Citation: Shi Yongchao, Tang Mingxue. NMR/EPR Investigation of Rechargeable Batteries[J]. Acta Physico-Chimica Sinica, ;2020, 36(4): 190500. doi: 10.3866/PKU.WHXB201905004 shu

NMR/EPR Investigation of Rechargeable Batteries

  • Corresponding author: Tang Mingxue, mingxue.tang@hpstar.ac.cn
  • Received Date: 2 May 2019
    Revised Date: 1 July 2019
    Accepted Date: 2 July 2019
    Available Online: 8 April 2019

    Fund Project: the Top-1000 Talents Program of HPSTAR 2301-0219The project was supported by the Top-1000 Talents Program of HPSTAR (2301-0219), under grant from Ministry of Finance of China

  • The fast-growing demand for safe energy storages with high power and energy density drives the continuous improvement of rechargeable Li-ion batteries (LIBs). In situ characterization is a potential way to understand the mechanism (metaphases, diffusion, kinetics, inhomogeneity etc.) of battery under operation conditions. Solid-state nuclear magnetic resonance (SS-NMR) is very sensitive to the local environment of 1H, 6, 7Li, 11B, 13C, 17O, 19F, 23Na, and 31P isotopes, which are widely used in battery materials, regardless of their ordering degree. In addition to providing well-resolved spectra obtained under fast magic angle spinning (MAS), NMR can effectively serve as a non-invasive tool to capture the evolution of electrodes/electrolyte upon charge/discharge electrochemical cycling. Subsequently, in situ NMR and imaging (MRI) have been developed for extending toward temporal and spatial dimensions in working batteries. Complementarily, highly sensitive electron paramagnetic resonance (EPR) and imaging (EPRI) have been employed to track and map the redox of transition metals and oxygen species (O2n) within electrodes. The insights gained from in situ NMR/EPR and their imaging can serve as a guide for the structural design of energy storage materials and the fabrication of batteries with optimized performance. As such, this review summarizes the applications of both NMR and EPR in the field of battery community. In particular, we first introduce the combination of fast magic angle spinning and phase-adjusted sideband separation (pjMATPASS) to obtain highly resolved spectra for extreme broad signal mediated by unpaired electrons, which is usually found in battery materials, as well as isotope-oriented NMR to determine the Li pathway in the composite electrolyte by the aid of 6Li replacing 7Li in their transport pathway. Secondly, we introduce the combination of NMR/MRI measurement while battery under electrochemical cycling by (1) briefly summarizing the advantages and disadvantages of home-made cells (coin cell, bag cell, and cylindrical cell) developed for in situ NMR study; (2) using different isotopes for conducting in situ NMR on batteries: 7Li, 23Na, and 31P spectra; and (3) performing in situ MRI on electrolytes and electrodes with and without chemical shift information (CSI, S-ISIS, and stray-field MRI). Furthermore, in situ EPR determines and quantifies the evolution of active Li microstructure, transition metals, and oxygen species together with in situ EPRI mapping of the concentration of the paramagnetic center within a functioning battery. Finally, we point out the limitations and perspective of in situ NMR and EPR for cycling batteries in real-time. This review will provide illuminating insights on the magnetic technologies in the battery community and pave a way for carrying out NMR/EPR on functional materials.
  • 加载中
    1. [1]

      Armand, M.; Tarascon, J. M. 2008, 451 (7179), 652. doi: 10.1038/451652a

    2. [2]

      Kuhn, A.; Köhler, J.; Lotsch, B. V. Phys. Chem. Chem. Phys. 2013, 15 (28), 11620. doi: 10.1039/c3cp51985f  doi: 10.1039/c3cp51985f

    3. [3]

      Feng, X. Y.; Li, X.; Tang, M.; Gan, A.; Hu, Y. Y. J. Power Sources 2017, 354, 172. doi: 10.1016/j.jpowsour.2017.04.032  doi: 10.1016/j.jpowsour.2017.04.032

    4. [4]

      Li, X.; Tang, M.; Feng, X.; Hung, I.; Rose, A.; Chien, P. H.; Gan, Z.; Hu, Y. Y. Chem. Mater. 2017, 29 (19), 8282. doi: 10.1021/acs.chemmater.7b02589  doi: 10.1021/acs.chemmater.7b02589

