Citation: Tian Di, Lu Xiaofeng, Li Weimo, Li Yue, Wang Ce. Research on Electrospun Nanofiber-Based Binder-Free Electrode Materials for Supercapacitors[J]. Acta Physico-Chimica Sinica, ;2020, 36(2): 190405. doi: 10.3866/PKU.WHXB201904056 shu

Research on Electrospun Nanofiber-Based Binder-Free Electrode Materials for Supercapacitors

  • Corresponding author: Wang Ce, cwang@jlu.edu.cn
  • Received Date: 12 April 2019
    Revised Date: 16 May 2019
    Accepted Date: 16 May 2019
    Available Online: 2 March 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (21875084, 51773075) and the Project of Science and Technology Agency, Jilin Province, China (20190101013JH)the National Natural Science Foundation of China 51773075the National Natural Science Foundation of China 21875084the Project of Science and Technology Agency, Jilin Province, China 20190101013JH

  • The increased demand for high-performance supercapacitors has fueled the development of electrode materials. As an important part of supercapacitors, the electrochemical performance of the supercapacitor is directly affected by the specific surface area, conductivity, electrochemical activity, and stability of electrode materials. In the traditional manufacturing method, a binder must be added to powdered electrode materials to enhance their combination with the current collector, which could lead to morphology damage, pore blockage, and reduced conductivity of active materials that will adversely affect their electrochemical behavior. Thus, research on binder-free electrode materials has attracted significant interest. Recently, electrospun nanofibers have been widely used as supercapacitor electrode materials because of their advantages such as large specific surface area, high porosity, and easy preparation. The attainable continuity and flexibility endow electrospun nanofiber membranes outstanding performance among large numbers of binder-free materials. This review considers recent studies on electrospun nanofiber-based binder-free electrode materials for supercapacitors, including carbon nanofibers, carbon-based composite nanofibers, conductive polymer-based composite nanofibers, and metal oxide nanofibers. These studies demonstrate that pore structure construction, activation treatment, and nitrogen doping can improve the specific surface area, electrochemical activity, wettability, and graphitization degree of carbon nanofibers to enhance their electrochemical properties. Moreover, combining carbon nanofibers with metal oxides, metal sulfides, metal carbides, and conductive polymers by methods such as blending, chemical deposition, electrochemical deposition, etc., can improve their capacitance, rate performance, and cycling stabilities, which complement the advantages of different materials and proves that the performance of multicomponent materials is better than that of single-component materials. In particular, conductive polymers based on composite nanofibers and metal oxide nanofibers can be used as binder-free materials by electrospinning technology, but their dependence on other substances as well as fragile fiber membrane limit their widespread application. Therefore, in order to ensure the continuity or flexibility of fiber membranes, carbon-based composite nanofibers with multicomponent and hierarchical structure could potentially be used/constructed as binder-free electrode materials. Combinations with new types of electrode materials such as metal-organic frameworks (MOF), covalent organic frameworks (COF), MXenes, metal nitride, metal phosphide, etc., and the preparation of materials with novel structures have also been attempted. In order to realize the practical application of eletrospun nanofiber-based binder-free electrode materials, more attention should be given to improving their mechanical properties, production efficiency, and research on the application of flexible devices. We hope that this review can broaden ideas for improving the development and application of electrospun nanofiber-based binder-free electrode materials for high-performance supercapacitors.
  • 加载中
    1. [1]

      Lu, X.; Yu, M.; Wang, G.; Tong, Y.; Li, Y. Energy Environ. Sci. 2012, 7, 2160. doi: 10.1039/c4ee00960f  doi: 10.1039/c4ee00960f

    2. [2]

      Inagaki, M.; Konno, H.; Tanaike, O. J. Power Sources 2010, 195, 7880. doi: 10.1016/j.jpowsour.2010.06.036  doi: 10.1016/j.jpowsour.2010.06.036

    3. [3]

      Xiong, G.; Meng, C.; Reifenberger, R. G.; Irazoqui, P. P.; Fisher, T. S. Electroanalysis 2014, 26, 30. doi: 10.1002/elan.201300238  doi: 10.1002/elan.201300238

    4. [4]

      Yan, J.; Wang, Q.; Wei, T.; Fan, Z. Adv. Energy Mater. 2014, 4, 1300816. doi: 10.1002/aenm.201300816  doi: 10.1002/aenm.201300816

    5. [5]

      Li, D. Y.; Zhang, J. S.; Wang, Z. Y.; Jin, X. B. Acta Phys. -Chim. Sin. 2017, 33 (11), 2245.  doi: 10.3866/PKU.WHXB201705241

    6. [6]

      Lu, X.; Wang, C.; Favier, F.; Pinna, N. Adv. Energy Mater. 2017, 7, 1601301. doi: 10.1002/aenm.201601301  doi: 10.1002/aenm.201601301

    7. [7]

      Lia, X.; Wei, B. Nano Energy 2013, 2, 159. doi: 10.1016/j.nanoen.2.012.09.008  doi: 10.1016/j.nanoen.2.012.09.008

    8. [8]

      Wentian, G.; Gleb, Y. Wires Energy Environ 2014, 3, 424. doi: 10.1002/wene.102  doi: 10.1002/wene.102

