NMR/EPR Investigation of Rechargeable Batteries
- Corresponding author: Tang Mingxue, mingxue.tang@hpstar.ac.cn
Citation: Shi Yongchao, Tang Mingxue. NMR/EPR Investigation of Rechargeable Batteries[J]. Acta Physico-Chimica Sinica, ;2020, 36(4): 190500. doi: 10.3866/PKU.WHXB201905004
Armand, M.; Tarascon, J. M. 2008, 451 (7179), 652. doi: 10.1038/451652a
Kuhn, A.; Köhler, J.; Lotsch, B. V. Phys. Chem. Chem. Phys. 2013, 15 (28), 11620. doi: 10.1039/c3cp51985f
doi: 10.1039/c3cp51985f
Feng, X. Y.; Li, X.; Tang, M.; Gan, A.; Hu, Y. Y. J. Power Sources 2017, 354, 172. doi: 10.1016/j.jpowsour.2017.04.032
doi: 10.1016/j.jpowsour.2017.04.032
Li, X.; Tang, M.; Feng, X.; Hung, I.; Rose, A.; Chien, P. H.; Gan, Z.; Hu, Y. Y. Chem. Mater. 2017, 29 (19), 8282. doi: 10.1021/acs.chemmater.7b02589
doi: 10.1021/acs.chemmater.7b02589
Arbi, K.; Hoelzel, M.; Kuhn, A.; García-Alvarado, F.; Sanz, J. Phys. Chem. Chem. Phys. 2014, 16 (34), 18397. doi: 10.1039/C4CP02938K
doi: 10.1039/C4CP02938K
Arbi, K.; Bucheli, W.; Jiménez, R.; Sanz, J. J. Eur. Ceram. Soc. 2015, 35 (5), 1477. doi: 10.1016/j.jeurceramsoc.2014.11.023
doi: 10.1016/j.jeurceramsoc.2014.11.023
Feng, X.; Tang, M.; O'Neill, S.; Hu, Y. Y. J. Mater. Chem. A 2018, 6 (44), 22240. doi: 10.1039/C8TA05433A
doi: 10.1039/C8TA05433A
Wilkening, M.; Heitjans, P. ChemPhysChem 2012, 13 (1), 53. doi: 10.1002/cphc.201100580
doi: 10.1002/cphc.201100580
Bottke, P.; Rettenwander, D.; Schmidt, W.; Amthauer, G.; Wilkening, M. Chem. Mater. 2015, 27 (19), 6571. doi: 10.1021/acs.chemmater.5b02231
doi: 10.1021/acs.chemmater.5b02231
Britton, M. M.; Bayley, P. M.; Howlett, P. C.; Davenport, A. J.; Forsyth, M. J. Phys. Chem. Lett. 2013, 4 (17), 3019. doi: 10.1021/jz401415a
doi: 10.1021/jz401415a
Ilott, A. J.; Mohammadi, M.; Schauerman, C. M.; Ganter, M. J.; Jerschow, A. Nat. Commun. 2018, 9 (1), 1776. doi: 10.1038/s41467-018-04192-x
doi: 10.1038/s41467-018-04192-x
Messinger, R. J.; Ménétrier, M.; Salager, E.; Boulineau, A.; Duttine, M.; Carlier, D.; Ateba Mba, J. M.; Croguennec, L.; Masquelier, C.; Massiot, D.; et al. Chem. Mater. 2015, 27 (15), 5212. doi: 10.1021/acs.chemmater.5b01234
doi: 10.1021/acs.chemmater.5b01234
Shadike, Z.; Zhao, E.; Zhou, Y. N.; Yu, X.; Yang, Y.; Hu, E.; Bak, S.; Gu, L.; Yang, X. Q. Adv. Energy Mater. 2018, 8 (17), 1702588. doi: 10.1002/aenm.201702588
doi: 10.1002/aenm.201702588
Daza, P. C. C.; Meneses, R. A. M.; de Almeida Ferreira, J. L.; Araujo, J. A.; Rodrigues, A. C. M.; da Silva, C. R. M. Ceram. Int. 2018, 44 (2), 2138. doi: 10.1016/j.ceramint.2017.10.166
doi: 10.1016/j.ceramint.2017.10.166
