Citation: Wang Yi, Huo Wangchen, Yuan Xiaoya, Zhang Yuxin. Composite of Manganese Dioxide and Two-dimensional Materials Applied to Supercapacitors[J]. Acta Physico-Chimica Sinica, ;2020, 36(2): 190400. doi: 10.3866/PKU.WHXB201904007 shu

Composite of Manganese Dioxide and Two-dimensional Materials Applied to Supercapacitors

  • Corresponding author: Zhang Yuxin, zhangyuxin@cqu.edu.cn
  • Received Date: 2 April 2019
    Revised Date: 29 April 2019
    Accepted Date: 7 May 2019
    Available Online: 13 February 2019

    Fund Project: The project was supported by the Fundamental Research Funds for the Central Universities, China (2018CDYJSY0055, 2019CDQYCL042), the National Natural Science Foundation of China (21576034), the Joint Funds of the National Natural Science Foundation of China-Guangdong, China (U1801254), the Chongqing Special Postdoctoral Science Foundation, China (XmT2018043), and Technological projects of Chongqing Municipal Education Commission, China (KJZDK201800801)the Fundamental Research Funds for the Central Universities, China 2019CDQYCL042the National Natural Science Foundation of China 21576034the Fundamental Research Funds for the Central Universities, China 2018CDYJSY0055the Joint Funds of the National Natural Science Foundation of China-Guangdong, China U1801254the Chongqing Special Postdoctoral Science Foundation, China XmT2018043Technological projects of Chongqing Municipal Education Commission, China KJZDK201800801

  • The world is currently facing a series of energy-related problems and challenges. In response, scientists are committed to seeking green high-performance energy storage devices to meet the demands of long-term, sustainable, and innovative development in the future. As a new type of green energy storage device, the supercapacitor has the advantages of high power density, high theoretical specific capacitance, fast charge and discharge speed, long cycle life, high safety, environmental friendliness, and economy to help people cope with the energy crisis. In addition, energy storage devices including Li-ion batteries and supercapacitors are being transformed from heavy, rigid, and bulky devices into light, flexible, and small units to fulfill the needs of the next generation. Among these energy storage systems, the electrode material is an important factor affecting the performance of supercapacitors. In recent years, supercapacitors based on manganese dioxide have been widely studied owing to their high theoretical specific capacitance, good chemical stability, and environmental friendliness. At the same time, a variety of two-dimensional materials are also used as supercapacitor electrode materials after graphene. Two-dimensional structural features play an important role in improving the energy density of electric double-layer capacitors and improving the pseudocapacitance of capacitors. To achieve high specific capacitance and high rate of performance, combining manganese dioxide with two-dimensional materials is a promising option. In this paper, we systematically introduce the application of composites that combine two-dimensional materials represented by graphene and manganese dioxide in supercapacitors, and considers the electrochemical properties of these composites. However, there is still a long way to go in order to fabricate a suitable hierarchical structure consisting of two-dimensional materials and manganese dioxide. For example, a suitable two-dimensional material must be chosen and combined with manganese dioxide to form composites that possess excellent electrochemical properties. In addition, the fabrication methods for these composites are a principal factor that affects their performance. Thus, there are reasons for us to strongly believe that if these key issues are resolved, the properties of these composites consisting of manganese dioxide and two-dimensional materials will make great progress. Overall, this paper only points out some general directions for these kinds of composites in the future, such as principles for choosing the two-dimensional materials to combine with manganese dioxide, and the composite methods which have been reported previously. We are pleased that other researchers are being inspired by our work, and we are looking forward to seeing better studies in this field.
  • 加载中
    1. [1]

      Wang, G.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2012, 41, 797. doi: 10.1039/C1CS15060J  doi: 10.1039/C1CS15060J

    2. [2]

      Razaa, W.; Alib, F.; Razac, N. Nano Energy 2018, 52, 441. doi: 10.1016/j.nanoen.2018.08.013  doi: 10.1016/j.nanoen.2018.08.013

    3. [3]

      Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Adv. Mater. 2017, 29, 1605336. doi: 10.1002/adma.201605336  doi: 10.1002/adma.201605336

    4. [4]

      Lukatskaya, M. R.; Dunn, B.; Gogotsi, Y. Nat. Commun. 2016, 7, 12647. doi: 10.1038/ncomms12647  doi: 10.1038/ncomms12647