    5. [5]

      Arbi, K.; Hoelzel, M.; Kuhn, A.; García-Alvarado, F.; Sanz, J. Phys. Chem. Chem. Phys. 2014, 16 (34), 18397. doi: 10.1039/C4CP02938K  doi: 10.1039/C4CP02938K

    6. [6]

      Arbi, K.; Bucheli, W.; Jiménez, R.; Sanz, J. J. Eur. Ceram. Soc. 2015, 35 (5), 1477. doi: 10.1016/j.jeurceramsoc.2014.11.023  doi: 10.1016/j.jeurceramsoc.2014.11.023

    7. [7]

      Feng, X.; Tang, M.; O'Neill, S.; Hu, Y. Y. J. Mater. Chem. A 2018, 6 (44), 22240. doi: 10.1039/C8TA05433A  doi: 10.1039/C8TA05433A

    8. [8]

      Wilkening, M.; Heitjans, P. ChemPhysChem 2012, 13 (1), 53. doi: 10.1002/cphc.201100580  doi: 10.1002/cphc.201100580

    9. [9]

      Bottke, P.; Rettenwander, D.; Schmidt, W.; Amthauer, G.; Wilkening, M. Chem. Mater. 2015, 27 (19), 6571. doi: 10.1021/acs.chemmater.5b02231  doi: 10.1021/acs.chemmater.5b02231

    10. [10]

      Britton, M. M.; Bayley, P. M.; Howlett, P. C.; Davenport, A. J.; Forsyth, M. J. Phys. Chem. Lett. 2013, 4 (17), 3019. doi: 10.1021/jz401415a  doi: 10.1021/jz401415a

    11. [11]

      Ilott, A. J.; Mohammadi, M.; Schauerman, C. M.; Ganter, M. J.; Jerschow, A. Nat. Commun. 2018, 9 (1), 1776. doi: 10.1038/s41467-018-04192-x  doi: 10.1038/s41467-018-04192-x

    12. [12]

      Messinger, R. J.; Ménétrier, M.; Salager, E.; Boulineau, A.; Duttine, M.; Carlier, D.; Ateba Mba, J. M.; Croguennec, L.; Masquelier, C.; Massiot, D.; et al. Chem. Mater. 2015, 27 (15), 5212. doi: 10.1021/acs.chemmater.5b01234  doi: 10.1021/acs.chemmater.5b01234

    13. [13]

      Shadike, Z.; Zhao, E.; Zhou, Y. N.; Yu, X.; Yang, Y.; Hu, E.; Bak, S.; Gu, L.; Yang, X. Q. Adv. Energy Mater. 2018, 8 (17), 1702588. doi: 10.1002/aenm.201702588  doi: 10.1002/aenm.201702588

    14. [14]

      Daza, P. C. C.; Meneses, R. A. M.; de Almeida Ferreira, J. L.; Araujo, J. A.; Rodrigues, A. C. M.; da Silva, C. R. M. Ceram. Int. 2018, 44 (2), 2138. doi: 10.1016/j.ceramint.2017.10.166  doi: 10.1016/j.ceramint.2017.10.166

    15. [15]

      Hammad Fawey, M.; Chakravadhanula, V. S. K.; Reddy, M. A.; Rongeat, C.; Scherer, T.; Hahn, H.; Fichtner, M.; Kübel, C. Microsc. Res. Tech. 2016, 79 (7), 615. doi: 10.1002/jemt.22675  doi: 10.1002/jemt.22675

    16. [16]

      Shang, T.; Wen, Y.; Xiao, D.; Gu, L.; Hu, Y. S.; Li, H. Adv. Energy Mater. 2017, 7 (23), 1700709. doi: 10.1002/aenm.201700709  doi: 10.1002/aenm.201700709

    17. [17]

      Lacivita, V.; Artrith, N.; Ceder, G. Chem. Mater. 2018, 30 (20), 7077. doi: 10.1021/acs.chemmater.8b02812  doi: 10.1021/acs.chemmater.8b02812

    18. [18]