Hammad Fawey, M.; Chakravadhanula, V. S. K.; Reddy, M. A.; Rongeat, C.; Scherer, T.; Hahn, H.; Fichtner, M.; Kübel, C. Microsc. Res. Tech. 2016, 79 (7), 615. doi: 10.1002/jemt.22675
doi: 10.1002/jemt.22675
Shang, T.; Wen, Y.; Xiao, D.; Gu, L.; Hu, Y. S.; Li, H. Adv. Energy Mater. 2017, 7 (23), 1700709. doi: 10.1002/aenm.201700709
doi: 10.1002/aenm.201700709
Lacivita, V.; Artrith, N.; Ceder, G. Chem. Mater. 2018, 30 (20), 7077. doi: 10.1021/acs.chemmater.8b02812
doi: 10.1021/acs.chemmater.8b02812
Ilott, A. J.; Chandrashekar, S.; Klöckner, A.; Chang, H. J.; Trease, N. M.; Grey, C. P.; Greengard, L.; Jerschow, A. J. Magn. Reson. 2014, 245, 143. doi: 10.1016/j.jmr.2014.06.013
doi: 10.1016/j.jmr.2014.06.013
Harks, P. P. R. M. L.; Mulder, F. M.; Notten, P. H. L. J. Power Sources 2015, 288, 92. doi: 10.1016/j.jpowsour.2015.04.084
doi: 10.1016/j.jpowsour.2015.04.084
Pecher, O.; Carretero-González, J.; Griffith, K. J.; Grey, C. P. Chem. Mater. 2017, 29 (1), 213. doi: 10.1021/acs.chemmater.6b03183
doi: 10.1021/acs.chemmater.6b03183
Zhang, Z. R.; Yang, Y.; Liu, H. S. Prog. Chem. 2013, 15 (1), 18.
Zhong, G. M.; Hou, X.; Chen, S. S.; Yang, Y. Chin. Sci. Bull. 2013, 58 (32), 3287.
doi: 10.1360/972013-878
Zhong, G. M.; Liu, Z. G.; Wang, D. W.; Li, Q.; Fu, R. Q.; Yang, Y. J. Electrochem. 2016, 22 (3), 231.
doi: 10.13208/j.electrochem.151246
Liu, X. S.; Xiang, Y. X.; Zhong, G. M.; Li, Q.; Zheng, S. X.; Fu, R. Q.; Yang, Y. Chin. J. Power Sources 2019, 43 (1), 5.
Li, C.; Shen, M.; Hu, B. Acta Phys. -Chim. Sin. 2020, 36 (4), 1902019.
doi: 10.3866/PKU.WHXB201902019
Hain, H.; Scheuermann, M.; Heinzmann, R.; Wünsche, L.; Hahn, H.; Indris, S. Z. Für Anorg. Allg. Chem. 2012, 638 (10), 1581. doi: 10.1002/zaac.201204029
doi: 10.1002/zaac.201204029
Murakami, M.; Noda, Y.; Koyama, Y.; Takegoshi, K.; Arai, H.; Uchimoto, Y.; Ogumi, Z. J. Phys. Chem. C 2014, 118 (28), 15375. doi: 10.1021/jp5039909
doi: 10.1021/jp5039909
Salager, E.; Sarou-Kanian, V.; Sathiya, M.; Tang, M.; Leriche, J. B.; Melin, P.; Wang, Z.; Vezin, H.; Bessada, C.; Deschamps, M.; et al. Chem. Mater. 2014, 26 (24), 7009. doi: 10.1021/cm503280s
doi: 10.1021/cm503280s
Hung, I.; Zhou, L.; Pourpoint, F.; Grey, C. P.; Gan, Z. J. Am. Chem. Soc. 2012, 134 (4), 1898. doi: 10.1021/ja209600m
doi: 10.1021/ja209600m
Zheng, J.; Tang, M.; Hu, Y. Y. Angew. Chem. Int. Ed. 2016, 55 (40), 12538. doi: 10.1002/anie.201607539
doi: 10.1002/anie.201607539
Zheng, J.; Hu, Y. Y. ACS Appl. Mater. Interfaces 2018, 10 (4), 4113. doi: 10.1021/acsami.7b17301
doi: 10.1021/acsami.7b17301
Li, S. H.; Li, J.; Zheng, A. M.; Deng, F. Acta Phys. -Chim. Sin. 2017, 33 (2), 270.