    5. [5]

      Huang, M.; Li, F.; Dong, F.; Zhang, Y. X.; Zhang, L. L. J. Mater. Chem. A 2015, 3, 21380. doi: 10.1039/c5ta05523g  doi: 10.1039/c5ta05523g

    6. [6]

      Zhang, X.; Yu, P.; Zhang, H.; Zhang, D.; Sun, X.; Ma, Y. Electrochim. Acta. 2013, 89, 523. doi: 10.1016/j.electacta  doi: 10.1016/j.electacta

    7. [7]

      Shi, X.; Zheng, S.; Wu, Z. S.; Bao, X. J. Energy Chem. 2018, 27 (1), 25. doi: 10.1016/j.jechem.2017.09.034  doi: 10.1016/j.jechem.2017.09.034

    8. [8]

      Wei, L.; Li, Z.; Deng, Y.; Yang, Q. H.; Kang, F. Energy Storage Materials 2016, 2, 107. doi: 10.1016/j.ensm.2015.10.002  doi: 10.1016/j.ensm.2015.10.002

    9. [9]

      Dong, Y.; Wu, Z. S.; Ren, W.; Cheng, H. M.; Bao, X. Sci. Bull. 2017, 62, 724. doi: 10.1016/j.scib.2017.04.010  doi: 10.1016/j.scib.2017.04.010

    10. [10]

      Tan, C.; Cao, X.; Wu, X. J. Chem. Rev. 2017, 117, 6225. doi: 10.1021/acs.chemrev.6b00558  doi: 10.1021/acs.chemrev.6b00558

    11. [11]

      Tang, J.; Hua, Q.; Yuan, J.; Zhang, J.; Zhao, Y. Mater. Rep. 2017, 31, 26.  doi: 10.11896/j.issn.1005-023X.2017.09.003

    12. [12]

      Zhai, T.; Lu, X.; Wang, F.; Xia, H.; Tong, Y. Nanoscale Horiz. 2016, 1, 109. doi: 10.1039/c5nh00048c  doi: 10.1039/c5nh00048c

    13. [13]

      Lv, Z.; Luo, Y.; Tang, Y. Adv. Mater. 2017, 30 (2), 1704531. doi: 10.1002/adma.201704531  doi: 10.1002/adma.201704531

    14. [14]

      Shao, Y.; El-Kady, M. F.; Wang, L. J. Chem. Soc. Rev. 2015, 44, 3639. doi: 10.1039/c4cs00316k  doi: 10.1039/c4cs00316k

    15. [15]

      Wang, X.; Lu, X.; Liu, B.; Chen, D.; Tong, Y.; Shen, G. Adv. Mater. 2014, 26, 4763. doi: 10.1002/adma.201400910  doi: 10.1002/adma.201400910

    16. [16]

      Chen, T.; Dai, L. J. Mater. Chem. A 2014, 2, 10756. doi: 10.1039/c4ta00567h  doi: 10.1039/c4ta00567h

    17. [17]

      Huang, W.; Li, J.; Xu, Y. Mater. Rep. 2018, 32, 2555.  doi: 10.11896/j.issn.1005-023X.2018.15.004

    18. [18]

      Singu, B. S.; Yoon, K. R. Electrochim. Acta 2017, 231, 749. doi: 10.1016/j.electacta.2017.01.182  doi: 10.1016/j.electacta.2017.01.182

    19. [19]

      Zhang, J.; Yang, X.; He, Y. J. Mater. Chem. A 2016, 4, 9088. doi: 10.1039/C6TA02989B  doi: 10.1039/C6TA02989B

    20. [20]

      Guo, X.; Wang, T.; Zheng, T. X.; Xu, C.; Zhang, J.; Zhang, Y. X. J. Mater. Chem. A 2018, 6, 24717. doi: 10.1039/C8TA07869F  doi: 10.1039/C8TA07869F

    21. [21]

      Tang, Y.; Zhu, J. F.; Yang, C. H.; Wang, F. J. Alloys Compd. 2016, 685, 194. doi: 10.1016/j.jallcom.2016.05.221  doi: 10.1016/j.jallcom.2016.05.221

    22. [22]