    9. [9]

      Wu, Z.; Zhang X. B. Acta Phys. -Chim. Sin. 2017, 33 (2), 305.  doi: 10.3866/PKU.WHXB201611012

    10. [10]

      Li, X. Q.; Chang, L.; Zhao S. L.; Hao, C. L.; Lu, C. G.; Zhu. Y. H.; Tang, Z. Y. Acta Phys. -Chim. Sin. 2017, 33 (1), 130.  doi: 10.3866/PKU.WHXB201609012

    11. [11]

      Zhu, J. Y.; Dong, Y.; Zhang, S.; Fan, Z. Acta Phys. -Chim. Sin. 2019, 36, 1903052.  doi: 10.3866/PKU.WHXB201903052

    12. [12]

      Thavasi, V.; Singh, G.; Ramakrishna, S. Energy Environ. Sci. 2008, 1, 205. doi: 10.1039/b809074m  doi: 10.1039/b809074m

    13. [13]

      Guo, Q.; Zhou, X.; Li, X.; Chen, S.; Seema, A.; Greiner, A.; Hou, H. J. Mater. Chem. 2009, 19, 2810. doi: 10.1039/b820170f  doi: 10.1039/b820170f

    14. [14]

      Peng, X.; Ye, W.; Ding, Y.; Jiang, S.; Hanif, M.; Liao, X.; Hou, H. RSC Adv. 2014, 4, 42732. doi: 10.1039/c4ra07632j  doi: 10.1039/c4ra07632j

    15. [15]

      Duan, G.; Zhang, H.; Jiang, S.; Xie, M.; Peng, X.; Chen, S.; Hanif, M.; Hou, H. Mater. Lett. 2014, 122, 178. doi: 10.1016/j.matlet.2014.02.023  doi: 10.1016/j.matlet.2014.02.023

    16. [16]

      Chen, B.; Qian, H.; Xu, J.; Qin, L.; Wu, Q.; Zheng, M.; Dong, Q. J. Mater. Chem. A 2014, 2, 9345. doi: 10.1039/c4ta01493f  doi: 10.1039/c4ta01493f

    17. [17]

      Ma, L.; Tian, X.; Xu, X.; Chang, L.; Xu, L. Chem. Rev. 2014, 114, 11828. doi: 10.1021/cr500177a  doi: 10.1021/cr500177a

    18. [18]

      Wang, G.; Wang, H.; Lu, X.; Ling, Y.; Yu, M.; Zhai, T.; Tong, Y.; Li, Y. Adv. Mater. 2014, 26, 267. doi: 10.1002/adma.201304756  doi: 10.1002/adma.201304756

    19. [19]

      Horng, Y.; Lu, Y.; Hsu, Y.; Chen, C.; Chen, L.; Chen, K. J. Power Sources 2010, 195, 4418. doi: 10.1016/j.jpowsour.2010.01.046  doi: 10.1016/j.jpowsour.2010.01.046

    20. [20]

      Li, Y.; Zhang, P.; Ouyang, Z.; Zhang, M.; Lin, Z.; Li, J.; Su, Z.; Wei, G. Adv. Funct. Mater. 2016, 26, 2122. doi: 10.1002/adfm.201504533  doi: 10.1002/adfm.201504533

    21. [21]

      Zhang, L.; Ding, Q.; Huang, Y.; Gu, H.; Miao, Y.; Liu, T. ACS Appl. Mater. Interfaces 2015, 7, 22669. doi: 10.1021/acsami.5b07528  doi: 10.1021/acsami.5b07528

    22. [22]

      Li, Y.; Zhang, M.; Zhang, X.; Xie, G.; Su, Z.; Wei, G. Nanomaterials 2015, 5, 1891. doi: 10.3390/nano5041891  doi: 10.3390/nano5041891

    23. [23]

      Liu, T.; Zhang, F.; Song, Y.; Li, Y. J. Mater. Chem. A 2017, 5, 17705. doi: 10.1039/c7ta05646j  doi: 10.1039/c7ta05646j

    24. [24]

      Chen, Z. X.; Zheng, B. Y.; Li, X. X.; Fu, M. L.; Xie, S. G.; Deng, C.; Hu, Y. H. Chem. Industry And Engineering Progress 2010, 29, 94.
       

    25. [25]

      Liu, Y.; Goebl, J.; Yin, Y. Chem. Soc. Rev. 2013, 42, 2610. doi: 10.1039/c2cs35369e  doi: 10.1039/c2cs35369e

    26. [26]

      Liu, H.; Cao, C.; Wei, F.; Jiang, Y.; Sun, Y.; Huang, P.; Song, W. J. Phys. Chem. C 2013, 117, 21426. doi: 10.1021/jp4078807  doi: 10.1021/jp4078807

    27. [27]

      Abeykoon, N. C.; Bonsoa, J. S.; Ferraris, J. P. RSC Adv. 2015, 5, 19865. doi: 10.1039/c4ra16594b  doi: 10.1039/c4ra16594b

    28. [28]

      Jo, E.; Yeo, J.; Kim, D. K.; Ohc, J. S.; Hong, C. K. Polym. Int. 2014, 63, 1471. doi: 10.1002/pi.4645  doi: 10.1002/pi.4645