doi: 10.3866/PKU.WHXB201611022
Shi, F.; Hu, L.; Ren, J.; Yang, Q. Acta Phys. -Chim. Sin. 2020, 36 (4), 1902018.
doi: 10.3866/PKU.WHXB201902018
Liu, X.; Wang, Q.; Wang, C.; Xu, J.; Deng, F. Acta Phys. -Chim. Sin. 2020, 36 (4), 1905035.
doi: 10.3866/PKU.WHXB201905035
Ji, Y.; Liang, L.; Guo, C.; Polenova, T.; Hou, G. Acta Phys. -Chim. Sin. 2020, 36 (4), 1905029.
Li, Y.; Wu, X.; Liu, C.; Wang, M.; Song, B.; Yu, G.; Yang, G.; Hou, W.; Gong, X.; Peng, L. Acta Phys. -Chim. Sin. 2020, 36 (4), 1905021.
doi: 10.3866/PKU.WHXB201905021
Ji, W.; Shen, R.; Yang, R.; Yu, G.; Guo, X.; Peng, L.; Ding, W. J. Mater. Chem. A 2014, 2 (3), 699. doi: 10.1039/C3TA13708B
doi: 10.1039/C3TA13708B
Wang, D.; Zhong, G.; Pang, W. K.; Guo, Z.; Li, Y.; McDonald, M. J.; Fu, R.; Mi, J. X.; Yang, Y. Chem. Mater. 2015, 27 (19), 6650. doi: 10.1021/acs.chemmater.5b02429
doi: 10.1021/acs.chemmater.5b02429
Xiang, Y. X.; Zheng, G.; Zhong, G.; Wang, D.; Fu, R.; Yang, Y. Solid State Ion. 2018, 318, 19. doi: 10.1016/j.ssi.2017.11.025
doi: 10.1016/j.ssi.2017.11.025
Jiang, Y.; Yan, X.; Ma, Z.; Mei, P.; Xiao, W.; You, Q.; Zhang, Y. Polymers 2018, 10 (11), 1237. doi: 10.3390/polym10111237
doi: 10.3390/polym10111237
Yan, X.; Peng, B.; Hu, B.; Chen, Q. Polymer 2016, 99, 44. doi: 10.1016/j.polymer.2016.06.056
doi: 10.1016/j.polymer.2016.06.056
Gao, L.; Chen, J.; Liu, Y.; Yamauchi, Y.; Huang, Z.; Kong, X. J. Mater. Chem. A 2018, 6 (25), 12012. doi: 10.1039/C8TA03436B.
doi: 10.1039/C8TA03436B
Gerald, R. E.; Klingler, R. J.; Rathke, J. W.; Sand, G.; Woelk, K. In Situ Imaging of Charge Carriers in an Electrochemical Cell. In Spatially Resolved Magnetic Resonance; Blmler, P., Blmich, B., Botto, R., Fukushima, E., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 1998; pp 111–119.