      Ilott, A. J.; Chandrashekar, S.; Klöckner, A.; Chang, H. J.; Trease, N. M.; Grey, C. P.; Greengard, L.; Jerschow, A. J. Magn. Reson. 2014, 245, 143. doi: 10.1016/j.jmr.2014.06.013  doi: 10.1016/j.jmr.2014.06.013

    19. [19]

      Harks, P. P. R. M. L.; Mulder, F. M.; Notten, P. H. L. J. Power Sources 2015, 288, 92. doi: 10.1016/j.jpowsour.2015.04.084  doi: 10.1016/j.jpowsour.2015.04.084

    20. [20]

      Pecher, O.; Carretero-González, J.; Griffith, K. J.; Grey, C. P. Chem. Mater. 2017, 29 (1), 213. doi: 10.1021/acs.chemmater.6b03183  doi: 10.1021/acs.chemmater.6b03183

    21. [21]

      Zhang, Z. R.; Yang, Y.; Liu, H. S. Prog. Chem. 2013, 15 (1), 18.

    22. [22]

      Zhong, G. M.; Hou, X.; Chen, S. S.; Yang, Y. Chin. Sci. Bull. 2013, 58 (32), 3287.  doi: 10.1360/972013-878

    23. [23]

      Zhong, G. M.; Liu, Z. G.; Wang, D. W.; Li, Q.; Fu, R. Q.; Yang, Y. J. Electrochem. 2016, 22 (3), 231.  doi: 10.13208/j.electrochem.151246

    24. [24]

      Liu, X. S.; Xiang, Y. X.; Zhong, G. M.; Li, Q.; Zheng, S. X.; Fu, R. Q.; Yang, Y. Chin. J. Power Sources 2019, 43 (1), 5.

    25. [25]

      Li, C.; Shen, M.; Hu, B. Acta Phys. -Chim. Sin. 2020, 36 (4), 1902019.  doi: 10.3866/PKU.WHXB201902019

    26. [26]

      Hain, H.; Scheuermann, M.; Heinzmann, R.; Wünsche, L.; Hahn, H.; Indris, S. Z. Für Anorg. Allg. Chem. 2012, 638 (10), 1581. doi: 10.1002/zaac.201204029  doi: 10.1002/zaac.201204029

    27. [27]

      Murakami, M.; Noda, Y.; Koyama, Y.; Takegoshi, K.; Arai, H.; Uchimoto, Y.; Ogumi, Z. J. Phys. Chem. C 2014, 118 (28), 15375. doi: 10.1021/jp5039909  doi: 10.1021/jp5039909

    28. [28]

      Salager, E.; Sarou-Kanian, V.; Sathiya, M.; Tang, M.; Leriche, J. B.; Melin, P.; Wang, Z.; Vezin, H.; Bessada, C.; Deschamps, M.; et al. Chem. Mater. 2014, 26 (24), 7009. doi: 10.1021/cm503280s  doi: 10.1021/cm503280s

    29. [29]

      Hung, I.; Zhou, L.; Pourpoint, F.; Grey, C. P.; Gan, Z. J. Am. Chem. Soc. 2012, 134 (4), 1898. doi: 10.1021/ja209600m  doi: 10.1021/ja209600m

    30. [30]

      Zheng, J.; Tang, M.; Hu, Y. Y. Angew. Chem. Int. Ed. 2016, 55 (40), 12538. doi: 10.1002/anie.201607539  doi: 10.1002/anie.201607539

    31. [31]

      Zheng, J.; Hu, Y. Y. ACS Appl. Mater. Interfaces 2018, 10 (4), 4113. doi: 10.1021/acsami.7b17301  doi: 10.1021/acsami.7b17301

    32. [32]

      Li, S. H.; Li, J.; Zheng, A. M.; Deng, F. Acta Phys. -Chim. Sin. 2017, 33 (2), 270.  doi: 10.3866/PKU.WHXB201611022

    33. [33]

      Shi, F.; Hu, L.; Ren, J.; Yang, Q. Acta Phys. -Chim. Sin. 2020, 36 (4), 1902018.  doi: 10.3866/PKU.WHXB201902018

    34. [34]

      Liu, X.; Wang, Q.; Wang, C.; Xu, J.; Deng, F. Acta Phys. -Chim. Sin. 2020, 36 (4), 1905035.  doi: 10.3866/PKU.WHXB201905035

    35. [35]

      Ji, Y.; Liang, L.; Guo, C.; Polenova, T.; Hou, G. Acta Phys. -Chim. Sin. 2020, 36 (4), 1905029.