    29. [29]

      Hatori, H.; Kobayshi, T.; Hanzawa, Y.; Yamada, Y.; Iimura, Y.; Kimura, T.; Shiraishi, M. J. Appl. Polymer Sci. 2001, 79, 836. doi: 10.1002/1097-4628(20010131)79:5<836::AID-APP80>3.0.CO;2-1  doi: 10.1002/1097-4628(20010131)79:5<836::AID-APP80>3.0.CO;2-1

    30. [30]

      Kim, B. H.; Yang, K. S.; Ferraris, J. P. Electrochim. Acta 2012, 75, 325. doi: 10.1016/j.electacta.2012.05.004  doi: 10.1016/j.electacta.2012.05.004

    31. [31]

      Zander, N. E.; Strawhecker, K. E.; Orlicki, J. A.; Rawlett, A. M.; Beebe, Jr. T. P. J. Phys. Chem. B 2011, 115, 12441. doi: 10.1021/jp205577r  doi: 10.1021/jp205577r

    32. [32]

      Rao, M. M.; Liu, J. S.; Li, W. S.; Liang, Y.; Zhou, D. Y. J. Membrane Sci. 2008, 322, 314. doi: 10.1016/j.memsci.2008.06.004  doi: 10.1016/j.memsci.2008.06.004

    33. [33]

      Bing, H.; Wu, Y.; Zhou, J.; Ming, L.; Sun, S.; Li, X. Atmospheric Environment 2014, 99, 425. doi: 10.1016/j.atmosenv.2014.10.014  doi: 10.1016/j.atmosenv.2014.10.014

    34. [34]

      Park, S.; Jung, H.; Lee, W. Electrochim. Acta 2013, 102, 423. doi: 10.1016/j.electacta.2013.04.044  doi: 10.1016/j.electacta.2013.04.044

    35. [35]

      Joh, H.; Song, H. K.; Lee, C. H.; Yun, J. M.; Jo, S. M.; Lee, S.; Na, S. I.; Chien, A. T.; Kumar, S. Carbon 2014, 70, 308. doi: 10.1016/j.carbon.2013.12.069  doi: 10.1016/j.carbon.2013.12.069

    36. [36]

      Le, T. H.; Yang, Y.; Huang Z.; Kang, F. J. Power Sources 2015, 278, 683. doi: 10.1016/j.jpowsour.2014.12.055  doi: 10.1016/j.jpowsour.2014.12.055

    37. [37]

      Lawrence, D. W.; Tran, C.; Mallajoysula, A. T.; Doorn, S. K.; Mohite, A.; Gupta, G.; Kalra, V. J. Mater. Chem. A 2016, 4, 160. doi: 10.1016/j.jpowsour.2014.12.055  doi: 10.1016/j.jpowsour.2014.12.055

    38. [38]

      Zeng, Y.; Li, X.; Jiang, S.; He, S.; Fang, H.; Hou, H. Mater. Lett. 2015, 161, 587. doi: 10.1016/j.matlet.2015.08.154  doi: 10.1016/j.matlet.2015.08.154

    39. [39]

      He, G.; Song, Y.; Chen, S.; Wang, L. J. Mater. Sci. 2018, 53, 9721. doi: 10.1007/s10853-018-2277-5  doi: 10.1007/s10853-018-2277-5

    40. [40]

      Zhang, X. Q.; Sun, Q.; Dong, W.; Li, D.; Lu, A. H.; Mu, J. H.; Li, W. C. J. Mater. Chem. A 2013, 1, 9449. doi: 10.1039/c3ta10660h  doi: 10.1039/c3ta10660h

    41. [41]

      Fan, L.; Yang, L.; Ni, X.; Han, J.; Guo, R.; Zhang, C. Carbon 2016, 107, 629. doi: 10.1016/j.carbon.2016.06.067  doi: 10.1016/j.carbon.2016.06.067

    42. [42]

      Wu, X.; Hong, X.; Luo, Z.; Hui, K. S.; Chen, H.; Wu, J.; Hui, K. N.; Li, L.; Nan, J.; Zhang, Q. Electrochim. Acta 2013, 89, 400. doi: 10.1016/j.electacta.2012.11.067  doi: 10.1016/j.electacta.2012.11.067

    43. [43]

      Kim, C.; Ngoc, B. T. N.; Yang, K. S.; Kojima, M.; Kim, Y. A.; Kim, Y. J.; Endo, M.; Yang, S. C. Adv. Mater. 2007, 19, 2341. doi: 10.1002/adma.200602184  doi: 10.1002/adma.200602184

    44. [44]

      Zhang, L.; Jiang, Y.; Wang, L.; Zhang, C.; Liu, S. Electrochim. Acta 2016, 196, 189. doi: 10.1016/j.electacta.2016.02.050  doi: 10.1016/j.electacta.2016.02.050

    45. [45]

      Gopalakrishnan, A.; Sahatiya, P.; Badhulika, S. ChemElectroChem 2018, 5, 531. doi: 10.1002/celc.201700962  doi: 10.1002/celc.201700962

    46. [46]

      Huang, K.; Yao, Y.; Yang, X.; Chen, Z.; Li, M. Mater. Chem. Phys. 2016, 169, 1. doi: 10.1016/j.matchemphys.2015.11.024  doi: 10.1016/j.matchemphys.2015.11.024

