Citation: WU Yi, KONG Jingyi, QIN Yunpeng, YAO Huifeng, ZHANG Shaoqing, HOU Jianhui. Realizing Green Solvent Processable Non-fullerene Organic Solar Cells by Modulating the Side Groups of Conjugated Polymers[J]. Acta Physico-Chimica Sinica, ;2019, 35(12): 1391-1398. doi: 10.3866/PKU.WHXB201904037 shu

Realizing Green Solvent Processable Non-fullerene Organic Solar Cells by Modulating the Side Groups of Conjugated Polymers

  • Corresponding author: ZHANG Shaoqing, shaoqingz@ustb.edu.cn
  • Received Date: 8 April 2019
    Revised Date: 15 May 2019
    Accepted Date: 15 May 2019
    Available Online: 23 December 2019

    Fund Project: the National Science and Technology Major Project of the Ministry of Science and Technology of China 2016YFC0700603the National Natural Science Foundation of China 21704004the Fundamental Research Funds for the Central Universities, China FRF-TP-17-009A1The project was supported by the National Natural Science Foundation of China (21704004), the National Science and Technology Major Project of the Ministry of Science and Technology of China (2016YFC0700603), and the Fundamental Research Funds for the Central Universities, China (FRF-TP-17-009A1)

  • Organic solar cells (OSCs) are a promising next-generation photovoltaic technology that can be used to harvest clean and renewable solar energy. OSCs are typically composed of donor:acceptor blends as photo-active materials. Compared to the conventional inorganic silicon solar cells, OSCs are suitable for large-scale production using roll-to-roll technology, promising low-cost and the potential to avoid environmental pollution. The last few years have witnessed the rapid development of OSCs. The power conversion efficiencies (PCEs) of OSCs have surpassed ~14%–16%, benefiting from the design of novel materials, optimization of blend morphology, and deep understanding of the charge generation mechanism. Currently, the most widely used processing solvents for preparing high-efficient OSCs are chlorinated or aromatic solvents including chlorobenzene, dichlorobenzene, and chloroform, which are highly detrimental to the environment and human health, and may not be utilized for future in industry. Thus, replacing these highly toxic solvents with environmentally friendly alternatives called "green solvents" is an important topic in OSC research. Herein, poly[(2, 6-(4, 8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1, 2-b:4, 5-b′]dithiophene)-co-(1, 3-di(5-thiophene-2-yl)-5, 7-bis(2-ethylhexyl)benzo[1, 2-c:4, 5-c′]dithiophene-4, 8-dione)] (PBDB-T) was used as a reference material to design and synthesize a novel conjugated polymer (PBDB-DT) by extending the alkyl side chains and enlarging the conjugated side groups. The thermal stability of the polymer donor was examined via thermogravimetric analysis, showing that the polymers exhibit very good stability at > 400 ℃. Importantly, PBDB-DT exhibits good solubility in low-toxic solvent tetrahydrofuran (THF) due to its longer alkyl side chains, and shows a strong aggregation effect in THF due to the larger conjugated side groups. A favorable PCE of 10.2% was achieved for the THF-processed PBDB-DT:IT-M based OSC device. In contrast, PBDB-T has limited solubility in THF. The solar cell device based on PBDB-T:IT-M delivered a moderate PCE of 6.41%. The investigation of blend morphology via atomic force microscope suggested that the PBDB-DT:IT-M has a smooth surface, which is favorable for charge generation and transport. These results demonstrate that molecular optimization is a promising strategy to modulate the solubility and achieve high efficiency for organic photovoltaic materials processed using green solvents.
  • 加载中
    1. [1]

      Li, Y. Polym. Bull. 2011, 10, 33. doi: 10.14028/j.cnki.1003-3726.2011.10.017  doi: 10.14028/j.cnki.1003-3726.2011.10.017

    2. [2]

      Fu, Y.; Wang, F.; Zhang, Y.; Fang, X.; Lai, W.; Huang, W. Acta Chim. Sin. 2014, 72, 158. doi: 10.6023/a13111142  doi: 10.6023/a13111142

    3. [3]

      Yao, H.; Hou, J. Acta Polym. Sin. 2016, 11, 1468. doi: 10.11777/j.issn1000-3304.2016.16216  doi: 10.11777/j.issn1000-3304.2016.16216

    4. [4]

      Duan, C.; Huang, F.; Cao, Y. J. Mater. Chem. 2012, 22, 10416. doi: 10.1039/C2JM30470H  doi: 10.1039/C2JM30470H

    5. [5]

      Olle, I. Adv. Mater. 2018, 30, 1800388. doi: 10.1002/adma.201800388  doi: 10.1002/adma.201800388

    6. [6]

      Dou, C.; Liu, J.; Wang, L. Sci. China Chem. 2017, 60, 450. doi: 10.1007/s11426-016-0503-x  doi: 10.1007/s11426-016-0503-x

    7. [7]