      Lee, H. Y.; Goodenough, J. B. 1999, 144, 220. doi: 10.1006/jssc.1998.8128

    23. [23]

      Li, H.; Zhang, X.; Ding, R.; Qi, L.; Wang, H. Electrochim. Acta 2013, 108, 497. doi: 10.1016/j.electacta.2013.07.066  doi: 10.1016/j.electacta.2013.07.066

    24. [24]

      Wang, J. G.; Kang, F.; Wei, B. Prog. Mater Sci. 2015, 74, 51. doi: 10.1016/j.pmatsci.2015.04.003  doi: 10.1016/j.pmatsci.2015.04.003

    25. [25]

      Wei, W.; Cui, X.; Chen, W.; Ivey, D. G. Chem. Soc. Rev. 2011, 40 (3), 1697. doi: 10.1039/c0cs00127a  doi: 10.1039/c0cs00127a

    26. [26]

      Tanggarnjanavalukul, C.; Phattharasupakun, N.; Kongpatpanich, K.; Sawangphruk, M. Nanoscale 2017, 9 (36), 13630. doi: 10.1039/C7NR02554H  doi: 10.1039/C7NR02554H

    27. [27]

      Zhao, H.; Dong, Y.; Jiang, P.; Wang, G.; Zhang, J.; Li, K.; Feng, C. New J. Chem. 2014, 38, 1743. doi: 10.1039/C3NJ01523H  doi: 10.1039/C3NJ01523H

    28. [28]

      Li, Y.; Cao, D.; Wang, Y.; Yang, S.; Zhang, D.; Ye, K.; Cheng, K.; Yin, J.; Wang, G.; Xu, Y. J. Power Sources 2015, 279, 138. doi: 10.1016/j.jpowsour.2014.12.153  doi: 10.1016/j.jpowsour.2014.12.153

    29. [29]

      Wei, C.; Pang, H.; Zhang, B.; Lu, Q.; Liang, S.; Gao, F. Sci. Rep. 2013, 3, 2193. doi: 10.1038/srep02193  doi: 10.1038/srep02193

    30. [30]

      Chen, C. C.; Tsay, C.Y.; Lin, H. S.; Jheng, W. D.; Lin, C. K. Mater. Chem. Phys. 2012, 137, 503. doi: 10.1016/j.matchemphys.2012.09.047  doi: 10.1016/j.matchemphys.2012.09.047

    31. [31]

      Yu, L. L.; Zhu, J. J.; Zhao, J. T. Eur. J. Inorg. Chem. 2013, 2013, 3719. doi: 10.1002/ejic.201300265  doi: 10.1002/ejic.201300265

    32. [32]

      Sun, Z.; Firdoz, S.; Yap, E. Y. X.; Li, L.; Lu, X. Nanoscale 2013, 5, 4379. doi: 10.1039/C3NR00209H  doi: 10.1039/C3NR00209H

    33. [33]

      Yang, J.; Lian, L.; Ruan, H.; Xie, F.; Wei, M. Electrochim. Acta 2014, 136, 189. doi: 10.1016/j.electacta.2014.05.074  doi: 10.1016/j.electacta.2014.05.074

    34. [34]

      Tang, X.; Liu, Z.H.; Zhang, C.; Yang, Z.; Wang, Z. J. Power Sources 2009, 193, 939. doi: 10.1016/j.jpowsour.2009.04.037  doi: 10.1016/j.jpowsour.2009.04.037

    35. [35]

      Zhu, J.; Shi, W.; Xiao, N.; Rui, X.; Tan, H.; Lu, X.; Hng, H. H.; Ma, J.; Yan, Q. ACS Appl. Mater. Interfaces 2012, 4, 2769. doi: 10.1021/am300388u  doi: 10.1021/am300388u

    36. [36]

      Liu, Z.; Xu, K.; Sun, H.; Yin, S. Small 2015, 11, 2182. doi: 10.1002/smll.201402222  doi: 10.1002/smll.201402222

    37. [37]

      Zhao, S.; Liu, T.; Hou, D.; Zeng, W.; Miao, B.; Hussain, S.; Peng, X.; Javedc, M. S. Appl. Surf. Sci. 2015, 356, 259. doi: 10.1016/j.apsusc.2015.08.037  doi: 10.1016/j.apsusc.2015.08.037