    47. [47]

      Jiang, X.; Qin, T.; Yang, H.; Liu, D.; He, D. Electrochim. Acta 2017, 258, 1064. doi: 10.1016/j.electacta.2017.11.159  doi: 10.1016/j.electacta.2017.11.159

    48. [48]

      Jayawickramage, R. A. P.; Ferraris, J. P. Nanotechnology 2019, 30, 155402. doi: 10.1088/1361-6528/aafe95  doi: 10.1088/1361-6528/aafe95

    49. [49]

      He, Y.; Wang, L.; Jia, D. Electrochim. Acta 2016, 194, 239. doi: 10.1016/j.electacta.2016.01.191  doi: 10.1016/j.electacta.2016.01.191

    50. [50]

      Kim, C.; Yang, K. S. Appl. Phys. Lett. 2003, 83, 1216. doi: 10.1063/1.1599963  doi: 10.1063/1.1599963

    51. [51]

      Jayawickramage, R. A. P.; Ferraris, J. P. Nanotechnology 2019, 30, 155402. doi: 10.1088/1361-6528/aafe95  doi: 10.1088/1361-6528/aafe95

    52. [52]

      Zhi, M.; Liu, S.; Hong, Z.; Wu, N. RSC Adv. 2014, 4, 43619. doi: 10.1039/c4ra05512h  doi: 10.1039/c4ra05512h

    53. [53]

      Huang, Y.; Peng, L.; Liu, Y.; Zhao, G.; Chen, J. Y.; Yu, G. ACS Appl. Mater. Interfaces 2016, 8, 15205. doi: 10.1021/acsami.6b02214  doi: 10.1021/acsami.6b02214

    54. [54]

      Yadav, P.; Banerjee, A.; Unni, S.; Jog, J.; Kurungot, S.; Ogale, S. ChemSusChem 2012, 5, 2159. doi: 10.1002/cssc.201200421  doi: 10.1002/cssc.201200421

    55. [55]

      Ra, E. J.; Raymundo-Piñero, E.; Lee, Y. H.; Béguin, F. Carbon 2009, 47, 2984. doi: 10.1016/j.carbon.2009.06.051  doi: 10.1016/j.carbon.2009.06.051

    56. [56]

      Wang, G.; Pan, C.; Wang, L.; Dong, Q.; Yu, C.; Zhao, Z.; Qiu, J. Electrochim. Acta 2012, 69, 65. doi: 10.1016/j.electacta.2012.02.066  doi: 10.1016/j.electacta.2012.02.066

    57. [57]

      Kim, C.; Choi, Y. O.; Lee, W. J.; Yang, K. S. Electrochim. Acta 2004, 50, 883. doi: 10.1016/j.electacta.2004.02.072  doi: 10.1016/j.electacta.2004.02.072

    58. [58]

      Kim, C.; Park, S. H.; Lee, W. J.; Yang, K. S. Electrochim. Acta 2004, 50, 877. doi: 10.1016/j.electacta.2004.02.071  doi: 10.1016/j.electacta.2004.02.071

    59. [59]

      Chan, K. J. Power Sources 2005, 142, 382. doi: 10.1016/j.jpowsour.2004.11.013  doi: 10.1016/j.jpowsour.2004.11.013

    60. [60]

      Kim, C.; Yang, K. S. Appl. Phys. Lett. 2003, 83, 1216. doi: 10.1063/1.1599963  doi: 10.1063/1.1599963

    61. [61]

      Zeng, J.; Cao, Q.; Wang X.; Jing, B.; Peng, X.; Tang, X. J. Solid State Electrochem. 2015, 19, 1591. doi: 10.1007/s10008-015-2776-0  doi: 10.1007/s10008-015-2776-0

    62. [62]

      Lee, D.; Jung, J. Y.; Jung, M. J.; Lee, Y. S. Chem. Eng. J. 2015, 26, 62. doi: 10.1016/j.cej.2014.10.070  doi: 10.1016/j.cej.2014.10.070

    63. [63]

      Kim, C.; Ngoc, B. T. N.; Yang, K. S.; Kojima, M.; Kim, Y. A.; Kim, Y. G.; Endo, M.; Yang, S. C. Adv. Mater. 2007, 19, 2341. doi: 10.1002/adma.200602184  doi: 10.1002/adma.200602184

    64. [64]

      Kim, B. H.; Yang, K. S. J. Electroanal. Chem. 2014, 714, 92. doi: 10.1016/j.jelechem.2013.12.019  doi: 10.1016/j.jelechem.2013.12.019

    65. [65]

      Ma, C.; Li, Y.; Shi, J.; Song, Y.; Liu, L. Chem. Eng. J. 2014, 249, 216. doi: 10.1016/j.cej.2014.03.083  doi: 10.1016/j.cej.2014.03.083

    66. [66]

      Bichat, M. P.; Pinero, E. R.; Beguin, F. Carbon 2010, 48, 4351. doi: 10.1016/j.carbon.2010.07.049  doi: 10.1016/j.carbon.2010.07.049

    67. [67]