      Fan, H.; Zhu, X. Sci. China Chem. 2015, 58, 922. doi: 10.1007/s11426-015-5418-6  doi: 10.1007/s11426-015-5418-6

    8. [8]

      Jia, B.; Wu, Y.; Zhao, F.; Yan, C.; Zhu, S.; Cheng, P.; Mai, J.; Lau, T. K.; Lu, X.; Su, C. J.; et al. Sci. China Chem. 2017, 60, 257. doi: 10.1007/s11426-016-0336-6

    9. [9]

      Kan, B.; Feng, H.; Yao, H.; Chang, M.; Wan, X.; Li, C.; Hou, J.; Chen, Y. Sci. China Chem. 2018, 61, 1307. doi: 10.1007/s11426-018-9334-9  doi: 10.1007/s11426-018-9334-9

    10. [10]

      Fan, Q.; Su, W.; Wang, Y.; Guo, B.; Jiang, Y.; Guo, X.; Liu, F.; Russell, T. P.; Zhang, M.; Li, Y. Sci. China Chem. 2018, 61, 531. doi: 10.1007/s11426-017-9199-1  doi: 10.1007/s11426-017-9199-1

    11. [11]

      Heeger, A. J. Adv. Mater. 2014, 26, 10. doi: 10.1002/adma.201304373  doi: 10.1002/adma.201304373

    12. [12]

      Li, G.; Zhu, R.; Yang, Y. Nat. Photonics 2012, 6, 153. doi: 10.1038/nphoton.2012.11  doi: 10.1038/nphoton.2012.11

    13. [13]

      Chen, J. D.; Cui, C.; Li, Y. Q.; Zhou, L.; Ou, Q. D.; Li, C.; Li, Y.; Tang, J. X. Adv. Mater. 2015, 27, 1035. doi: 10.1002/adma.201404535  doi: 10.1002/adma.201404535

    14. [14]

      Zhang, S. Q.; Ye, L.; Zhao, W. C.; Yang, B.; Wang, Q.; Hou, J. H. Sci. China Chem. 2015, 58, 248. doi: 10.1007/s11426-014-5273-x  doi: 10.1007/s11426-014-5273-x

    15. [15]

      Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Nat. Commun. 2014, 5, 5293. doi: 10.1038/ncomms6293  doi: 10.1038/ncomms6293

    16. [16]

      He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T. P.; Cao, Y. Nat. Photonics 2015, 9, 174. doi: 10.1038/nphoton.2015.6  doi: 10.1038/nphoton.2015.6

    17. [17]

      He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Nat. Photonics 2012, 6, 591. doi: 10.1038/NPHOTON.2012.190  doi: 10.1038/NPHOTON.2012.190

    18. [18]

      Li, M.; Gao, K.; Wan, X.; Zhang, Q.; Kan, B.; Xia, R.; Liu, F.; Yang, X.; Feng, H.; Ni, W.; et al. Nat. Photonics 2016, 11, 85. doi: 10.1038/nphoton.2016.240

    19. [19]

      Ouyang, X.; Peng, R.; Ai, L.; Zhang, X.; Ge, Z. Nat. Photonics 2015, 9, 520. doi: 10.1038/nphoton.2015.126  doi: 10.1038/nphoton.2015.126

    20. [20]

      Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Nat. Energy 2016, 1, 15027. doi: 10.1038/nenergy.2015.27  doi: 10.1038/nenergy.2015.27

    21. [21]

      Deng, D.; Zhang, Y.; Zhang, J.; Wang, Z.; Zhu, L.; Fang, J.; Xia, B.; Wang, Z.; Lu, K.; Ma, W.; et al. Nat. Commun. 2016, 7, 13740. doi: 10.1038/ncomms13740

    22. [22]

      Zhang, H.; Yao, H.; Hou, J.; Zhu, J.; Zhang, J.; Li, W.; Yu, R.; Gao, B.; Zhang, S.; Hou, J. Adv. Mater. 2018, 30, e1800613. doi: 10.1002/adma.201800613  doi: 10.1002/adma.201800613

    23. [23]

      Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; et al. Joule 2019, 3, 1140. doi: 10.1016/j.joule.2019.01.004

    24. [24]

      Che, X.; Li, Y.; Qu, Y.; Forrest, S. R. Nat. Energy 2018, 3, 422. doi: 10.1038/s41560-018-0134-z  doi: 10.1038/s41560-018-0134-z

    25. [25]

      Bin, H.; Gao, L.; Zhang, Z. G.; Yang, Y.; Zhang, Y.; Zhang, C.; Chen, S.; Xue, L.; Yang, C.; Xiao, M.; et al. Nat. Commun. 2016, 7, 13651. doi: 10.1038/ncomms13651

    26. [26]

      Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; et al. Science 2018, 361, 1094. doi: 10.1126/science.aat2612

    27. [27]

      Cui, Y.; Yao, H.; Hong, L.; Zhang, T.; Xu, Y.; Xian, K.; Gao, B.; Qin, J.; Zhang, J.; Wei, Z.; et al. Adv. Mater. 2019, 0, 1808356. doi: 10.1002/adma.201808356

