Citation: YANG Xiaobing, ZHAO Lei, SUI Xulei, MENG Linghui, WANG Zhenbo. Ultra-High Proton/Vanadium Selectivity of Polybenzimidazole Membrane by Incorporating Phosphotungstic Acid Functionalized Nanofibers for Vanadium Redox Flow Battery[J]. Acta Physico-Chimica Sinica, ;2019, 35(12): 1372-1381. doi: 10.3866/PKU.WHXB201905011 shu

Ultra-High Proton/Vanadium Selectivity of Polybenzimidazole Membrane by Incorporating Phosphotungstic Acid Functionalized Nanofibers for Vanadium Redox Flow Battery

  • Corresponding author: MENG Linghui, menglinh@hit.edu.cn WANG Zhenbo, wangzhb@hit.edu.cn
  • Received Date: 2 May 2019
    Revised Date: 2 June 2019
    Accepted Date: 5 June 2019
    Available Online: 13 December 2019

    Fund Project: the National Natural Science Foundation of China 51802059China Postdoctoral Science Foundation 2018M631938Fundamental Research Funds for the Central Universities, China HIT. NSRIF. 2019040Fundamental Research Funds for the Central Universities, China HIT. NSRIF. 2019041China Postdoctoral Science Foundation 2017M621284the National Natural Science Foundation of China 21673064China Postdoctoral Science Foundation 2018T110307Heilongjiang Postdoctoral Fund, China LBH-Z17074the National Natural Science Foundation of China 21503059The project was supported by the National Natural Science Foundation of China (21273058, 21673064, 51802059 and 21503059), China Postdoctoral Science Foundation (2018M631938, 2018T110307 and 2017M621284), Heilongjiang Postdoctoral Fund, China (LBH-Z17074) and Fundamental Research Funds for the Central Universities, China (HIT. NSRIF. 2019040 and HIT. NSRIF. 2019041)the National Natural Science Foundation of China 21273058

  • Proton exchange membrane (PEM) is a key component of vanadium redox flow battery (VRB), and its proton/vanadium selectivity plays an important role in the performance of a VRB single cell. Commercially available perfluorosulfonic acid (Nafion) membranes have been widely used due to their excellent proton conductivity and favorable chemical resistance. However, the large pore size micelle channels formed by the pendant sulfonic acid groups lead to the excessive penetration of vanadium ions, which seriously affects the coulombic efficiency (CE) of the single cell and accelerates the self-discharge rate of the battery. Additionally, the expensive cost of Nafion is also an important reason to limit its large-scale application. In this paper, the dense and low-cost hydrocarbon polymer polybenzimidazole (PBI) is used as the matrix material of the PEM, which is doped with phosphotungstic acid (PWA) to acquire excellent proton conductivity, and the intrinsic high resistance of PBI for vanadium ions is helpful to obtain high proton/vanadium selectivity. Considering the enormous water solubility of PWA and its easy leaching from membrane, organic polymer nano-Kevlar fibers (NKFs) are utilized as the anchoring agent of PWA, which achieves good anchoring effect and solves the problem of the poor compatibility between inorganic anchoring agent and the polymer matrix. The formation of PWA functionalized NKFs was characterized by scanning electron microscope (SEM) and Fourier transform infrared (FT-IR) spectroscopy. The anchoring stability of NKFs for PWA was evaluated by UV-Vis spectroscopy. The characterizations including water uptake, swelling ratio, ion exchange capacity, proton conductivity, vanadium ion permeability and ion selectivity were performed to evaluate the basic properties of the membranes. At the same time, the charge-discharge, self-discharge and cycle performance of single cell assembled with the composite membrane and recast Nafion were tested at various current densities from 40 to 100 mA∙cm-2. Simple tuning for the filling amount of NKFs@PWA gives the composite membrane superior ion selectivity including an optimal value of 3.26 × 105 S∙min∙cm-3, which is 8.5 times higher than that of recast Nafion (0.34 × 105 S∙min∙cm-3). As a result, the VRB single cell assembled with the composite membrane exhibits higher CE and significantly lower self-discharge rate compared with recast Nafion. Typically, the CE of the VRB based on PBI-(NKFs@PWA)-22.5% membrane is 97.31% at 100 mA∙cm-2 while the value of recast Nafion is only 90.28%. The open circuit voltage (VOC) holding time above 0.8 V of the single cell assembled with the composite membrane is 95 h, which is about 2.4 times as long as that of recast Nafion-based VRB. The utilization of PBI as a separator for VRB can effectively suppress the penetration of vanadium ions, achieve higher proton/vanadium selectivity and superior battery performance as well as reduce the cost of the PEM, which will play an active role in the promotion of VRB applications.
  • 加载中
    1. [1]