      Ismagilov, Z. R.; Shalaginaa, A. E.; Podyachevaa, O. Y.; Ischenkoa, A. V.; Kibisa, L. S.; Boronina, A. I.; Chesalov, Y. A.; Kochubey, D. I. Romanenkob, A. I.; Anikeevab, O. B.; et al. Carbon 2009, 47, 1992. doi: 10.1016/j.carbon.2009.02.034  doi: 10.1016/j.carbon.2009.02.034

    68. [68]

      Cheng, Y.; Huang, L.; Xiao, X.; Yao, B.; Yuan, L.; Li, T.; Hu, Z.; Wang, B.; Wan, J.; Zhou, J. Nano Energy 2015, 15, 66. doi: 10.1016/j.nanoen.2015.04.007  doi: 10.1016/j.nanoen.2015.04.007

    69. [69]

      Su, F.; Poh, C. K.; Chen, J. S.; Xu, G.; Wang, D.; Li, Q.; Lin J.; Lou, X. W. Energy Environ. Sci. 2011, 4, 717. doi: 10.1039/c0ee00277a  doi: 10.1039/c0ee00277a

    70. [70]

      Seredych, M.; Idrobo J. C.; Bandosz, T. J. J. Mater. Chem. A 2013, 1, 7059. doi: 10.1039/c3ta10995j  doi: 10.1039/c3ta10995j

    71. [71]

      Kwon, T. Nishihara, H.; Itoi, H.; Yang, Q. H.; Kyotani, T. Langmuir 2009, 25, 11961. doi: 10.1021/la901318d  doi: 10.1021/la901318d

    72. [72]

      Shilpa; Ashutosh, S. RSC Adv. 2016, 6, 78528. doi: 10.1039/c6ra17014e  doi: 10.1039/c6ra17014e

    73. [73]

      Bai, Y.; Huang, Z. H.; Kang, F. Carbon 2014, 66, 705. doi: 10.1016/j.carbon.2013.09.074  doi: 10.1016/j.carbon.2013.09.074

    74. [74]

      Shen, C.; Sun, Y.; Yao, W.; Lu, Y. Polymer 2014, 55, 2817. doi: 10.1016/j.polymer.2014.04.042  doi: 10.1016/j.polymer.2014.04.042

    75. [75]

      Tan, Y.; Xu, C.; Chen, G.; Liu, Z.; Ma, M.; Xie, Q.; Zheng, N.; Yao, S. ACS Appl. Mater. Interfaces 2013, 5, 2241. doi: 10.1021/am400001g  doi: 10.1021/am400001g

    76. [76]

      Xiao, Y.; Sun, P.; Cao, M. ACS Nano 2014, 8, 7846. doi: 10.1021/nn501390j  doi: 10.1021/nn501390j

    77. [77]

      Nie, G.; Zhu, Y.; Tian, D.; Wang, C. Chem. J. Chin. Univ. 2018, 7, 1349.  doi: 10.7503/cjcu20180195

    78. [78]

      Li, X.; Zhao, Y.; Bai, Y.; Zhao, X.; Wang, R.; Huang, Y.; Liang, Q.; Huang, Z. Electrochim. Acta 2017, 230, 445. doi: 10.1016/j.electacta.2017.02.030  doi: 10.1016/j.electacta.2017.02.030

    79. [79]

      Huang, K.; Li, M.; Chen, Z.; Yao, Y.; Yang, X. Electrochim. Acta 2015, 158, 306. doi: 10.1016/j.electacta.2015.01.122  doi: 10.1016/j.electacta.2015.01.122

    80. [80]

      Fan, L.; Yang, L.; Ni, X.; Han, J.; Guo, R.; Zhang, C. Carbon 2016, 107, 629. doi: 10.1016/j.carbon.2016.06.067  doi: 10.1016/j.carbon.2016.06.067

    81. [81]

      Mcheill, R.; Siudak, R.; Wardlaw, J. H.; Weiss, D. E. Aust. J. Chem. 1963, 16, 1056. doi: 10.1071/ch9631056  doi: 10.1071/ch9631056

    82. [82]

      Huang, W. S.; Humphrey, B. D.; MacDiarmid, A. G. J. Chem. Soc., Faraday Trans. 1, 1986, 82, 2385. doi: 10.1039/F19868202385  doi: 10.1039/F19868202385

    83. [83]

      Qian, R.; Qiu, J. Polymer Journal 1987, 19, 157. doi: 10.1295/polymj.19.157  doi: 10.1295/polymj.19.157

    84. [84]

      Waltman, R. J.; Diaz, A. F.; Bargon, J. J. Phys. Chem. 1984, 88, 4343. doi: 10.1002/chin.198501097  doi: 10.1002/chin.198501097

    85. [85]

      Mastragostino, M.; Arbizzani, C.; Soavi, F. Solid State Ion. 2002, 148, 493. doi: 10.1016/s0167-2738(02)00093-0  doi: 10.1016/s0167-2738(02)00093-0

    86. [86]

      Sivakkumar, S. J. Power Sources 2004, 137, 322. doi: 10.1016/j.jpowsour.2004.05.060  doi: 10.1016/j.jpowsour.2004.05.060

    87. [87]