    36. [36]

      Li, Y.; Wu, X.; Liu, C.; Wang, M.; Song, B.; Yu, G.; Yang, G.; Hou, W.; Gong, X.; Peng, L. Acta Phys. -Chim. Sin. 2020, 36 (4), 1905021.  doi: 10.3866/PKU.WHXB201905021

    37. [37]

      Ji, W.; Shen, R.; Yang, R.; Yu, G.; Guo, X.; Peng, L.; Ding, W. J. Mater. Chem. A 2014, 2 (3), 699. doi: 10.1039/C3TA13708B  doi: 10.1039/C3TA13708B

    38. [38]

      Wang, D.; Zhong, G.; Pang, W. K.; Guo, Z.; Li, Y.; McDonald, M. J.; Fu, R.; Mi, J. X.; Yang, Y. Chem. Mater. 2015, 27 (19), 6650. doi: 10.1021/acs.chemmater.5b02429  doi: 10.1021/acs.chemmater.5b02429

    39. [39]

      Xiang, Y. X.; Zheng, G.; Zhong, G.; Wang, D.; Fu, R.; Yang, Y. Solid State Ion. 2018, 318, 19. doi: 10.1016/j.ssi.2017.11.025  doi: 10.1016/j.ssi.2017.11.025

    40. [40]

      Jiang, Y.; Yan, X.; Ma, Z.; Mei, P.; Xiao, W.; You, Q.; Zhang, Y. Polymers 2018, 10 (11), 1237. doi: 10.3390/polym10111237  doi: 10.3390/polym10111237

    41. [41]

      Yan, X.; Peng, B.; Hu, B.; Chen, Q. Polymer 2016, 99, 44. doi: 10.1016/j.polymer.2016.06.056  doi: 10.1016/j.polymer.2016.06.056

    42. [42]

      Gao, L.; Chen, J.; Liu, Y.; Yamauchi, Y.; Huang, Z.; Kong, X. J. Mater. Chem. A 2018, 6 (25), 12012. doi: 10.1039/C8TA03436B.  doi: 10.1039/C8TA03436B

    43. [43]

      Gerald, R. E.; Klingler, R. J.; Rathke, J. W.; Sand, G.; Woelk, K. In Situ Imaging of Charge Carriers in an Electrochemical Cell. In Spatially Resolved Magnetic Resonance; Blmler, P., Blmich, B., Botto, R., Fukushima, E., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 1998; pp 111–119.

    44. [44]

      Bhattacharyya, R.; Key, B.; Chen, H.; Best, A. S.; Hollenkamp, A. F.; Grey, C. P. Nat. Mater. 2010, 9 (6), 504. doi: 10.1038/nmat2764  doi: 10.1038/nmat2764

    45. [45]

      Grey, C. P.; Tarascon, J. M. Nat. Mater. 2017, 16 (1), 45. doi: 10.1038/nmat4777  doi: 10.1038/nmat4777

    46. [46]

      Krachkovskiy, S. A.; Bazak, J. D.; Werhun, P.; Balcom, B. J.; Halalay, I. C.; Goward, G. R. J. Am. Chem. Soc. 2016, 138 (25), 7992. doi: 10.1021/jacs.6b04226  doi: 10.1021/jacs.6b04226

    47. [47]

      Abbrent, S.; Greenbaum, S. Curr. Opin. Colloid Interface Sci. 2013, 18 (3), 228. doi: 10.1016/j.cocis.2013.03.008  doi: 10.1016/j.cocis.2013.03.008

    48. [48]

      Chandrashekar, S.; Trease, N. M.; Chang, H. J.; Du, L. S.; Grey, C. P.; Jerschow, A. Nat. Mater. 2012, 11 (4), 311. doi: 10.1038/nmat3246  doi: 10.1038/nmat3246

    49. [49]

      Tang, J. A.; Dugar, S.; Zhong, G.; Dalal, N. S.; Zheng, J. P.; Yang, Y.; Fu, R. Sci. Rep. 2013, 3 (1), 1408. doi: 10.1038/srep02596  doi: 10.1038/srep02596

