Design and Construction of Cocatalysts for Photocatalytic Water Splitting
- Corresponding author: Zou Jijun, jj_zou@tju.edu.cn † These authors contributed equally to this work
Citation: Sun Shangcong, Zhang Xuya, Liu Xianlong, Pan Lun, Zhang Xiangwen, Zou Jijun. Design and Construction of Cocatalysts for Photocatalytic Water Splitting[J]. Acta Physico-Chimica Sinica, ;2020, 36(3): 190500. doi: 10.3866/PKU.WHXB201905007
Fu, C. F.; Wu, X. J.; Yang, J. L. Adv. Mater. 2018, 30, 1802106. doi: 10.1002/adma.201802106
doi: 10.1002/adma.201802106
Wu, W.; Jiang, C. Z.; Roy, V. A. L. Nanoscale 2015, 7, 38. doi: 10.1039/c4nr04244a
doi: 10.1039/c4nr04244a
Kong, D.; Zheng, Y.; Kobielusz, M.; Wang, Y.; Bai, Z.; Macyk, W.; Wang, X.; Tang, J. Mater. Today 2018, 21, 897. doi: 10.1016/j.mattod.2018.04.009
doi: 10.1016/j.mattod.2018.04.009
Zhou, P.; Yu, J. G.; Jaroniec, M. Adv. Mater. 2014, 26, 4920. doi: 10.1002/chin.201439243
doi: 10.1002/chin.201439243
Maeda, K. J. Photochem. Photobiol. C 2011, 12, 237. doi: 10.1016/j.jphotochemrev.2011.07.001
doi: 10.1016/j.jphotochemrev.2011.07.001
Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev. 2010, 110, 6503. doi: 10.1021/cr1001645
doi: 10.1021/cr1001645
Marzo, L.; Pagire, S. K.; Reiser, O.; Konig, B. Angew. Chem. Int. Ed. 2018, 57, 10034. doi: 10.1002/anie.201709766
doi: 10.1002/anie.201709766
Inoue, Y. Energy Environ. Sci. 2009, 2, 364. doi: 10.1039/b816677n
doi: 10.1039/b816677n
Wang, Z.; Li, C.; Domen, K. Chem. Soc. Rev. 2019, 48, 2109. doi: 10.1039/c8cs00542g
doi: 10.1039/c8cs00542g
Wu, L. Z.; Chen, B.; Li, Z. J.; Tung, C. H. Acc. Chem. Res. 2014, 47, 2177. doi: 10.1021/ar500140r
doi: 10.1021/ar500140r
Gong, C.; Xiang, S. W.; Zhang, Z. Y.; Sun, L.; Ye, C. Q.; Lin, C. J. Acta Phys. -Chim. Sin. 2019, 35, 616.
doi: 10.3866/PKU.WHXB201805082
Huang, Z. F.; Zou, J.-J.; Pan, L.; Wang, S. B.; Zhang, X. W.; Wang, L. Appl. Catal. B: Environ. 2014, 147, 167. doi: 10.1016/j.apcatb.2013.08.038
doi: 10.1016/j.apcatb.2013.08.038
Pan, L.; Zou, J. -J.; Zhang, X. W.; Wang, L. J. Am. Chem. Soc. 2011, 133, 10000. doi: 10.1021/ja2035927
doi: 10.1021/ja2035927
Huang, Z. F.; Song, J. -J.; Pan, L.; Wang, Z. M.; Zhang, X. Q.; Zou, J. -J.; Mi, W. B.; Zhang, X. W.; Wang, L. Nano Energy 2015, 12, 646. doi: 10.1016/j.nanoen.2015.01.043
doi: 10.1016/j.nanoen.2015.01.043
Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Adv. Mater. 2012, 24, 229. doi: 10.1002/adma.201102752
doi: 10.1002/adma.201102752
Low, J. X.; Jiang, C.; Cheng, B.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G. Small Methods 2017, 1, 1700080. doi: 10.1002/smtd.201700080
doi: 10.1002/smtd.201700080
Fan, K.; Jin, Z. L.; Yang, H.; Liu, D. D.; Hu, H. Y.; Bi, Y. P. Sci. Rep. 2017, 7, 7710. doi: 10.1038/s41598-017-08163-y
doi: 10.1038/s41598-017-08163-y
Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520. doi: 10.1039/c3cs60378d
doi: 10.1039/c3cs60378d
Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Chem. Soc. Rev. 2014, 43, 5234. doi: 10.1039/c4cs00126e
doi: 10.1039/c4cs00126e
Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
doi: 10.1038/238037a0
Li, X.; Yu, J. G.; Low, J. X.; Fang, Y. P.; Xiao, J.; Chen, X. B. J. Mater. Chem. A 2015, 3, 2485. doi: 10.1039/c4ta04461d
doi: 10.1039/c4ta04461d
Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Energy Environ. Sci. 2015, 8, 731. doi: 10.1039/c4ee03271c
doi: 10.1039/c4ee03271c
Low, J. X.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Adv. Mater. 2017, 29, 1601694. doi: 10.1002/adma.201601694
doi: 10.1002/adma.201601694
Huang, J. H.; Shang, Q. C.; Huang, Y. Y.; Tang, F. M.; Zhang, Q.; Liu, Q. H.; Jiang, S.; Hu, F. C.; Liu, W.; Luo, Y.; et al. Angew. Chem. Int. Ed. 2016, 55, 2137. doi: 10.1002/anie.201510642
Gao, Y. J.; Li, X. B.; Wu, H. L.; Meng, S. L.; Fan, X. B.; Huang, M. Y.; Guo, Q.; Tung, C. H.; Wu, L. Z. Adv. Funct. Mater. 2018, 28, 1801769. doi: 10.1002/adfm.201801769
doi: 10.1002/adfm.201801769
Martin, D. J.; Qiu, K. P.; Shevlin, S. A.; Handoko, A. D.; Chen, X. W.; Guo, Z. X.; Tang, J. W. Angew. Chem. Int. Ed. 2014, 53, 9240. doi: 10.1002/anie.201403375
doi: 10.1002/anie.201403375
Shi, R.; Ye, H. F.; Liang, F.; Wang, Z.; Li, K.; Weng, Y. X.; Lin, Z. S.; Fu, W. F.; Che, C. M.; Chen, Y. Adv. Mater. 2017, 30, 1705941. doi: 10.1002/adma.201705941
doi: 10.1002/adma.201705941
Ning, X. F.; Zhen, W. L.; Wu, Y. Q.; Lu, G. X. Appl. Catal. B: Environ. 2018, 226, 373. doi: 10.1016/j.apcatb.2017.12.067
doi: 10.1016/j.apcatb.2017.12.067
Wang, M.; Zhen, W. L.; Tian, B.; Ma, J. T.; Lu, G. X. Appl. Catal. B: Environ. 2018, 236, 240. doi: 10.1016/j.apcatb.2018.05.031
doi: 10.1016/j.apcatb.2018.05.031
Li, Y. H.; Xing, J.; Chen, Z. J.; Li, Z.; Tian, F.; Zheng, L. R.; Wang, H. F.; Hu, P.; Zhao, H. J.; Yang, H. G. Nat. Commun. 2013, 4, 2500. doi: 10.1038/ncomms3500
doi: 10.1038/ncomms3500
Chen, S. S.; Takata, T.; Domen, K. Nat. Rev. Mater. 2017, 2, 17050. doi: 10.1038/natrevmats.2017.50
doi: 10.1038/natrevmats.2017.50
Qi, J.; Zhang, W.; Cao, R. Adv. Energy Mater. 2018, 8, 1701620. doi: 10.1002/aenm.201701620
doi: 10.1002/aenm.201701620
Xu, X. T.; Pan, L.; Zhang, X. W.; Wang, L.; Zou, J.-J. Adv. Sci. 2019, 6, 1801505. doi: 10.1002/advs.201801505
doi: 10.1002/advs.201801505
Yang, J. H.; Wang, D. G.; Han, H. X.; Li, C. Acc. Chem. Res. 2013, 46, 1900. doi: 10.1021/ar300227e
doi: 10.1021/ar300227e
Al Azri, Z. H. N.; Al-Oufi, M.; Chan, A.; Waterhouse, G. I. N.; Idriss, H. ACS Catal. 2019, 9, 3946. doi: 10.1021/acscatal.8b05070
doi: 10.1021/acscatal.8b05070
Lu, X.; Han, Y.; Lu, T. Acta Phys. -Chim. Sin. 2018, 34, 1014.