    38. [38]

      Yin, B.; Zhang, S.; Jiao, Y.; Liu, Y.; Qu, F.; Wu, X. CrystEngComm 2014, 16 (43), 9999. doi: 10.1039/c4ce01302f  doi: 10.1039/c4ce01302f

    39. [39]

      Bing, Y.; Zhang, L.; Mu, S.; Zhang, J. Appl. Sci. 2017, 7 (5), 511. doi: 10.3390/app7050511  doi: 10.3390/app7050511

    40. [40]

      Liu, P.; Zhu, Y; Gao, X.; Huang, Y.; Wang, Y.; Qin, S.; Zhang, Y. Chem. Eng. J. 2018, 350, 79. doi: 10.1016/j.cej.2018.05.169  doi: 10.1016/j.cej.2018.05.169

    41. [41]

      Kalubarme, R. S.; Jadhav, H. S.; Park, C. J. Electrochim. Acta 2013, 87, 457. doi: 10.1016/j.electacta.2012.09.081  doi: 10.1016/j.electacta.2012.09.081

    42. [42]

      Shi, S.; Xu, C.; Yang, C.; Chen, Y.; Liu, J.; Kang, F. Sci. Rep. 2013, 3, 2598. doi: 10.1038/srep02598  doi: 10.1038/srep02598

    43. [43]

      Gao, P.; Metz, P.; Hey, T.; Gong, Y.; Liu, D.; Edwards, D. D. Nat. Commun. 2017, 8, 14559. doi: 10.1038/ncomms14559  doi: 10.1038/ncomms14559

    44. [44]

      Chen, H.; Zhang, B.; Li, F.; Kuang, M.; Huang, Yang, Y.; Zhang, Y. X. Electrochim. Acta 2016, 187, 488. doi: 10.1016/j.electacta.2015.11.067  doi: 10.1016/j.electacta.2015.11.067

    45. [45]

      Huang, M.; Zhang, Y.; Li, F.; Zhang, L.; Ruoff, R. S.; Wen, Z.; Liu, Q. Sci. Rep. 2014, 4, 3878. doi: 10.1038/srep03878  doi: 10.1038/srep03878

    46. [46]

      Zhao, B.; Lu, M.; Wang, Z.; Jiao, Z.; Cheng, L. J. Alloys Compd. 2015, 663, 180. doi: 10.1016/j.jallcom.2015.12.018  doi: 10.1016/j.jallcom.2015.12.018

    47. [47]

      Liu, Q.; Yang, J.; Wang, R.; Wang, H.; Ji, S. RSC Adv. 2017, 7, 33635. doi: 10.1039/C7RA06076A  doi: 10.1039/C7RA06076A

    48. [48]

      Guo, W. H.; Liu, T. J.; Jiang, P.; Zhang, Z. J. J. Colloid Interface Sci. 2015, 437, 304. doi: 10.1016/j.jcis.2014.08.060  doi: 10.1016/j.jcis.2014.08.060

    49. [49]

      Dreyer, D. R.; Ruoff, R. S.; Bielawski, C. W. Angew. Chem. Int. Ed. 2010, 49 (49), 9336. doi: 10.1002/anie.201003024  doi: 10.1002/anie.201003024

    50. [50]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    51. [51]

      Xia, J.; Chen, F.; Li, J.; Tao, N. Nature Nanotech. 2009, 4 (8), 505. doi: 10.1038/nnano.2009.177  doi: 10.1038/nnano.2009.177

    52. [52]

      Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Goldberger, J. E. ACS Nano 2013, 7 (4), 2898. doi: 10.1021/nn400280c  doi: 10.1021/nn400280c

    53. [53]

      Xu, M.; Liang, T.; Shi, M.; Chen, H. Chem. Rev. 2013, 113 (5), 3766. doi: 10.1021/cr300263a  doi: 10.1021/cr300263a

    54. [54]

      Chhowalla, M.; Shin, H. S.; Eda, G. Nat. Chem. 2013, 263. doi: 10.1038/NCHEM.1589  doi: 10.1038/NCHEM.1589

    55. [55]