    50. [50]

      Tang, M.; Sarou-Kanian, V.; Melin, P.; Leriche, J. B.; Ménétrier, M.; Tarascon, J. M.; Deschamps, M.; Salager, E. Nat. Commun. 2016, 7 (1), 13284. doi: 10.1038/ncomms13284  doi: 10.1038/ncomms13284

    51. [51]

      Zhong, G.; Bai, J.; Duchesne, P. N.; McDonald, M. J.; Li, Q.; Hou, X.; Tang, J. A.; Wang, Y.; Zhao, W.; Gong, Z.; et al. Chem. Mater. 2015, 27 (16), 5736. doi: 10.1021/acs.chemmater.5b02290  doi: 10.1021/acs.chemmater.5b02290

    52. [52]

      Li, C.; Shen, M.; Lou, X.; Hu, B. J. Phys. Chem. C 2018, 122 (48), 27224. doi: 10.1021/acs.jpcc.8b09151  doi: 10.1021/acs.jpcc.8b09151

    53. [53]

      Ii, R. E. G.; Klingler, R. J.; Sandı, G.; Johnson, C. S.; Scanlon, L. G.; Rathke, J. W. J. Power Sources 2000, 89 (2), 237. doi: 10.1016/S0378-7753(00)00435-3  doi: 10.1016/S0378-7753(00)00435-3

    54. [54]

      Chevallier, F.; Letellier, M.; Morcrette, M.; Tarascon, J. M.; Frackowiak, E.; Rouzaud, J. N.; Béguin, F. Electrochem. Solid-State Lett. 2003, 6 (11), A225. doi: 10.1149/1.1612011  doi: 10.1149/1.1612011

    55. [55]

      Letellier, M.; Chevallier, F.; Clinard, C.; Frackowiak, E.; Rouzaud, J. N.; Béguin, F.; Morcrette, M.; Tarascon, J. M. J. Chem. Phys. 2003, 118 (13), 6038. doi: 10.1063/1.1556092  doi: 10.1063/1.1556092

    56. [56]

      Letellier, M.; Chevallier, F.; Morcrette, M. Carbon 2007, 45 (5), 1025. doi: 10.1016/j.carbon.2006.12.018  doi: 10.1016/j.carbon.2006.12.018

    57. [57]

      Poli, F.; Kshetrimayum, J. S.; Monconduit, L.; Letellier, M. Electrochem. Commun. 2011, 13 (12), 1293. doi: 10.1016/j.elecom.2011.07.019  doi: 10.1016/j.elecom.2011.07.019

    58. [58]

      Klett, M.; Giesecke, M.; Nyman, A.; Hallberg, F.; Lindström, R. W.; Lindbergh, G.; Furó, I. J. Am. Chem. Soc. 2012, 134 (36), 14654. doi: 10.1021/ja305461j  doi: 10.1021/ja305461j

    59. [59]

      Trease, N. M.; Zhou, L.; Chang, H. J.; Zhu, B. Y.; Grey, C. P. Solid State Nucl. Magn. Reson. 2012, 42, 62. doi: 10.1016/j.ssnmr.2012.01.004  doi: 10.1016/j.ssnmr.2012.01.004

    60. [60]

      Chevallier, F.; Poli, F.; Montigny, B.; Letellier, M. Carbon 2013, 61, 140. doi: 10.1016/j.carbon.2013.04.078  doi: 10.1016/j.carbon.2013.04.078

    61. [61]

      Krachkovskiy, S. A.; Pauric, Allen. D.; Halalay, I. C.; Goward, G. R. J. Phys. Chem. Lett. 2013, 4 (22), 3940. doi: 10.1021/jz402103f  doi: 10.1021/jz402103f

    62. [62]

      Shimoda, K.; Murakami, M.; Takamatsu, D.; Arai, H.; Uchimoto, Y.; Ogumi, Z. Electrochimica Acta 2013, 108, 343. doi: 10.1016/j.electacta.2013.06.120  doi: 10.1016/j.electacta.2013.06.120

    63. [63]

      Romanenko, K.; Forsyth, M.; O'Dell, L. A. J. Magn. Reson. 2014, 248, 96. doi: 10.1016/j.jmr.2014.09.017  doi: 10.1016/j.jmr.2014.09.017