doi: 10.3866/PKU.WHXB201801171
Zhang, Z.; Yates, J. T. Chem. Rev. 2012, 112, 5520. doi: 10.1021/cr3000626
doi: 10.1021/cr3000626
Zhang, G. G.; Lan, Z. A.; Wang, X. C. Chem. Sci. 2017, 8, 5261. doi: 10.1039/c7sc01747b
doi: 10.1039/c7sc01747b
Guan, J. Q.; Duan, Z. Y.; Zhang, F. X.; Kelly, S. D.; Si, R.; Dupuis, M.; Huang, Q. G.; Chen, J. Q.; Tang, C. H.; Li, C. Nat. Catal. 2018, 1, 870. doi: 10.1038/s41929-018-0158-6
doi: 10.1038/s41929-018-0158-6
Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Chem. Soc. Rev. 2014, 43, 7787. doi: 10.1039/c3cs60425j
doi: 10.1039/c3cs60425j
Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Science 2011, 334, 1256. doi: 10.1126/science.1211934
doi: 10.1126/science.1211934
Wang, L.; Zhu, Y. H.; Zeng, Z. H.; Lin, C.; Giroux, M.; Jiang, L.; Han, Y.; Greeley, J.; Wang, C.; Jin, J. Nano Energy 2017, 31, 456. doi: 10.1016/j.nanoen.2016.11.048
doi: 10.1016/j.nanoen.2016.11.048
Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. -J.; Wang, Z. L. Nano Energy 2017, 37, 136. doi: 10.1016/j.nanoen.2017.05.022
doi: 10.1016/j.nanoen.2017.05.022
Mahmood, N.; Yao, Y. D.; Zhang, J. W.; Pan, L.; Zhang, X. W.; Zou, J. -J. Adv. Sci. 2018, 5, 1700464. doi: 10.1002/advs.201700464
doi: 10.1002/advs.201700464
Huang, Z. F.; Song, J. J.; Li, K.; Tahir, M.; Wang, Y. T.; Pan, L.; Wang, L.; Zhang, X. W.; Zou, J. -J. J. Am. Chem. Soc. 2016, 138, 1359. doi: 10.1021/jacs.5b11986
doi: 10.1021/jacs.5b11986
Zhang, R. R.; Zhang, Y. C.; Pan, L.; Shen, G. Q.; Mahmood, N.; Ma, Y. H.; Shi, Y.; Jia, W. Y.; Wang, L.; Zhang, X. W.; et al. ACS Catal. 2018, 8, 3803. doi: 10.1021/acscatal.8b01046
Lin, Z.; Shen, L. F.; Qu, X. M.; Zhang, J. M.; Jiang, Y. X.; Sun, S. G. Acta Phys. -Chim. Sin. 2019, 35, 523.
doi: 10.3866/PKU.WHXB201806191
Luo, P.; Sun, F.; Deng, J.; Xu, H. T.; Zhang, H. J.; Wang, Y. Acta Phys. -Chim. Sin. 2018, 34, 1397.
doi: 10.3866/PKU.WHXB201804022
Han, G. Q.; Jin, Y. H.; Burgess, R. A.; Dickenson, N. E.; Cao, X. M.; Sun, Y. J. J. Am. Chem. Soc. 2017, 139, 15584. doi: 10.1021/jacs.7b08657
doi: 10.1021/jacs.7b08657
Zhao, Q.; Sun, J.; Li, S. C.; Huang, C. P.; Yao, W. F.; Chen, W.; Zeng, T.; Wu, Q.; Xu, Q. J. ACS Catal. 2018, 8, 11863. doi: 10.1021/acscatal.8b03737
doi: 10.1021/acscatal.8b03737
Zhang, K.; Ran, J. R.; Zhu, B. C.; Ju, H. X.; Yu, J. G.; Song, L.; Qiao, S. Z. Small 2018, 14, 1801705. doi: 10.1002/smll.201801705
doi: 10.1002/smll.201801705
Lin, H. Y.; Yang, H. C.; Wang, W. L. Catal. Today 2011, 174, 106. doi: 10.1016/j.cattod.2011.01.052
doi: 10.1016/j.cattod.2011.01.052
Liu, J. N.; Jia, Q. H.; Long, J. L.; Wang, X. X.; Gao, Z. W.; Gu, Q. Appl. Catal. B: Environ. 2018, 222, 35. doi: 10.1016/j.apcatb.2017.09.073
doi: 10.1016/j.apcatb.2017.09.073
Xu, Y.; Gong, Y. Y.; Ren, H.; Liu, W. B.; Li, C.; Liu, X. J.; Niu, L. Y. J. Alloys Compd. 2017, 735, 2551. doi: 10.1016/j.jallcom.2017.11.388