      Li, X.; Zhang, H.; Mai, Z.; Zhang, H.; Vankelecom, I. Energy Environ. Sci. 2011, 4, 1147. doi: 10.1039/c0ee00770f  doi: 10.1039/c0ee00770f

    2. [2]

      Winardi, S.; Raghu, S. C.; Oo, M. O.; Yan, Q.; Wai, N.; Lim, T. M.; Skyllas-Kazacos, M. J. Membr. Sci. 2014, 450, 313. doi: 10.1016/j.memsci.2013.09.024  doi: 10.1016/j.memsci.2013.09.024

    3. [3]

      Ulaganathan, M.; Aravindan, V.; Yan, Q.; Madhavi, S.; Skyllas-Kazacos M.; Lim, T. M. Adv. Mater. Interfaces 2016, 3, 1500309. doi: 10.1002/admi.201500309  doi: 10.1002/admi.201500309

    4. [4]

      Wang, W.; Luo, Q.; Li, B.; Wei, X.; Li, L.; Yang, Z. Adv. Funct. Mater. 2013, 23, 970. doi: 10.1002/adfm.201200694  doi: 10.1002/adfm.201200694

    5. [5]

      Aziz, M. A.; Shanmugam, S. J. Power Sources 2017, 337, 36. doi: 10.1016/j.jpowsour.2016.10.113  doi: 10.1016/j.jpowsour.2016.10.113

    6. [6]

      Jang, J.; Kim, T.; Yoon, S. J.; Lee, J. Y.; Lee, J.; Hong, Y. T. J. Mater. Chem. A 2016, 4, 14342. doi: 10.1039/c6ta05080h  doi: 10.1039/c6ta05080h

    7. [7]

      Li, J.; Yuan, X.; Liu, S.; He, Z.; Zhou, Z.; Li, A. ACS Appl. Mater. Interfaces 2017, 9, 32643. doi: 10.1021/acsami.7b07437  doi: 10.1021/acsami.7b07437

    8. [8]

      Lin, C.; Yang, M.; Wei, H. J. Power Sources 2015, 282, 562. doi: 10.1016/j.jpowsour.2015.02.102  doi: 10.1016/j.jpowsour.2015.02.102

    9. [9]

      Li, Q.; Jensen, J. O.; Savinell, R. F.; Bjerrum, N. J. Prog. Polym. Sci. 2009, 34, 449. doi: 10.1016/j.progpolymsci.2008.12.003  doi: 10.1016/j.progpolymsci.2008.12.003

    10. [10]

      Zhang, H.; Shen, P. K. Chem. Rev. 2012, 112, 2780. doi: 10.1021/cr200035s  doi: 10.1021/cr200035s

    11. [11]

      Bose, S.; Kuila, T.; Nguyen, T. X. H.; Kim, N. H.; Lau, K.; Lee, J. H. Prog. Polym. Sci. 2011, 36, 813. doi: 10.1016/j.progpolymsci.2011.01.003  doi: 10.1016/j.progpolymsci.2011.01.003

    12. [12]

      Winoto, H. P.; Fikri, Z. A.; Ha, J.; Park, Y.; Lee, H.; Suh, D. J.; Jae, J. Appl. Catal. B 2019, 241, 588. doi: 10.1016/j.apcatb.2018.09.031  doi: 10.1016/j.apcatb.2018.09.031

    13. [13]

      Abdul Aziz, M.; Oh, K.; Shanmugam, S. Chem. Commun. 2017, 53, 917. doi: 10.1039/c6cc08855d  doi: 10.1039/c6cc08855d

    14. [14]

      Kim, Y.; Shanmugam, S. ACS Appl. Mater. Interfaces 2013, 5, 12197. doi: 10.1021/am4043245  doi: 10.1021/am4043245