      Li, X. Q.; Chang, L.; Zhao, S. L.; Hao, C. L.; Lu, C. G.; Zhu, Y. H.; Tang, Z. Y. Acta Phys. -Chim. Sin. 2017, 33 (1), 130.  doi: 10.3866/PKU.WHXB201609012

    56. [56]

      Yoo, J. J.; Balakrishnan, K.; Huang, J.; Meunier, V.; Sumpter, B. G.; Srivastava, A. Nano Lett. 2011, 11 (4), 1423. doi: 10.1021/nl200225j  doi: 10.1021/nl200225j

    57. [57]

      Xu, Y.; Lin, Z.; Huang, X.; Liu, Y.; Huang, Y.; Duan, X. ACS Nano 2013, 7 (5), 4042. doi: 10.1021/nn4000836  doi: 10.1021/nn4000836

    58. [58]

      Wu, Z. S.; Parvez, K.; Li, S.; Yang, S.; Liu, Z.; Liu, S. Adv. Mater. 2015, 27 (27), 4054. doi: 10.1002/adma.201501643  doi: 10.1002/adma.201501643

    59. [59]

      Kim, M.; Lee, C.; Jang, J. Adv. Funct. Mater. 2014, 24 (17), 2489. doi: 10.1002/adfm.201303282  doi: 10.1002/adfm.201303282

    60. [60]

      Xia, X. H.; Tu, J. P.; Zhang, Y. Q. J. Phys. Chem. C 2011, 115 (45), 22662. doi: 10.1021/jp208113j  doi: 10.1021/jp208113j

    61. [61]

      Wang, L.; Lin, C.; Zhang, F.; Jin, J. ACS Nano 2014, 8, 3724. doi: 10.1021/nn500386u  doi: 10.1021/nn500386u

    62. [62]

      Li, X.; Xu, X.; Xia, F.; Bu, L.; Qiu, H.; Chen, M. Electrochim. Acta. 2014, 130, 305. doi: 10.1016/j.electacta.2014.03.040  doi: 10.1016/j.electacta.2014.03.040

    63. [63]

      Dai, X.; Shi, W.; Cai, H.; Li, R.; Yang, G. Solid State Sci. 2014, 27, 17. doi: 10.1016/j.solidstatesciences.2013.11.003  doi: 10.1016/j.solidstatesciences.2013.11.003

    64. [64]

      Le, Q. J.; Huang, M.; Wang, T.; Liu, X. Y.; Sun, L.; Guo, X. L.; Jiang, D. B.; Wang, J.; Dong, F.; Zhang, Y. X. J. Colloid Interface Sci. 2019, 544, 155. doi: 10.1016/j.jcis.2019.02.089  doi: 10.1016/j.jcis.2019.02.089

    65. [65]

      Chan, P. Y.; Majid, R. S. R. Solid State Ion. 2014, 262, 226. doi: 10.1016/j.ssi.2013.10.005  doi: 10.1016/j.ssi.2013.10.005

    66. [66]

      Liu, T.; Shao, G. J.; Ji, M.; Wang, G. J. Solid State Chem. 2014, 215, 160. doi: 10.1016/j.jssc.2014.03.043  doi: 10.1016/j.jssc.2014.03.043

    67. [67]

      Amir, F. Z.; Pham, V. H.; Schultheis, E. M.; Dickerson, J. H. Electrochim. Acta 2018, 260, 944. doi: 10.1016/j.electacta.2017.12.071  doi: 10.1016/j.electacta.2017.12.071

    68. [68]

      Xiong, C.; Li, T.; Dang, A.; Zhao, T.; Li, H.; Lv, H. J. Power Sources 2016, 306, 602. doi: 10.1016/j.jpowsour.2015.12.056  doi: 10.1016/j.jpowsour.2015.12.056

    69. [69]

      Xiong, C.; Li, T.; Zhao, T.; Dang, A.; Ji, X.; Li, H. Nano 2018, 13 (01), 1. doi: 10.1142/S1793292018500133  doi: 10.1142/S1793292018500133

    70. [70]

      Zhao, X.; Zhang, L.; Murali, S.; Stoller, M. D.; Zhang, Q.; Zhu, Y. ACS Nano 2012, 6 (6), 5404. doi: 10.1021/nn3012916  doi: 10.1021/nn3012916

    71. [71]