      Zhou, X.; Chen, Q.; Wang, A.; Xu, J.; Wu, S.; Shen, J. ACS Appl. Mater. Interfaces 2016, 8, 3776. doi: 10.1021/acsami.5b10196  doi: 10.1021/acsami.5b10196

    88. [88]

      Snook, G.A.; Kao, P.; Best, A. S. J. Power Sources 2011, 196, 1. doi: 10.1016/j.jpowsour.2010.06.084  doi: 10.1016/j.jpowsour.2010.06.084

    89. [89]

      Simotwo, S. K.; DelRe, C.; Kalra, V. ACS Appl. Mater. Interfaces 2016, 8, 21261. doi: 10.1021/acsami.6b03463  doi: 10.1021/acsami.6b03463

    90. [90]

      Zhuo, L.; Wu, Y.; Ming, J.; Wang, L.; Yu, Y.; Zhang, X.; Zhao, F. J. Mater. Chem. A 2013, 1, 1141. doi: 10.1039/c2ta00284a  doi: 10.1039/c2ta00284a

    91. [91]

      Zhi, M.; Xiang, C.; Li, J.; Li, M.; Wu, N. Nanoscale 2013, 5, 72. doi: 10.1039/c2nr32040a  doi: 10.1039/c2nr32040a

    92. [92]

      Tebyetekerwa, M.; Yang, S.; Peng, S.; Xu, Z.; Shao, W.; Pan, D.; Ramakrishna, S.; Zhu, M. Electrochim. Acta 2017, 247, 400. doi: 10.1016/j.electacta.2017.07.038  doi: 10.1016/j.electacta.2017.07.038

    93. [93]

      Shi, H. H.; Naguib, H. E. Nanotechnology 2016, 27, 325402. doi: 10.1088/0957-4484/27/32/325402  doi: 10.1088/0957-4484/27/32/325402

    94. [94]

      Dubal, D. P.; Gomez-Romero, P.; Sankapal, B. R.; Holze, R. Nano Energy 2015, 11, 377. doi: 10.1016/j.nanoen.2014.11.013  doi: 10.1016/j.nanoen.2014.11.013

    95. [95]

      Li, R.; Li, L.; Han, Y.; Gai, S.; He, F.; Yang, P. J. Mater. Chem. B 2014, 2, 2127. doi: 10.1039/c3tb21718c  doi: 10.1039/c3tb21718c

    96. [96]

      Devan, R. S.; Patil, R. A.; Lin, J.; Ma, Y. Adv. Funct. Mater. 2012, 22, 3326. doi: 10.1002/adfm.201201008  doi: 10.1002/adfm.201201008

    97. [97]

      Wei, W.; Cui, X.; Chen, W.; Ivey, D. G. Chem. Soc. Rev. 2011, 40, 1697. doi: 10.1039/c0cs00127a  doi: 10.1039/c0cs00127a

    98. [98]

      Dam, D. T.; Wang, X.; Lee, J. M. ACS Appl. Mater. Interfaces 2014, 6, 8246. doi: 10.1021/am500700x  doi: 10.1021/am500700x

    99. [99]

      Guan, B.; Guo, D.; Hu, L.; Zhang, G.; Fu, T.; Ren, W.; Li, J.; Li, Q. J. Mater. Chem. A 2014, 2, 16116. doi: 10.1039/c4ta02378a  doi: 10.1039/c4ta02378a

    100. [100]

      Wang, T.; Zhao, B.; Jiang, H.; Yang, H.; Zhang, K.; Yuen, M. M. F.; Fu, X.; Sun, R.; Wong, C. J. Mater. Chem. A 2015, 3, 23035. doi: 10.1039/c5ta04705f  doi: 10.1039/c5ta04705f

    101. [101]

      Jiang, H.; Niu, H.; Yang, X.; Sun, Z.; Li, F.; Wang, Q.; Qu, F. Chemistry 2018, 24, 10683. doi: 10.1002/chem.201800461  doi: 10.1002/chem.201800461

    102. [102]

      Mohana Reddy, A. L.; Gowda, S. R.; Shaijumon, M. M.; Ajayan, P. M. Adv. Mater. 2012, 24, 5045. doi: 10.1002/adma.201104502  doi: 10.1002/adma.201104502

    103. [103]

      Gao, Y.; Presser, V.; Zhang, L.; Niu, J. J.; McDonough, J. K.; Pérez, C. R.; Lin, H.; Fong, H.; Gogotsi, Y. J. Power Sources 2012, 21, 368. doi: 10.1016/j.jpowsour.2011.10.128  doi: 10.1016/j.jpowsour.2011.10.128

    104. [104]

      Liu, L.; Niu, Z.; Chen, J. Chem. Soc. Rev. 2016, 45, 4340. doi: 10.1039/c6cs00041j  doi: 10.1039/c6cs00041j

    105. [105]

      Zhao, X.; Sanchez, B. M.; Dobson, P. J.; Grant, P. S. Nanoscale 2011, 3, 839. doi: 10.1039/c0nr00594k  doi: 10.1039/c0nr00594k

    106. [106]

      Guo, M.; Guo, J.; Jia, D.; Zhao, H.; Sun, Z.; Song, X.; Li, Y. J. Mater. Chem. A 2015, 3, 21178. doi: 10.1039/c5ta05743d  doi: 10.1039/c5ta05743d