    64. [64]

      Chang, H. J.; Ilott, A. J.; Trease, N. M.; Mohammadi, M.; Jerschow, A.; Grey, C. P. J. Am. Chem. Soc. 2015, 137 (48), 15209. doi: 10.1021/jacs.5b09385  doi: 10.1021/jacs.5b09385

    65. [65]

      Chang, H. J.; Trease, N. M.; Ilott, A. J.; Zeng, D.; Du, L. S.; Jerschow, A.; Grey, C. P. J. Phys. Chem. C 2015, 119 (29), 16443. doi: 10.1021/acs.jpcc.5b03396  doi: 10.1021/acs.jpcc.5b03396

    66. [66]

      Klamor, S.; Zick, K.; Oerther, T.; Schappacher, F. M.; Winter, M.; Brunklaus, G. Phys. Chem. Chem. Phys. 2015, 17 (6), 4458. doi: 10.1039/C4CP05021E  doi: 10.1039/C4CP05021E

    67. [67]

      Sethurajan, A. K.; Krachkovskiy, S. A.; Halalay, I. C.; Goward, G. R.; Protas, B. J. Phys. Chem. B 2015, 119 (37), 12238. doi: 10.1021/acs.jpcb.5b04300  doi: 10.1021/acs.jpcb.5b04300

    68. [68]

      Romanenko, K.; Jin, L.; Howlett, P.; Forsyth, M. Chem. Mater. 2016, 28 (8), 2844. doi: 10.1021/acs.chemmater.6b00797  doi: 10.1021/acs.chemmater.6b00797

    69. [69]

      Kayser, S. A.; Mester, A.; Mertens, A.; Jakes, P.; Eichel, R. A.; Granwehr, J. Phys. Chem. Chem. Phys. 2018, 20 (20), 13765. doi: 10.1039/C8CP01067F  doi: 10.1039/C8CP01067F

    70. [70]

      Chien, P. H.; Feng, X.; Tang, M.; Rosenberg, J. T.; O'Neill, S.; Zheng, J.; Grant, S. C.; Hu, Y. Y. J. Phys. Chem. Lett. 2018, 9 (8), 1990. doi: 10.1021/acs.jpclett.8b00240  doi: 10.1021/acs.jpclett.8b00240

    71. [71]

      Key, B.; Bhattacharyya, R.; Morcrette, M.; Seznéc, V.; Tarascon, J. M.; Grey, C. P. J. Am. Chem. Soc. 2009, 131 (26), 9239. doi: 10.1021/ja8086278  doi: 10.1021/ja8086278

    72. [72]

      Bayley, P. M.; Trease, N. M.; Grey, C. P. J. Am. Chem. Soc. 2016, 138 (6), 1955. doi: 10.1021/jacs.5b12423  doi: 10.1021/jacs.5b12423

    73. [73]

      Britton, M. M. Spectrosc. 2017, 101, 51. doi: 10.1016/j.pnmrs.2017.03.001  doi: 10.1016/j.pnmrs.2017.03.001

    74. [74]

      Krachkovskiy, S. A.; Foster, J. M.; Bazak, J. D.; Balcom, B. J.; Goward, G. R. J. Phys. Chem. C 2018, 122 (38), 21784. doi: 10.1021/acs.jpcc.8b06563  doi: 10.1021/acs.jpcc.8b06563

    75. [75]

      Ilott, A. J.; Trease, N. M.; Grey, C. P.; Jerschow, A. Nat. Commun. 2014, 5 (1), 4536. doi: 10.1038/ncomms5536  doi: 10.1038/ncomms5536

    76. [76]

      Gourier, D.; Tranchant, A.; Baffier, N.; Messina, R. Electrochim. Acta 1992, 37 (15), 2755. doi: 10.1016/0013-4686(92)85203-W  doi: 10.1016/0013-4686(92)85203-W

    77. [77]

      Alcántara, R.; Lavela, P.; Tirado, J. L.; Zhecheva, E.; Stoyanova, R. J. Electroanal. Chem. 1998, 454 (1–2), 173. doi: 10.1016/S0022-0728(98)00278-2  doi: 10.1016/S0022-0728(98)00278-2

    78. [78]