Bhattacharyya, R.; Key, B.; Chen, H.; Best, A. S.; Hollenkamp, A. F.; Grey, C. P. Nat. Mater. 2010, 9 (6), 504. doi: 10.1038/nmat2764
doi: 10.1038/nmat2764
Grey, C. P.; Tarascon, J. M. Nat. Mater. 2017, 16 (1), 45. doi: 10.1038/nmat4777
doi: 10.1038/nmat4777
Krachkovskiy, S. A.; Bazak, J. D.; Werhun, P.; Balcom, B. J.; Halalay, I. C.; Goward, G. R. J. Am. Chem. Soc. 2016, 138 (25), 7992. doi: 10.1021/jacs.6b04226
doi: 10.1021/jacs.6b04226
Abbrent, S.; Greenbaum, S. Curr. Opin. Colloid Interface Sci. 2013, 18 (3), 228. doi: 10.1016/j.cocis.2013.03.008
doi: 10.1016/j.cocis.2013.03.008
Chandrashekar, S.; Trease, N. M.; Chang, H. J.; Du, L. S.; Grey, C. P.; Jerschow, A. Nat. Mater. 2012, 11 (4), 311. doi: 10.1038/nmat3246
doi: 10.1038/nmat3246
Tang, J. A.; Dugar, S.; Zhong, G.; Dalal, N. S.; Zheng, J. P.; Yang, Y.; Fu, R. Sci. Rep. 2013, 3 (1), 1408. doi: 10.1038/srep02596
doi: 10.1038/srep02596
Tang, M.; Sarou-Kanian, V.; Melin, P.; Leriche, J. B.; Ménétrier, M.; Tarascon, J. M.; Deschamps, M.; Salager, E. Nat. Commun. 2016, 7 (1), 13284. doi: 10.1038/ncomms13284
doi: 10.1038/ncomms13284
Zhong, G.; Bai, J.; Duchesne, P. N.; McDonald, M. J.; Li, Q.; Hou, X.; Tang, J. A.; Wang, Y.; Zhao, W.; Gong, Z.; et al. Chem. Mater. 2015, 27 (16), 5736. doi: 10.1021/acs.chemmater.5b02290
doi: 10.1021/acs.chemmater.5b02290
Li, C.; Shen, M.; Lou, X.; Hu, B. J. Phys. Chem. C 2018, 122 (48), 27224. doi: 10.1021/acs.jpcc.8b09151
doi: 10.1021/acs.jpcc.8b09151
Ii, R. E. G.; Klingler, R. J.; Sandı, G.; Johnson, C. S.; Scanlon, L. G.; Rathke, J. W. J. Power Sources 2000, 89 (2), 237. doi: 10.1016/S0378-7753(00)00435-3
doi: 10.1016/S0378-7753(00)00435-3
Chevallier, F.; Letellier, M.; Morcrette, M.; Tarascon, J. M.; Frackowiak, E.; Rouzaud, J. N.; Béguin, F. Electrochem. Solid-State Lett. 2003, 6 (11), A225. doi: 10.1149/1.1612011
doi: 10.1149/1.1612011
Letellier, M.; Chevallier, F.; Clinard, C.; Frackowiak, E.; Rouzaud, J. N.; Béguin, F.; Morcrette, M.; Tarascon, J. M. J. Chem. Phys. 2003, 118 (13), 6038. doi: 10.1063/1.1556092
doi: 10.1063/1.1556092
Letellier, M.; Chevallier, F.; Morcrette, M. Carbon 2007, 45 (5), 1025. doi: 10.1016/j.carbon.2006.12.018
doi: 10.1016/j.carbon.2006.12.018
Poli, F.; Kshetrimayum, J. S.; Monconduit, L.; Letellier, M. Electrochem. Commun. 2011, 13 (12), 1293. doi: 10.1016/j.elecom.2011.07.019
doi: 10.1016/j.elecom.2011.07.019
Klett, M.; Giesecke, M.; Nyman, A.; Hallberg, F.; Lindström, R. W.; Lindbergh, G.; Furó, I. J. Am. Chem. Soc. 2012, 134 (36), 14654. doi: 10.1021/ja305461j
doi: 10.1021/ja305461j
Trease, N. M.; Zhou, L.; Chang, H. J.; Zhu, B. Y.; Grey, C. P. Solid State Nucl. Magn. Reson. 2012, 42, 62. doi: 10.1016/j.ssnmr.2012.01.004
doi: 10.1016/j.ssnmr.2012.01.004