      Qian, Y.; Lu, S. B.; Gao, F. L. J. Mater. Sci. 2011, 46, 3517. doi: 10.1007/s10853-011-5260-y  doi: 10.1007/s10853-011-5260-y

    72. [72]

      Cheng, H.; Long, L.; Wu, J.; Shu, D.; Kang, Z.; Zou, X. Int. J. Hydrog. Energy 2014, 39 (28), 16151. doi: 10.1016/j.ijhydene.2014.04.050  doi: 10.1016/j.ijhydene.2014.04.050

    73. [73]

      Feng, X.; Chen, N.; Zhang, Y.; Yan, Z.; Liu, X.; Ma, Y. J. Mater. Chem. A 2014, 2 (24), 9178. doi: 10.1039/C3TA15402E  doi: 10.1039/C3TA15402E

    74. [74]

      Naderi, H. R.; Norouzi, P.; Ganjali, M. R. Appl. Surf. Sci. 2016, 366, 552. doi: 10.1016/j.apsusc.2016.01.058  doi: 10.1016/j.apsusc.2016.01.058

    75. [75]

      Yan, J.; Fan, Z.; Wei, T.; Qian, W.; Zhang, M.; Wei, F. Carbon 2010, 48 (13), 3825. doi: 10.1016/j.carbon.2010.06.047  doi: 10.1016/j.carbon.2010.06.047

    76. [76]

      Ghasemi, S.; Hosseinzadeh, R.; Jafari, M. Int. J. Hydrog. Energy 2014, 48 (13), 3825. doi: 10.1016/j.ijhydene.2014.11.072  doi: 10.1016/j.ijhydene.2014.11.072

    77. [77]

      Pan, C.; Gu, H.; Dong, L. J. Power Sources 2016, 303, 175. doi: 10.1016/j.jpowsour.2015.11.002  doi: 10.1016/j.jpowsour.2015.11.002

    78. [78]

      Huang, M.; Wang, L.; Chen, S.; Kang, L.; Lei, Z.; Shi, F. RSC Adv. 2017, 7 (17), 10092. doi: 10.1039/c6ra28117f  doi: 10.1039/c6ra28117f

    79. [79]

      Wang, T.; Sun, Y.; Zhang, L.; Li, K.; Yi, Y.; Song, S.; Li, M.; Qiao, Z. A.; Dai, S. Adv. Mater. 2019, 31, 1807876. doi: 10.1002/adma.201807876  doi: 10.1002/adma.201807876

    80. [80]

      Jia, X.; Wu, X.; Liu, B. Dalton Trans. 2018, 47, 15506. doi: 10.1039/C8DT03298J  doi: 10.1039/C8DT03298J

    81. [81]

      Wang, H.; Ren, Q.; Brett, D. J. L.; He, G.; Wang, R.; Key, J.; Ji, S. J. Power Sources 2017, 343, 76. doi: 10.1016/j.jpowsour.2017.01.042  doi: 10.1016/j.jpowsour.2017.01.042

    82. [82]

      Cao, Y.; Cui, Z.; Ji, T.; Li, W.; Xu, K.; Zou, R.; Yang, J.; Qin, Z.; Hu, J. J. Alloys Compd. 2017, 725, 373. doi: 10.1016/j.jallcom.2017.07.182  doi: 10.1016/j.jallcom.2017.07.182

    83. [83]

      Liu, Q.; Yang, J.; Wang, R.; Wang, H.; Ji, S. RSC Adv. 2017, 7 (53), 33635. doi: 10.1039/C7RA06076A  doi: 10.1039/C7RA06076A

    84. [84]

      Ma, Z.; Shao, G.; Fan, Y.; Wang, G.; Song, J.; Shen, D. ACS Appl. Mater. Interfaces2016, 8(14), 9050. doi: 10.1021/acsami.5b11300  doi: 10.1021/acsami.5b11300

    85. [85]

      Wang, S.; Li, Q.; Pu, W.; Wu, Y.; Yang, M.; J. Alloys Compd. 2016, 663, 148. doi: 10.1016/j.jallcom.2015.12.040  doi: 10.1016/j.jallcom.2015.12.040

    86. [86]