doi: 10.1016/j.jallcom.2017.11.388
Foo, W. J.; Zhang, C.; Ho, G. W. Nanoscale 2013, 5, 759. doi: 10.1039/c2nr33004k
doi: 10.1039/c2nr33004k
Wang, X. J.; Tian, X.; Sun, Y. J.; Zhu, J. Y.; Li, F. T.; Mu, H. Y.; Zhao, J. Nanoscale 2018, 10, 12315. doi: 10.1039/c8nr03846e
doi: 10.1039/c8nr03846e
Wang, P. F.; Zhan, S. H.; Wang, H. T.; Xia, Y. G.; Hou, Q. L.; Zhou, Q. X.; Li, Y.; Kumar, R. R. Appl. Catal. B: Environ. 2018, 230, 210. doi: 10.1016/j.apcatb.2018.02.043
doi: 10.1016/j.apcatb.2018.02.043
Chen, Y. B.; Qin, Z. X. Catal. Sci. Technol. 2016, 6, 8212. doi: 10.1039/c6cy01653g
doi: 10.1039/c6cy01653g
Indra, A.; Acharjya, A.; Menezes, P. W.; Merschjann, C.; Hollmann, D.; Schwarze, M.; Aktas, M.; Friedrich, A.; Lochbrunner, S.; Thomas, A.; et al. Angew. Chem. Int. Ed. 2017, 56, 1653. doi: 10.1002/anie.201611605
Kumar, D. P.; Choi, J.; Hong, S.; Reddy, D. A.; Lee, S.; Kim, T. K. ACS Sustain. Chem. Eng. 2016, 4, 7158. doi: 10.1021/acssuschemeng.6b02032
doi: 10.1021/acssuschemeng.6b02032
Yin, L. S.; Hai, X.; Chang, K.; Ichihara, F.; Ye, J. H. Small 2018, 14, 1704153. doi: 10.1002/smll.201704153
doi: 10.1002/smll.201704153
Garcia-Esparza, A. T.; Cha, D.; Ou, Y. W.; Kubota, J.; Domen, K.; Takanabe, K. ChemSusChem 2013, 6, 168. doi: 10.1002/cssc.201200780
doi: 10.1002/cssc.201200780
Nurlaela, E.; Wang, H.; Shinagawa, T.; Flanagan, S.; Ould-Chikh, S.; Qureshi, M.; Mics, Z.; Sautet, P.; Le Bahers, T.; Cánovas, E.; et al. ACS Catal. 2016, 6, 4117. doi: 10.1021/acscatal.6b00508
Li, M.; Bai, L.; Wu, S. J.; Wen, X. D.; Guan, J. Q. ChemSusChem 2018, 11, 1722. doi: 10.1002/cssc.201800489
doi: 10.1002/cssc.201800489
Zhang, H. Y.; Tian, W. J.; Zhou, L.; Sun, H. Q.; Tade, M.; Wang, S. B. Appl. Catal. B: Environ. 2017, 223, 2. doi: 10.1016/j.apcatb.2017.03.028
doi: 10.1016/j.apcatb.2017.03.028
Zhang, G. G.; Zang, S. H.; Wang, X. C. ACS Catal. 2015, 5, 941. doi: 10.1021/cs502002u
doi: 10.1021/cs502002u
Zhang, L. Z.; Yang, C.; Xi, Z. L.; Wang, X. C. Appl. Catal. B: Environ. 2018, 224, 886. doi: 10.1016/j.apcatb.2017.11.023
doi: 10.1016/j.apcatb.2017.11.023
Yoshinaga, T.; Saruyama, M.; Xiong, A.; Ham, Y.; Kuang, Y. B.; Niishiro, R.; Akiyama, S.; Sakamoto, M.; Hisatomi, T.; Domen, K.; et al. Nanoscale 2018, 10, UNSP10420. doi: 10.1039/c8nr00377g
Ye, C.; Li, J. X.; Li, Z. J.; Li, X. B.; Fan, X. B.; Zhang, L. P.; Chen, B.; Tung, C. H.; Wu, L. Z. ACS Catal. 2015, 5, 6973. doi: 10.1021/acscatal.5b02185
doi: 10.1021/acscatal.5b02185
Wang, D. E.; Li, R. G.; Zhu, J.; Shi, J. Y.; Han, J. F.; Zong, X.; Li, C. J. Phys. Chem. C 2012, 116, 5082. doi: 10.1021/jp210584b
doi: 10.1021/jp210584b
Yan, H. J.; Yang, J. H.; Ma, G. J.; Wu, G. P.; Zong, X.; Lei, Z. B.; Shi, J. Y.; Li, C. J. Catal. 2009, 266, 165. doi: 10.1016/j.jcat.2009.06.024