      Stoyanova, R. K.; Zhecheva, E. N.; Gorova, M. Y. J. Mater. Chem. 2000, 10 (6), 1377. doi: 10.1039/A909066E  doi: 10.1039/A909066E

    79. [79]

      Alcántara, R.; Ortiz, G. F.; Lavela, P.; Tirado, J. L.; Stoyanova, R.; Zhecheva, E. Chem. Mater. 2006, 18 (9), 2293. doi: 10.1021/cm060060p  doi: 10.1021/cm060060p

    80. [80]

      Zhecheva, E.; Stoyanova, R.; Shinova, E. Mater. Sci. 2007, 42 (10), 3343. doi: 10.1007/s10853-006-0744-x  doi: 10.1007/s10853-006-0744-x

    81. [81]

      Jakes, P.; Erdem, E.; Ozarowski, A.; Tol, J. van; Buckan, R.; Mikhailova, D.; Ehrenberg, H.; Eichel, R. A. Phys. Chem. Chem. Phys. 2011, 13 (20), 9344. doi: 10.1039/C0CP02048F  doi: 10.1039/C0CP02048F

    82. [82]

      Stoyanova, R.; Ivanova, S.; Zhecheva, E.; Samoson, A.; Simova, S.; Tzvetkova, P.; Barra, A. L. Phys. Chem. Chem. Phys. 2014, 16 (6), 2499. doi: 10.1039/C3CP54438A  doi: 10.1039/C3CP54438A

    83. [83]

      Pal, D.; Abdi, S. H.; Shukla, M. J. Mater. Sci. Mater. Electron. 2015, 26 (9), 6647. doi: 10.1007/s10854-015-3265-z  doi: 10.1007/s10854-015-3265-z

    84. [84]

      Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M. L.; Foix, D.; Gonbeau, D.; Walker, W.; et al. Nat. Mater. 2013, 12 (9), 827. doi: 10.1038/nmat3699  doi: 10.1038/nmat3699

    85. [85]

      Senguttuvan, P.; Rousse, G.; Arroyo y de Dompablo, M. E.; Vezin, H.; Tarascon, J. M.; Palacín, M. R. J. Am. Chem. Soc. 2013, 135 (10), 3897. doi: 10.1021/ja311044t  doi: 10.1021/ja311044t

    86. [86]

      Sathiya, M.; Leriche, J. B.; Salager, E.; Gourier, D.; Tarascon, J. M.; Vezin, H. Nat. Commun. 2015, 6 (1), 6276. doi: 10.1038/ncomms7276  doi: 10.1038/ncomms7276

    87. [87]

      Wandt, J.; Marino, C.; Gasteiger, H. A.; Jakes, P.; Eichel, R. A.; Granwehr, J. Energy Environ. Sci. 2015, 8 (4), 1358. doi: 10.1039/C4EE02730B  doi: 10.1039/C4EE02730B

    88. [88]

      Tang, M.; Dalzini, A.; Li, X.; Feng, X.; Chien, P. H.; Song, L.; Hu, Y. Y. J. Phys. Chem. Lett. 2017, 8 (17), 4009. doi: 10.1021/acs.jpclett.7b01425  doi: 10.1021/acs.jpclett.7b01425

    89. [89]

      Niemöller, A.; Jakes, P.; Eichel, R. A.; Granwehr, J. Sci. Rep. 2018, 8 (1), 14331. doi: 10.1038/s41598-018-32112-y  doi: 10.1038/s41598-018-32112-y

    90. [90]

      Wandt, J.; Jakes, P.; Granwehr, J.; Eichel, R. A.; Gasteiger, H. A. Mater. Today 2018, 21 (3), 231. doi: 10.1016/j.mattod.2017.11.001.  doi: 10.1016/j.mattod.2017.11.001

    91. [91]

      Blanc, F.; Leskes, M.; Grey, C. P. Acc. Chem. Res. 2013, 46 (9), 1952. doi: 10.1021/ar400022u.  doi: 10.1021/ar400022u

  • 加载中
    1. [1]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    2. [2]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    3. [3]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    7. [7]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    8. [8]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    9. [9]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    15. [15]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    16. [16]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    17. [17]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    18. [18]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    19. [19]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(9)
  • Abstract views(558)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return