      Yang, W.; Gao, Z.; Ma, J.; Zhang, X.; Wang, J. J. Alloys Compd. 2014, 611, 171. doi: 10.1016/j.jallcom.2014.04.085  doi: 10.1016/j.jallcom.2014.04.085

    87. [87]

      Shafi, P. M.; Dhanabal, R.; Chithambararaj, A.; Velmathi, S.; Bose, A. C. ACS Sustainable Chem. Eng. 2017, 5 (6), 4757. doi: 10.1021/acssuschemeng.7b00143  doi: 10.1021/acssuschemeng.7b00143

    88. [88]

      Xu, K.; Li, W.; Liu, Q.; Li, B.; Liu, X.; An, L.; Chen, Z.; Zou, R.; Hu, J. J. Mater. Chem. A 2014, 2, 4795. doi: 10.1039/C3TA14647B  doi: 10.1039/C3TA14647B

    89. [89]

      Kuang, M.; Liu, X. Y.; Dong, F.; Zhang, Y. X. J. Mater. Chem. A 2015, 3, 21528. doi: 10.1039/C5TA05957G  doi: 10.1039/C5TA05957G

    90. [90]

      Gao, H.; Xiang, J.; Cao, Y. Nanotechnology. 2017, 28(23), 235401. doi: 10.1088/1361-6528/aa6f89  doi: 10.1088/1361-6528/aa6f89

    91. [91]

      Chu, Y.; Xiong, S.; Li, B.; Qian, Y.; Xi, B. ChemElectroChem 2016, 3, 1. doi: 10.1002/celc.201600146  doi: 10.1002/celc.201600146

    92. [92]

      Min, S.; Zhao, C.; Zhang, Z.; Wang, K.; Chen, G.; Qian, X.; Guo, Z. RSC Adv. 2015, 5(77), 62571. doi: 10.1039/C5RA10842J  doi: 10.1039/C5RA10842J

    93. [93]

      Wang, Z.; Wang, F.; Tu, J.; Cao, D.; An, X.; Ye, Y. Mater. Lett. 2016, 171, 10. doi: 10.1016/j.matlet.2016.02.050  doi: 10.1016/j.matlet.2016.02.050

    94. [94]

      Shen, J.; Li, X.; Wan, L; Liang, K.; Tay, B. K.; Kong, L. B.; Yan, X. ACS Appl. Mater. Interfaces 2017, 9 (1), 668. doi: 10.1021/acsami.6b12370  doi: 10.1021/acsami.6b12370

    95. [95]

      Xi, Y.; Wei, G.; Li, J.; Liu, X.; Pang, M.; Yang, Y.; Ji, Y.; Izotov, V. Y.; Guo, Q.; Han, W. Electrochim. Acta 2017, 233, 26. doi: 10.1016/j.electacta.2017.02.038  doi: 10.1016/j.electacta.2017.02.038

    96. [96]

      Wang, Y.; Wang, Y.; Jiang, L. J. Appl. Electrochem. 2018, 48 (5), 495. doi: 10.1007/s10800-018-1183-5  doi: 10.1007/s10800-018-1183-5

    97. [97]

      Diao, Z. P.; Zhang, Y. X.; Hao, X. D.; Wen, Z. Q. Ceram. Int. 2014, 40, 2115. doi: 10.1016/j.ceramint.2013.07.127  doi: 10.1016/j.ceramint.2013.07.127

    98. [98]

      Gu, T. H.; Gunjakar, J. L.; Kim, I. Y.; Patil, S. B.; Lee, J. M.; Jin, X.; Lee, N. S.; Hwang, S. J. Small 2015, 11, 3921. doi: 10.1002/smll.201500286  doi: 10.1002/smll.201500286

    99. [99]

      Wang, Y.; Dong, S.; Wu, X.; Li, M. J. Electrochem. Soc. 2017, 164, H56. doi: 10.1149/2.0861702jes  doi: 10.1149/2.0861702jes

    100. [100]

      Zheng, W.; Sun, S.; Xu, Y.; Yu, R.; Li, H. J. Alloys Compd. 2018, 768, 240. doi: 10.1016/j.jallcom.2018.07.168  doi: 10.1016/j.jallcom.2018.07.168

    101. [101]

      Quan, W.; Jiang, C.; Wang, S.; Li, Y.; Zhang, Z.; Tang, Z. Electrochim. Acta 2017, 247, 1072. doi: 10.1016/j.electacta.2017.07.010  doi: 10.1016/j.electacta.2017.07.010