doi: 10.1016/j.jcat.2009.06.024
Maeda, K.; Xiong, A. K.; Yoshinaga, T.; Ikeda, T.; Sakamoto, N.; Hisatomi, T.; Takashima, M.; Lu, D. L.; Kanehara, M.; Setoyama, T.; et al. Angew. Chem. Int. Ed. 2010, 49, 4096. doi: 10.1002/anie.201001259
doi: 10.1002/anie.201001259
Maeda, K.; Lu, D. L.; Domen, K. Chemistry 2013, 19, 4986. doi: 10.1002/chem.201300158
doi: 10.1002/chem.201300158
Chen, S. S.; Qi, Y.; Hisatomi, T.; Ding, Q.; Asai, T.; Li, Z.; Ma, S. S. K.; Zhang, F. X.; Domen, K.; Li, C. Angew. Chem. Int. Ed. 2015, 54, 8498. doi: 10.1002/anie.201502686
doi: 10.1002/anie.201502686
Wang, Q.; Hisatomi, T.; Jia, Q. X.; Tokudome, H.; Zhong, M.; Wang, C. Z.; Pan, Z. H.; Takata, T.; Nakabayashi, M.; Shibata, N.; et al. Nat. Mater. 2016, 15, 611. doi: 10.1038/nmat4589
Lin, L. H.; Yu, Z. Y.; Wang, X. C. Angew. Chem. Int. Ed. 2018, 58, 6164. doi: 10.1002/anie.201809897
doi: 10.1002/anie.201809897
Niu, W. H.; Yang, Y. ACS Energy Lett. 2018, 3, 2796. doi: 10.1021/acsenergylett.8b01594
doi: 10.1021/acsenergylett.8b01594
Zhang, J. W.; Gong, S.; Mahmood, N.; Pan, L.; Zhang, X. W.; Zou, J. -J. Appl. Catal. B: Environ. 2018, 221, 9. doi: 10.1016/j.apcatb.2017.09.003
doi: 10.1016/j.apcatb.2017.09.003
Zheng, Y.; Lin, L. H.; Wang, B.; Wang, X. C. Angew. Chem. Int. Ed. 2015, 54, 12868. doi: 10.1002/anie.201501788
doi: 10.1002/anie.201501788
Pan, Z. M.; Zhang, G. G.; Wang, X. C. Angew. Chem. Int. Ed. 2019. doi: 10.1002/anie.201902634
doi: 10.1002/anie.201902634
Huang, Z. F.; Song, J. J.; Wang, X.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. -J. Nano Energy 2017, 40, 308. doi: 10.1016/j.nanoen.2017.08.032
doi: 10.1016/j.nanoen.2017.08.032
Zheng, Y.; Yu, Z. H.; Ou, H. H.; Asiri, A. M.; Chen, Y. L.; Wang, X. C. Adv. Funct. Mater. 2018, 28, 1705407. doi: 10.1002/adfm.201705407
doi: 10.1002/adfm.201705407
Liu, N. Y.; Han, M. M.; Sun, Y.; Zhu, C.; Zhou, Y. J.; Zhang, Y. L.; Huang, H.; Kremnican, V.; Liu, Y.; Lifshitz, Y.; et al. Energy Environ. Sci. 2018, 11, 1841. doi: 10.1039/c7ee03459h
Zhang, G. G.; Lan, Z. A.; Lin, L. H.; Lin, S.; Wang, X. C. Chem. Sci. 2016, 7, 3062. doi: 10.1039/c5sc04572j
doi: 10.1039/c5sc04572j
Pan, Z. M.; Zheng, Y.; Guo, F. S.; Niu, P. P.; Wang, X. C. ChemSusChem 2017, 10, 87. doi: 10.1002/cssc.201600850
doi: 10.1002/cssc.201600850
Zheng, D. D.; Cao, X. N.; Wang, X. C. Angew. Chem. Int. Ed. 2016, 55, 11512. doi: 10.1002/anie.201606102
doi: 10.1002/anie.201606102
Sun, S. C.; Zhang, Y. C.; Shen, G. Q.; Wang, Y. T.; Liu, X. L.; Duan, Z. W.; Pan, L.; Zhang, X. W.; Zou, J. -J. Appl. Catal. B: Environ. 2019, 243, 253. doi: 10.1016/j.apcatb.2018.10.051
doi: 10.1016/j.apcatb.2018.10.051
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Lan Ma , Cailu He , Ziqi Liu , Yaohan Yang , Qingxia Ming , Xue Luo , Tianfeng He , Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024