Citation: Ding Feixiang, Gao Fei, Rong Xiaohui, Yang Kai, Lu Yaxiang, Hu Yong-Sheng. Mixed-Phase Na0.65Li0.13Mg0.13Ti0.74O2 as a High-Performance Na-Ion Battery Layered Anode[J]. Acta Physico-Chimica Sinica, ;2020, 36(5): 190402. doi: 10.3866/PKU.WHXB201904022 shu

Mixed-Phase Na0.65Li0.13Mg0.13Ti0.74O2 as a High-Performance Na-Ion Battery Layered Anode

  • Corresponding author: Hu Yong-Sheng, yshu@iphy.ac.cn
  • These authors contributed equally to this work
  • Received Date: 4 April 2019
    Revised Date: 28 April 2019
    Accepted Date: 14 May 2019
    Available Online: 31 May 2019

  • With the development of clean and sustainable energy sources, the demand for large-scale electrochemical energy storage systems has rapidly increased over the last few years. Rechargeable Na-ion batteries (NIBs), one of the most promising energy storage technologies, have received a great deal of attention. Titanium-based P2-type layered oxides are attractive candidates for NIB anode materials, owing to their suitable redox potential, low cost, air stability and high safety. The exposed large interlayers of P2 configuration provide facile channels for Na+ insertion/extraction when employed as electrode materials for room temperature, non-aqueous NIBs. In this paper, a novel P2-type Na0.65Li0.13Mg0.13Ti0.74O2 is synthesized by a solid-state reaction method. An orthorhombic phase of Na0.9Mg0.45Ti1.55O2 is observed with the increase in calcination time. During the long calcination process, it is speculated that some lattice Na+ and Li+ of the previously formed P2 phase compound would be volatilized or extracted by O2, forming a low Na-content orthorhombic phase based on the layered host structure. In particular, when the precursor was calcined at 1273 K for 24 h, a perfect biphasic hybrid composite was synthesized. The Na storage performance of the pure P2 compound and hybrid composite were evaluated respectively in sodium half cells with voltage range of 0.2–2.5 V. The P2-type electrode can deliver a reversible capacity of 85.1 mAh·g-1 (theoretical capacity of approximately 108.5 mAh·g-1), whereas, the sample with the orthorhombic phase shows an enhanced initial reversible capacity of 96.3 mAh·g-1. Both of the curves are smooth with no observed plateau, indicating the good structural stability of the electrode during cycling. Thus, the hybrid composite exhibits better cycling performance (capacity retention of 89.7% vs. 84.4% for pure P2, after 400 cycles at current density of 1C) and better rate capability (56.6 mAh·g-1 at 5C vs 47.1 mAh·g-1 at 2C). These results can be attributed to the introduced second phase, which improves the electron and bulk ion conductivity and helps stabilize the structure. Therefore, this novel two-phase intergrowth composite could serve as a promising anode candidate for the large-scale energy storage application of NIBs. Moreover, this structural design strategy could be used for other layered oxides to improve their energy density and cycling stability.
  • 加载中
    1. [1]

      Ding, F.; Li, J.; Deng, F.; Xu, G.; Liu, Y.; Yang, K.; Kang, F. ACS Appl. Mater. Interfaces 2017, 9, 27936. doi: 10.1021/acsami.7b07221  doi: 10.1021/acsami.7b07221

    2. [2]

      Li, M.; Lu, J.; Chen, Z.; Amine, K. Adv. Mater. 2018, 1800561. doi: 10.1002/adma.201800561  doi: 10.1002/adma.201800561

    3. [3]

      Pan, H.; Hu, Y. S.; Chen, L. Energy Environ. Sci. 2013, 6, 2338. doi:10.1039/c3ee40847g  doi: 10.1039/c3ee40847g

    4. [4]

      Lu, Y.; Zhao, C.; Qi, X.; Qi, Y.; Li, H.; Huang, X.; Chen, L.; Hu, Y. S. Adv. Energy Mater. 2018, 8, 1800108. doi: 10.1002/aenm.201800108  doi: 10.1002/aenm.201800108

    5. [5]

      Zhao, C.; Wang, Q.; Lu, Y.; Li, B.; Chen, L.; Hu, Y. S. Sci. Bull. 2018, 63, 1125. doi: 10.1016/j.scib.2018.07.018  doi: 10.1016/j.scib.2018.07.018

    6. [6]

      Qi, Y.; Mu, L.; Zhao, J.; Hu, Y. S.; Liu, H.; Dai, S. Angew. Chem. Int. Ed. 2015, 54, 9911. doi: 10.1002/anie.201503188  doi: 10.1002/anie.201503188

    7. [7]

      Qi, Y.; Zhao, J.; Yang, C.; Liu, H.; Hu, Y. S. Small Methods 2018, 1800111. doi: 10.1002/smtd.201800111  doi: 10.1002/smtd.201800111

    8. [8]