    15. [15]

      Lu, S.; Xu, X.; Zhang, J.; Peng, S.; Liang, D.; Wang, H.; Xiang, Y. Adv. Energy Mater. 2014, 4, 1400842. doi: 10.1002/aenm.201400842  doi: 10.1002/aenm.201400842

    16. [16]

      Martínez-Morlanes, M. J.; Martos, A. M.; Várez, A.; Levenfeld, B. J. Membr. Sci. 2015, 492, 371. doi: 10.1016/j.memsci.2015.05.031  doi: 10.1016/j.memsci.2015.05.031

    17. [17]

      Kim, Y.; Ketpang, K.; Jaritphun, S.; Park J. S.; Shanmugam, S. J. Mater. Chem. A 2015, 3, 8148. doi: 10.1039/c5ta00182j  doi: 10.1039/c5ta00182j

    18. [18]

      Leroux, F.; Taviot-Guého, C. J. Mater. Chem. 2005, 15, 3628. doi: 10.1039/b505014f  doi: 10.1039/b505014f

    19. [19]

      Lu, K.; Lin, Y.; Lu, H.; Ho, Y.; Weng, S.; Tsai, M.; Mi, F. Carbohyd. Polym. 2019, 206, 664. doi: 10.1016/j.carbpol.2018.11.050  doi: 10.1016/j.carbpol.2018.11.050

    20. [20]

      Mai, Z.; Zhang, H.; Li, X.; Xiao S.; Zhang, H. J. Power Sources 2011, 196, 5737. doi: 10.1016/j.jpowsour.2011.02.048  doi: 10.1016/j.jpowsour.2011.02.048

    21. [21]

      Liu, F.; Yi, B.; Xing, D.; Yu. J.; Zhang, H. J. Membr. Sci. 2003, 212, 213. doi: 10.1016/j.memsci.2013.09.024  doi: 10.1016/j.memsci.2013.09.024

    22. [22]

      Kim, S.; Yuk, S.; Kim, H. G.; Choi, C.; Kim, R.; Lee, J. Y.; Hong, Y. T.; Kim, H. T. J. Mater. Chem. A 2017, 5, 17279. doi: 10.1039/c7ta02921g  doi: 10.1039/c7ta02921g

    23. [23]

      Aziz, M. A.; Shanmugam, S. J. Mater. Chem. A 2017, 5, 16663. doi: 10.1039/c7ta05155g  doi: 10.1039/c7ta05155g

    24. [24]

      Zhao, Q.; Wei, Y.; Ni, C.; Wang, L.; Liu, B.; Liu, J.; Zhang, M.; Men, Y.; Sun, Z.; Xie, H.; et al. Appl. Surf. Sci. 2019, 466, 691. doi: 10.1016/j.apsusc.2018.10.063  doi: 10.1016/j.apsusc.2018.10.063

    25. [25]

      Agudelo, N. A.; Palacio, J.; López, B. L. J. Mater. Sci. 2019, 54, 4135. doi: 10.1007/s10853-018-3115-5  doi: 10.1007/s10853-018-3115-5

    26. [26]

      Abouzari-lotf, E.; Nasef, M. M.; Ghassemi, H.; Zakeri, M.; Ahmad, A.; Abdollahi, Y. ACS Appl. Mater. Interfaces 2015, 7, 17008. doi: 10.1021/acsami.5b02268  doi: 10.1021/acsami.5b02268

    27. [27]

      Li, Z.; Dai, W.; Yu, L.; Liu, L.; Xi, J.; Qiu, X.; Chen, L. ACS Appl. Mater. Interfaces 2014, 6, 18885. doi: 10.1021/acsami.5b02268  doi: 10.1021/acsami.5b02268

    28. [28]

      Zheng, L.; Wang, H.; Niu, R.; Zhang, Y.; Shi, H. Electrochim. Acta 2018, 282, 437. doi: 10.1016/j.electacta.2018.06.083  doi: 10.1016/j.electacta.2018.06.083

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    3. [3]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    9. [9]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    12. [12]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    13. [13]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    14. [14]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    15. [15]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    16. [16]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    19. [19]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    20. [20]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

Metrics
  • PDF Downloads(10)
  • Abstract views(1075)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return