Chevallier, F.; Poli, F.; Montigny, B.; Letellier, M. Carbon 2013, 61, 140. doi: 10.1016/j.carbon.2013.04.078
doi: 10.1016/j.carbon.2013.04.078
Krachkovskiy, S. A.; Pauric, Allen. D.; Halalay, I. C.; Goward, G. R. J. Phys. Chem. Lett. 2013, 4 (22), 3940. doi: 10.1021/jz402103f
doi: 10.1021/jz402103f
Shimoda, K.; Murakami, M.; Takamatsu, D.; Arai, H.; Uchimoto, Y.; Ogumi, Z. Electrochimica Acta 2013, 108, 343. doi: 10.1016/j.electacta.2013.06.120
doi: 10.1016/j.electacta.2013.06.120
Romanenko, K.; Forsyth, M.; O'Dell, L. A. J. Magn. Reson. 2014, 248, 96. doi: 10.1016/j.jmr.2014.09.017
doi: 10.1016/j.jmr.2014.09.017
Chang, H. J.; Ilott, A. J.; Trease, N. M.; Mohammadi, M.; Jerschow, A.; Grey, C. P. J. Am. Chem. Soc. 2015, 137 (48), 15209. doi: 10.1021/jacs.5b09385
doi: 10.1021/jacs.5b09385
Chang, H. J.; Trease, N. M.; Ilott, A. J.; Zeng, D.; Du, L. S.; Jerschow, A.; Grey, C. P. J. Phys. Chem. C 2015, 119 (29), 16443. doi: 10.1021/acs.jpcc.5b03396
doi: 10.1021/acs.jpcc.5b03396
Klamor, S.; Zick, K.; Oerther, T.; Schappacher, F. M.; Winter, M.; Brunklaus, G. Phys. Chem. Chem. Phys. 2015, 17 (6), 4458. doi: 10.1039/C4CP05021E
doi: 10.1039/C4CP05021E
Sethurajan, A. K.; Krachkovskiy, S. A.; Halalay, I. C.; Goward, G. R.; Protas, B. J. Phys. Chem. B 2015, 119 (37), 12238. doi: 10.1021/acs.jpcb.5b04300
doi: 10.1021/acs.jpcb.5b04300
Romanenko, K.; Jin, L.; Howlett, P.; Forsyth, M. Chem. Mater. 2016, 28 (8), 2844. doi: 10.1021/acs.chemmater.6b00797
doi: 10.1021/acs.chemmater.6b00797
Kayser, S. A.; Mester, A.; Mertens, A.; Jakes, P.; Eichel, R. A.; Granwehr, J. Phys. Chem. Chem. Phys. 2018, 20 (20), 13765. doi: 10.1039/C8CP01067F
doi: 10.1039/C8CP01067F
Chien, P. H.; Feng, X.; Tang, M.; Rosenberg, J. T.; O'Neill, S.; Zheng, J.; Grant, S. C.; Hu, Y. Y. J. Phys. Chem. Lett. 2018, 9 (8), 1990. doi: 10.1021/acs.jpclett.8b00240
doi: 10.1021/acs.jpclett.8b00240
Key, B.; Bhattacharyya, R.; Morcrette, M.; Seznéc, V.; Tarascon, J. M.; Grey, C. P. J. Am. Chem. Soc. 2009, 131 (26), 9239. doi: 10.1021/ja8086278
doi: 10.1021/ja8086278
Bayley, P. M.; Trease, N. M.; Grey, C. P. J. Am. Chem. Soc. 2016, 138 (6), 1955. doi: 10.1021/jacs.5b12423
doi: 10.1021/jacs.5b12423
Britton, M. M. Spectrosc. 2017, 101, 51. doi: 10.1016/j.pnmrs.2017.03.001
doi: 10.1016/j.pnmrs.2017.03.001
Krachkovskiy, S. A.; Foster, J. M.; Bazak, J. D.; Balcom, B. J.; Goward, G. R. J. Phys. Chem. C 2018, 122 (38), 21784. doi: 10.1021/acs.jpcc.8b06563
doi: 10.1021/acs.jpcc.8b06563
Ilott, A. J.; Trease, N. M.; Grey, C. P.; Jerschow, A. Nat. Commun. 2014, 5 (1), 4536. doi: 10.1038/ncomms5536
doi: 10.1038/ncomms5536
Gourier, D.; Tranchant, A.; Baffier, N.; Messina, R. Electrochim. Acta 1992, 37 (15), 2755. doi: 10.1016/0013-4686(92)85203-W