      Li, Q.; Jiang, K.; Li, X.; Qiao, Y.; Zhang, X.; He, P.; Guo, S.; Zhou, H. Adv. Energy Mater. 2018, 8. doi: 10.1002/aenm.201801162  doi: 10.1002/aenm.201801162

    9. [9]

      Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Chem. Soc. Rev. 2017, 46, 3529. doi: 10.1039/c6cs00776g  doi: 10.1039/c6cs00776g

    10. [10]

      Wang, Y.; Yu, X.; Xu, S.; Bai, J.; Xiao, R.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L.; Huang, X. Nat. Commun. 2013, 4, 2365. doi: 10.1038/ncomms3365  doi: 10.1038/ncomms3365

    11. [11]

      Wang, P. F.; Yao, H. R.; Zuo, T. T.; Yin, Y. X.; Guo, Y. G. Chem. Commun. 2017, 53, 1957. doi: 10.1039/c6cc09378g  doi: 10.1039/c6cc09378g

    12. [12]

      Wang, Y.; Xiao, R.; Hu, Y. S.; Avdeev, M.; Chen, L. Nat. Commun. 2015, 6, 6954. doi: 10.1038/ncomms7954  doi: 10.1038/ncomms7954

    13. [13]

      Yu, H.; Ren, Y.; Xiao, D.; Guo, S.; Zhu, Y.; Qian, Y.; Gu, L.; Zhou, H. Angew. Chem. Int. Ed. 2014, 53, 8963. doi: 10.1002/anie.201404549  doi: 10.1002/anie.201404549

    14. [14]

      Zhao, C.; Avdeev, M.; Chen, L.; Hu, Y. S. Angew. Chem. Int. Ed. 2018, 57, 7056. doi: 10.1002/anie.201801923  doi: 10.1002/anie.201801923

    15. [15]

      Wang, P. F.; You, Y.; Yin, Y. X.; Wang, Y. S.; Wan, L. J.; Gu, L.; Guo, Y. G. Angew. Chem. Int. Ed. 2016, 55, 7445. doi: 10.1002/anie.201602202  doi: 10.1002/anie.201602202

    16. [16]

      Zhao, W.; Tsuchiya, Y.; Yabuuchi, N. Small Methods 2018, 1800032. doi: 10.1002/smtd.201800032  doi: 10.1002/smtd.201800032

    17. [17]

      Chen, J.; Li, L.; Wu, L.; Yao, Q.; Yang, H.; Liu, Z.; Xia, L.; Chen, Z.; Duan, J.; Zhong, S. J. Power Sources 2018, 406, 110. doi: 10.1016/j.jpowsour.2018.10.058  doi: 10.1016/j.jpowsour.2018.10.058

    18. [18]

      Yabuuchi, N.; Hara, R.; Kajiyama, M.; Kubota, K.; Ishigaki, T.; Hoshikawa, A.; Komaba, S. Adv. Energy Mater. 2014, 4, 1301453. doi: 10.1002/aenm.201301453  doi: 10.1002/aenm.201301453

    19. [19]

      Li, Z.; Ding, F.; Zhao, Y.; Wang, Y.; Li, J.; Yang, K.; Gao, F. Ceram. Inter. 2016, 42, 15464. doi: 10.1016/j.ceramint.2016.06.198  doi: 10.1016/j.ceramint.2016.06.198

    20. [20]

      Guo, S.; Yu, H.; Liu, P.; Ren, Y.; Zhang, T.; Chen, M.; Ishida, M.; Zhou, H. Energy Environ. Sci. 2015, 8, 1237. doi: 10.1039/c4ee03361b  doi: 10.1039/c4ee03361b

    21. [21]

      Guo, S.; Liu, P.; Sun, Y.; Zhu, K.; Yi, J.; Chen, M.; Ishida, M.; Zhou, H. Angew. Chem. Int. Ed. 2015, 54, 11701. doi: 10.1002/anie.201505215  doi: 10.1002/anie.201505215

    22. [22]

      Xiao, Y.; Wang, P. F.; Yin, Y. X.; Zhu, Y. F.; Yang, X.; Zhang, X. D.; Wang, Y.; Guo, X. D.; Zhong, B. H.; Guo, Y. G. Adv. Energy Mater. 2018, 8, 1800492. doi: 10.1002/aenm.201800492  doi: 10.1002/aenm.201800492

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    4. [4]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Jinping Qiao Yunchao Li Caiyun Nan Yuan Zhang Shuo Wei Yunling Zhao Juan Han Yufeng Li Yanping Quan Genban Sun Huifeng Li Shaoshi Guo Yong He Xuebin Deng Jiaxin Zhang Shufeng Si Jin Ouyang . Utilizing the “Second Classroom” for Multidimensional Laboratory Access to Expand the Depth and Breadth of Experimental Teaching. University Chemistry, 2024, 39(7): 99-105. doi: 10.12461/PKU.DXHX202405016

    11. [11]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    14. [14]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    15. [15]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    18. [18]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

Metrics
  • PDF Downloads(18)
  • Abstract views(1300)
  • HTML views(146)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return