    28. [28]

      Duan, C.; Cai, W.; Hsu, B. B. Y.; Zhong, C.; Zhang, K.; Liu, C.; Hu, Z.; Huang, F.; Bazan, G. C.; Heeger, A. J.; et al. Energy Environ. Sci. 2013, 6, 3022. doi: 10.1039/C3EE41838C

    29. [29]

      Xu, X.; Yu, T.; Bi, Z.; Ma, W.; Li, Y.; Peng, Q. Adv. Mater. 2018, 30, 1703973. doi: 10.1002/adma.201703973  doi: 10.1002/adma.201703973

    30. [30]

      Fan, B.; Ying, L.; Wang, Z.; He, B.; Jiang, X. F.; Huang, F.; Cao, Y. Energy Environ. Sci. 2017, 10, 1243. doi: 10.1039/C7EE00619E  doi: 10.1039/C7EE00619E

    31. [31]

      Li, Z.; Ying, L.; Zhu, P.; Zhong, W.; Li, N.; Liu, F.; Huang, F.; Cao, Y. Energy Environ. Sci. 2019, 12, 157. doi: 10.1039/C8EE02863J  doi: 10.1039/C8EE02863J

    32. [32]

      Zhang, S.; Ye, L.; Zhang, H.; Hou, J. Mater. Today 2016, 19, 533. doi: 10.1016/j.mattod.2016.02.019  doi: 10.1016/j.mattod.2016.02.019

    33. [33]

      Chen, Y.; Zhang, S.; Wu, Y.; Hou, J. Adv. Mater. 2014, 26, 2744. doi: 10.1002/adma.201304825  doi: 10.1002/adma.201304825

    34. [34]

      Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. Nat. Mater. 2018, 17, 119. doi: 10.1038/nmat5063  doi: 10.1038/nmat5063

    35. [35]

      Fan, Q.; Zhu, Q.; Xu, Z.; Su, W.; Chen, J.; Wu, J.; Guo, X.; Ma, W.; Zhang, M.; Li, Y. Nano Energy 2018, 48, 413. doi: 10.1016/j.nanoen.2018.04.002  doi: 10.1016/j.nanoen.2018.04.002

    36. [36]

      Fan, Q.; Su, W.; Guo, X.; Guo, B.; Li, W.; Zhang, Y.; Wang, K.; Zhang, M.; Li, Y. Adv. Energy Mater. 2016, 6, 1600430. doi: 10.1002/aenm.201600430  doi: 10.1002/aenm.201600430

    37. [37]

      Yu, R.; Zhang, S.; Yao, H.; Guo, B.; Li, S.; Zhang, H.; Zhang, M.; Hou, J. Adv. Mater. 2017, 29, 1700437. doi: 10.1002/adma.201700437  doi: 10.1002/adma.201700437

    38. [38]

      Huang, F.; Wu, H.; Wang, D.; Yang, W.; Cao, Y. Chem. Mater. 2004, 16, 708.doi: 10.1021/cm034650o  doi: 10.1021/cm034650o

    39. [39]

      Yang, T. B.; Wang, M.; Duan, C. H.; Hu, X. W.; Huang, L.; Peng, J. B.; Huang, F.; Gong, X. Energy Environ. Sci. 2012, 5, 8208. doi: 10.1039/C2ee22296e  doi: 10.1039/C2ee22296e

    40. [40]

      Li, W.; Zhang, S.; Zhang, H.; Hou, J. Org. Electron. 2017, 44, 42. doi: 10.1016/j.orgel.2017.01.036  doi: 10.1016/j.orgel.2017.01.036

    41. [41]

      Zhang, J.; Tan, H. S.; Guo, X.; Facchetti, A.; Yan, H. Nat. Energy 2018, 3, 720. doi: 10.1038/s41560-018-0181-5  doi: 10.1038/s41560-018-0181-5

    42. [42]

      Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganas, O.; Gao, F.; Hou, J. Adv. Mater. 2016, 28, 4734. doi: 10.1002/adma.201600281  doi: 10.1002/adma.201600281

    43. [43]

      Zhang, S.; Hou, J. Acta Phys. -Chim. Sin. 2017, 33, 2327.  doi: 10.3866/PKU.WHXB201706161

    44. [44]

      Xu, Y.; Yao, H.; Hou, J. Chin. J. Chem. 2019, 37, 207. doi: 10.1002/cjoc.201800471  doi: 10.1002/cjoc.201800471

    45. [45]

      Zhang, S.; Ye, L.; Wang, Q.; Li, Z.; Guo, X.; Huo, L.; Fan, H.; Hou, J. J. Phys. Chem. C 2013, 117, 9550. doi: 10.1021/jp312450p  doi: 10.1021/jp312450p

  • 加载中
    1. [1]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    8. [8]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    9. [9]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    12. [12]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    13. [13]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    16. [16]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

Metrics
  • PDF Downloads(13)
  • Abstract views(867)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return