano 2018, 12, 2809. doi: 10.1021/acsnano.8b00073  doi: 10.1021/acsnano.8b00073

    70. [70]

      Chi, X.; Liang, Y.; Hao, F.; Zhang, Y.; Whiteley, J.; Dong, H.; Hu, P.; Lee, S.; Yao, Y. Angew. Chem. Int. Ed. 2018, 57, 2630. doi: 10.1002/anie.201712895  doi: 10.1002/anie.201712895

    71. [71]

      Shang, S. L.; Wang, Y.; Anderson, T. J.; Liu, Z. K. Phys. Rev. Mater. 2019, 3, 015401. doi: 10.1103/PhysRevMaterials.3.015401  doi: 10.1103/PhysRevMaterials.3.015401

    72. [72]

      Moon, C. K.; Lee, H. J.; Park, K. H.; Kwak, H.; Heo, J. W.; Choi, K.; Yang, H.; Kim, M. S.; Hong, S. T.; Lee, J. H. ACS Energy Lett. 2018, 3, 2504. doi: 10.1021/acsenergylett.8b01479  doi: 10.1021/acsenergylett.8b01479

    73. [73]

      Huang, H.; Wu, H. H.; Wang, X.; Huang, B.; Zhang, T. Y. Phys. Chem. Chem. Phys. 2018, 20, 20525. doi: 10.1039/C8CP02383B  doi: 10.1039/C8CP02383B

    74. [74]

      Uematsu, M.; Yubuchi, S.; Noi, K.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. Solid State Ionics 2018, 320, 33. doi: 10.1016/j.ssi.2017.12.021  doi: 10.1016/j.ssi.2017.12.021

    75. [75]

      Noi, K.; Nagata, Y.; Hakari, T.; Suzuki, K.; Yubuchi, S.; Ito, Y.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. ACS Appl. Mater. Interfaces 2018, 10, 19605. doi: 10.1021/acsami.8b02427  doi: 10.1021/acsami.8b02427

    76. [76]

      Tang, H.; Deng, Z.; Lin, Z.; Wang, Z.; Chu, I. H.; Chen, C.; Zhu, Z.; Zheng, C.; Ong, S. P. Chem. Mater. 2017, 30, 163. doi: 10.1021/acs.chemmater.7b04096  doi: 10.1021/acs.chemmater.7b04096

    77. [77]

      Zhang, D.; Cao, X.; Xu, D.; Wang, N.; Yu, C.; Hu, W.; Yan, X.; Mi, J.; Wen, B.; Wang, L. Electrochim. Acta 2018, 259, 100. doi: 10.1016/j.electacta.2017.10.173  doi: 10.1016/j.electacta.2017.10.173

    78. [78]

      Tanibata, N.; Noi, K.; Hayashi, A.; Tatsumisago, M. Solid State Ionics 2018, 320, 193. doi: 10.1016/j.ssi.2018.02.042  doi: 10.1016/j.ssi.2018.02.042

    79. [79]

      Jansen, M.; Henseler, U. J. Solid State Chem. 1992, 99, 110. doi: 10.1016/0022-4596(92)90295-7  doi: 10.1016/0022-4596(92)90295-7

    80. [80]

      Berbano, S. S.; Seo, I.; Bischoff, C. M.; Schuller, K. E.; Martin, S. W. J. Non-Cryst. Solids 2012, 358, 93. doi: 10.1016/j.jnoncrysol.2011.08.030  doi: 10.1016/j.jnoncrysol.2011.08.030

    81. [81]

      Krauskopf, T.; Culver, S. P.; Zeier, W. G. Inorg. Chem. 2018, 57, 4739. doi: 10.1021/acs.inorgchem.8b00458  doi: 10.1021/acs.inorgchem.8b00458

    82. [82]

      Yu, Z.; Shang, S. L.; Seo, J. H.; Wang, D.; Luo, X.; Huang, Q.; Chen, S.; Lu, J.; Li, X.; Liu, Z. K. Adv. Mater. 2017, 29, 1605561. doi: 10.1002/adma.201605561  doi: 10.1002/adma.201605561

    83. [83]

      Yu, Z.; Shang, S. L.; Wang, D.; Li, Y. C.; Yennawar, H. P.; Li, G.; Huang, H. T.; Gao, Y.; Mallouk, T. E.; Liu, Z. K. Energy Storage Mater. 2019, 17, 70. doi: 10.1016/j.ensm.2018.11.027  doi: 10.1016/j.ensm.2018.11.027

    84. [84]

      Kim, S. K.; Mao, A.; Sen, S.; Kim, S. Chem. Mater. 2014, 26, 5695. doi: 10.1021/cm502542p  doi: 10.1021/cm502542p

    85. [85]

      Wang, H.; Chen, Y.; Hood, Z. D.; Sahu, G.; Pandian, A. S.; Keum, J. K.; An, K.; Liang, C. Angew. Chem. Int. Ed. 2016, 55, 8551. doi: 10.1002/anie.201601546  doi: 10.1002/anie.201601546

    86. [86]

      Shang, S. L.; Yu, Z.; Wang, Y.; Wang, D.; Liu, Z. K. ACS Appl. Mater. Interfaces 2017, 9, 16261. doi: 10.1021/acsami.7b03606  doi: 10.1021/acsami.7b03606

    87. [87]

      Kim, T. W.; Park, K. H.; Choi, Y. E.; Lee, J. Y.; Jung, Y. S. J. Mater. Chem. A 2018, 6, 840. doi: 10.1039/C7TA09242C  doi: 10.1039/C7TA09242C

    88. [88]

      Zhang, L.; Yang, K.; Mi, J.; Lu, L.; Zhao, L.; Wang, L.; Li, Y.; Zeng, H. Adv. Energy Mater. 2015, 5, 1501294. doi: 10.1002/aenm.201501294  doi: 10.1002/aenm.201501294

    89. [89]

      Kim, J. J.; Yoon, K.; Park, I.; Kang, K. Small Methods 2017, 1, 1700219. doi: 10.1002/smtd.201700219  doi: 10.1002/smtd.201700219

    90. [90]

      Tian, Y.; Sun, Y.; Hannah, D. C.; Xiao, Y.; Liu, H.; Chapman, K. W.; Bo, S. H.; Ceder, G. Joule 2019, 3, 17. doi: 10.1016/j.joule.2018.12.019  doi: 10.1016/j.joule.2018.12.019

  • 加载中
    1. [1]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    2. [2]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    3. [3]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    4. [4]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    5. [5]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    6. [6]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    7. [7]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    8. [8]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    9. [9]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    10. [10]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    11. [11]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    12. [12]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    15. [15]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    20. [20]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

Metrics
  • PDF Downloads(54)
  • Abstract views(1300)
  • HTML views(272)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return