    107. [107]

      Lai, C.; Zhou, Z.; Zhang, L.; Wang, X.; Zhou, Q.; Zhao, Y.; Wang, Y.; Wu, X.; Zhu, Z.; Fong, H. J. Power Sources 2014, 247, 134. doi: 10.1016/j.jpowsour.2013.08.082  doi: 10.1016/j.jpowsour.2013.08.082

    108. [108]

      Wang, X.; Zhang, W.; Chen, M.; Zhou, X. Polymers 2018, 10, 1306. doi: 10.3390/polym10121306  doi: 10.3390/polym10121306

    109. [109]

      Zeiger, M.; Weingarth, D.; Presser, V. ChemElectroChem 2015, 2, 1117. doi: 10.1002/celc.201500130  doi: 10.1002/celc.201500130

    110. [110]

      Chen, L.; Li, D.; Chen, L.; Si, P.; Feng, J.; Zhang, L.; Li, Y.; Lou, J.; Ci, L. Carbon 2018, 138, 264. doi: 10.1016/j.carbon.2018.06.022  doi: 10.1016/j.carbon.2018.06.022

    111. [111]

      Chen, L.; Chen, L.; Ai, Q.; Li, D.; Si, P.; Feng, J.; Zhang, L.; Li, Y.; Lou, J.; Ci, L. Chem. Eng. J. 2018, 334, 184. doi: 10.1016/j.cej.2017.10.038  doi: 10.1016/j.cej.2017.10.038

    112. [112]

      Simotwo, S. K.; Kalra, V. Electrochimi. Acta 2018, 268, 131. doi: 10.1016/j.electacta.2018.01.157  doi: 10.1016/j.electacta.2018.01.157

    113. [113]

      Tian, D.; Lu, X.; Nie, G.; Gao, M.; Song, N.; Wang, C. Appl. Surf. Sci. 2018, 458, 389. doi: 10.1016/j.apsusc.2018.07.103  doi: 10.1016/j.apsusc.2018.07.103

    114. [114]

      Iqbal, N.; Wang, X.; Babar, A.; Yan, J.; Yu, J.; Park, S.; Ding, B. Adv. Mater. Interfaces 2017, 4, 1700855. doi: 10.1002/admi.201700855  doi: 10.1002/admi.201700855

    115. [115]

      Choudhury, A.; Dey, B.; Mahapatra, S. S.; Kim, D. W.; Yang, K. S.; Yang, D. J. Nanotechnology 2018, 29, 165401. doi: 10.1088/1361-6528/aaa7e3  doi: 10.1088/1361-6528/aaa7e3

    116. [116]

      Samuel, E.; Joshi, B.; Jo, H. S.; Kim, Y. I.; An, S.; Swihart, M. T.; Yun, J. M.; Kim, K.; Yoon, S. S. Chem. Eng. J. 2017, 328, 446. doi: 10.1016/j.cej.2017.07.063  doi: 10.1016/j.cej.2017.07.063

    117. [117]

      Tian, K.; Wei, L.; Zhang, X.; Jin, Y.; Guo, X. Mater. Today Energy 2017, 6, 27. doi: 10.1016/j.mtener.2017.08.004  doi: 10.1016/j.mtener.2017.08.004

    118. [118]

      Huang, G.; Li, C.; Bai, J.; Sun, X.; Liang, H. Int. J. Hydrogen Energy 2016, 41, 22144. doi: 10.1016/j.ijhydene.2016.09.136  doi: 10.1016/j.ijhydene.2016.09.136

    119. [119]

      Ramadan, M.; Abdellah, A. M.; Mohamed, S. G.; Allam, N. K. Sci. Rep. 2018, 8, 7988. doi: 10.1038/s41598-018-26370-z  doi: 10.1038/s41598-018-26370-z

    120. [120]

      Tang, K, ; Li, Y.; Li, Y.; Cao, H.; Zhang, Z.; Zhang, Y.; Yang, J. Electrochim. Acta 2016, 209, 709. doi: 10.1016/j.electacta.2016.05.051  doi: 10.1016/j.electacta.2016.05.051

    121. [121]

      Sun, X.; Li, C.; Huang, G.; Bai, J. J. Mater. Sci. Mater. Electron. 2017, 28, 12448. doi: 10.1007/s10854-017-7066-4  doi: 10.1007/s10854-017-7066-4

    122. [122]

      Kim, C.; Ngoc, B. T. N.; Yang, K. S.; Kojima, M.; Kim, Y. A.; Kim, Y. J.; Endo, M.; Yang, S. C. Adv. Mater. 2017, 19, 2341. doi: 10.1002/adma.200602184  doi: 10.1002/adma.200602184

    123. [123]

      Sun, X.; Li, C.; Bai, J. J. Mater. Sci. Mater. Electron. 2018, 29, 19382. doi: 10.1007/s10854-018-0067-0  doi: 10.1007/s10854-018-0067-0

    124. [124]

      Li, L.; Zhang, X.; Zhang, Z.; Zhang, M.; Cong, L.; Pan, Y.; Lin, S. J. Mater. Chem. A 2016, 4, 16635. doi: 10.1039/c6ta06755g  doi: 10.1039/c6ta06755g