doi: 10.1016/0013-4686(92)85203-W
Alcántara, R.; Lavela, P.; Tirado, J. L.; Zhecheva, E.; Stoyanova, R. J. Electroanal. Chem. 1998, 454 (1–2), 173. doi: 10.1016/S0022-0728(98)00278-2
doi: 10.1016/S0022-0728(98)00278-2
Stoyanova, R. K.; Zhecheva, E. N.; Gorova, M. Y. J. Mater. Chem. 2000, 10 (6), 1377. doi: 10.1039/A909066E
doi: 10.1039/A909066E
Alcántara, R.; Ortiz, G. F.; Lavela, P.; Tirado, J. L.; Stoyanova, R.; Zhecheva, E. Chem. Mater. 2006, 18 (9), 2293. doi: 10.1021/cm060060p
doi: 10.1021/cm060060p
Zhecheva, E.; Stoyanova, R.; Shinova, E. Mater. Sci. 2007, 42 (10), 3343. doi: 10.1007/s10853-006-0744-x
doi: 10.1007/s10853-006-0744-x
Jakes, P.; Erdem, E.; Ozarowski, A.; Tol, J. van; Buckan, R.; Mikhailova, D.; Ehrenberg, H.; Eichel, R. A. Phys. Chem. Chem. Phys. 2011, 13 (20), 9344. doi: 10.1039/C0CP02048F
doi: 10.1039/C0CP02048F
Stoyanova, R.; Ivanova, S.; Zhecheva, E.; Samoson, A.; Simova, S.; Tzvetkova, P.; Barra, A. L. Phys. Chem. Chem. Phys. 2014, 16 (6), 2499. doi: 10.1039/C3CP54438A
doi: 10.1039/C3CP54438A
Pal, D.; Abdi, S. H.; Shukla, M. J. Mater. Sci. Mater. Electron. 2015, 26 (9), 6647. doi: 10.1007/s10854-015-3265-z
doi: 10.1007/s10854-015-3265-z
Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M. L.; Foix, D.; Gonbeau, D.; Walker, W.; et al. Nat. Mater. 2013, 12 (9), 827. doi: 10.1038/nmat3699
doi: 10.1038/nmat3699
Senguttuvan, P.; Rousse, G.; Arroyo y de Dompablo, M. E.; Vezin, H.; Tarascon, J. M.; Palacín, M. R. J. Am. Chem. Soc. 2013, 135 (10), 3897. doi: 10.1021/ja311044t
doi: 10.1021/ja311044t
Sathiya, M.; Leriche, J. B.; Salager, E.; Gourier, D.; Tarascon, J. M.; Vezin, H. Nat. Commun. 2015, 6 (1), 6276. doi: 10.1038/ncomms7276
doi: 10.1038/ncomms7276
Wandt, J.; Marino, C.; Gasteiger, H. A.; Jakes, P.; Eichel, R. A.; Granwehr, J. Energy Environ. Sci. 2015, 8 (4), 1358. doi: 10.1039/C4EE02730B
doi: 10.1039/C4EE02730B
Tang, M.; Dalzini, A.; Li, X.; Feng, X.; Chien, P. H.; Song, L.; Hu, Y. Y. J. Phys. Chem. Lett. 2017, 8 (17), 4009. doi: 10.1021/acs.jpclett.7b01425
doi: 10.1021/acs.jpclett.7b01425
Niemöller, A.; Jakes, P.; Eichel, R. A.; Granwehr, J. Sci. Rep. 2018, 8 (1), 14331. doi: 10.1038/s41598-018-32112-y
doi: 10.1038/s41598-018-32112-y
Wandt, J.; Jakes, P.; Granwehr, J.; Eichel, R. A.; Gasteiger, H. A. Mater. Today 2018, 21 (3), 231. doi: 10.1016/j.mattod.2017.11.001.
doi: 10.1016/j.mattod.2017.11.001
Blanc, F.; Leskes, M.; Grey, C. P. Acc. Chem. Res. 2013, 46 (9), 1952. doi: 10.1021/ar400022u.
doi: 10.1021/ar400022u
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
Jinkang Jin , Yidian Sheng , Ping Lu , Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
Zehua Zhang , Haitao Yu , Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013