    125. [125]

      Choudhury, A.; Kim, J.; Yang, K.; Yang, D. Electrochimi. Acta 2016, 213, 400. doi: 10.1016/j.electacta.2016.06.111  doi: 10.1016/j.electacta.2016.06.111

    126. [126]

      Ma, X.; Kolla, P.; Zhao, Y.; Smirnova, A. L.; Fong, H. J. Power Sources 2016, 325, 541. doi: 10.1016/j.jpowsour.2016.06.073  doi: 10.1016/j.jpowsour.2016.06.073

    127. [127]

      Lai, C.; Lo, C. Electrochimi. Acta 2015, 174, 806. doi: 10.1016/j.electacta.2015.06.077  doi: 10.1016/j.electacta.2015.06.077

    128. [128]

      Huang, Y.; Cui, F.; Zhao, Y.; Lian, J.; Bao, J.; Li, H. J. Alloy. Compd. 2018, 783, 176. doi: 10.1016/j.jallcom.2018.04.060  doi: 10.1016/j.jallcom.2018.04.060

    129. [129]

      Tian, X.; Li, X.; Yang, T.; Wang, K.; Wang, H.; Song, Y.; Liu, Z.; Guo, Q. Appl. Surf. Sci. 2018, 434, 49. doi: 10.1016/j.apsusc.2017.09.153  doi: 10.1016/j.apsusc.2017.09.153

    130. [130]

      Tian, D.; Lu, X.; Nie, G.; Gao, M.; Wang, C. Inorg. Chem. Front. 2018, 5, 635. doi: 10.1039/c7qi00696a  doi: 10.1039/c7qi00696a

    131. [131]

      Hosseini, H.; Shahrokhian, S. Chem. Eng. J. 2018, 314, 10. doi: 10.1016/j.cej.2018.02.019  doi: 10.1016/j.cej.2018.02.019

    132. [132]

      Fan, C.; Ying, Z.; Zhang, W.; Ju, T.; Li, B. J. Mater. Sci. Mater. Electron. 2018, 29, 6909. doi: 10.1007/s10854-018-8677-0  doi: 10.1007/s10854-018-8677-0

    133. [133]

      Al-Rubaye, S.; Rajagopalan, R.; Dou, S.; Cheng, Z. J. Mater. Chem. A, 2017, 5, 18989. doi: 10.1039/c7ta03251j  doi: 10.1039/c7ta03251j

    134. [134]

      Al-Rubaye, S.; Rajagopalan, R.; Dou, S. X.; Cheng, Z. X. J. Mater. Chem. A 2017, 5, 18989. doi: 10.1039/C7TA03251J  doi: 10.1039/C7TA03251J

    135. [135]

      Chen, J. S.; Guan, C.; Gui, Y.; Blackwood, D. J. ACS Appl. Mater. Interfaces 2017, 9, 496. doi: 10.1021/acsami.6b14746  doi: 10.1021/acsami.6b14746

    136. [136]

      Li, B.; Zheng, M.; Xue, H.; Pang, H. ChemInform 2016, 3, 175. doi: 10.1039/c5qi00187k  doi: 10.1039/c5qi00187k

    137. [137]

      Huang, Y.; Zhao, Y.; Bao, J.; Lian, J.; Cheng, M.; Li, H. J. Alloy. Compd. 2019, 772, 337. doi: 10.1016/j.jallcom.2018.08.212  doi: 10.1016/j.jallcom.2018.08.212

    138. [138]

      Sami, S.; Siddiqui, S.; Feroze, M.; Chung, C. Mater. Res. Express 2017, 4, 116309. doi: 10.1088/2053-1591/aa985b  doi: 10.1088/2053-1591/aa985b

    139. [139]

      Kumuthini, R.; Ramachandran, R.; Therese, H. A.; Wang, F. J. Alloy. Compd. 2017, 705, 624. doi: 10.1016/j.jallcom.2017.02.163  doi: 10.1016/j.jallcom.2017.02.163

    140. [140]

      Huang, K.; Wang, L.; Liu, Y.; Liu, Y.; Wang, H.; Gan, T.; Wang, L. Int. J. Hydrogen Energy 2013, 38, 17024. doi: 10.1016/j.ijhydene.2013.08.112  doi: 10.1016/j.ijhydene.2013.08.112

    141. [141]

      Gao, Y.; Presser, V.; Zhang, L.; Niu, J.; McDonough, J.; Pérez, C.; Lin, H.; Fong, H.; Gogotsi, Y. J. Power Sources 2012, 201, 368. doi: 10.1016/j.jpowsour.2011.10.128  doi: 10.1016/j.jpowsour.2011.10.128

    142. [142]

      Tolosa, A.; Krüner, B.; Fleischmann, S.; Jäckel, N.; Zeiger, M.; Aslan, M.; Grobelsek, I.; Presser, V. J. Mater. Chem. A 2016, 4, 16003. doi: 10.1039/c6ta06224e  doi: 10.1039/c6ta06224e

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    10. [10]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    11. [11]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    12. [12]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    13. [13]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    17. [17]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    18. [18]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    19. [19]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    20. [20]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

Metrics
  • PDF Downloads(7)
  • Abstract views(813)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return