    102. [102]

      Soon, J. M.; Loh, K. P. Electrochem. Solid-State Lett. 2007, 10, 250. doi: 10.1149/1.2778851  doi: 10.1149/1.2778851

    103. [103]

      Zhou, J.; Fang, G. Z.; Pan, A. Q.; Liang, S. Q. ACS Appl. Mater. Interfaces 2016, 8, 33681. doi: 10.1021/acsami.6b11811  doi: 10.1021/acsami.6b11811

    104. [104]

      Zheng, N. F.; Bu, X. H.; Feng, P. Y. Nature 2003, 426, 428. doi: 10.1002/chin.200407009  doi: 10.1002/chin.200407009

    105. [105]

      Liao, X.; Zhao, Y.; Wang, J.; Yang, W.; Xu, L.; Tian, X. Nano Research 2017, 247, 1072. doi: 10.1007/s12274-017-1826-6  doi: 10.1007/s12274-017-1826-6

    106. [106]

      Yang, Y.; Chuan, X. Acta Geolog. Sin. (English Edition). 2017, 91 (supp. 1), 170. doi: 10.1111/1755-6724.13241  doi: 10.1111/1755-6724.13241

    107. [107]

      Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. ACS Nano 2012, 6, 1322. doi: 10.1021/nn204153h  doi: 10.1021/nn204153h

    108. [108]

      Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. Adv. Mater. 2014, 26, 992. doi: 10.1002/chin.201417232  doi: 10.1002/chin.201417232

    109. [109]

      Kim, S. J.; Naguib, M.; Zhao, M.; Zhang, C.; Jung, H. T.; Barsoum, M. W.; Gogotsi, Y. Electrochim. Acta 2015, 163, 246. doi: 10.1016/j.electacta.2015.02.132  doi: 10.1016/j.electacta.2015.02.132

    110. [110]

      Xie, Y.; Dall'Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M. W.; Zhuang, H. L.; Kent, P. R. C. ACS Nano 2014, 8, 9606. doi: 10.1021/nn503921j  doi: 10.1021/nn503921j

    111. [111]

      Rakhi, R. B.; Ahmed, B.; Anjum, D.; Alshareef, H. N. ACS Appl. Mater. Interfaces 2016, 8(29), 18806. doi: 10.1021/acsami.6b04481  doi: 10.1021/acsami.6b04481

    112. [112]

      Hanmei, J.; Zegao, W.; Qian, Y.; Muhammad, H.; Zhiming, W.; Lichun, D. Electrochim. Acta 2018, 8, 96. doi: 10.1016/j.electacta.2018.08.096  doi: 10.1016/j.electacta.2018.08.096

    113. [113]

      Tang, Y.; Zhu, J. F.; Yang, C. H.; Wang, F. J. Alloys Compd. 2016, 685, 194. doi: 10.1016/j.jallcom.2016.05.221  doi: 10.1016/j.jallcom.2016.05.221

    114. [114]

      Liu, W.; Wang, Z.; Su, Y.; Li, Q.; Zhao, Z.; Geng, F. Adv. Energy Mater. 2017, 7 (22), 1602834. doi: 10.1002/aenm.201602834  doi: 10.1002/aenm.201602834

    115. [115]

      Yuan, W.; Cheng, L.; Zhang, B.; Wu, H. Ceramics International. 2018, 44(14), 17539. doi: 10.1016/j.ceramint.2018.06.086  doi: 10.1016/j.ceramint.2018.06.086

    116. [116]

      Xu, J.; Wang, Y.; Zhan, J.; Cao, S.; Zhang, G.; Xue, H.; Xu, Q.; Pang, H. J. Mater. Chem. A. 2018, 6, 17329. doi: 10.1039/c8ta05976d  doi: 10.1039/c8ta05976d

    117. [117]

      Zhang, H.; Wu, L. J. Electrochem. Soc. 2018, 165 (11), A2815. doi: 10.1149/2.1131811jes  doi: 10.1149/2.1131811jes

    118. [118]

      Zhao, K.; Xu, Z.; He, Z.; Ye, G.; Gan, Q.; Zhou, Z.; Liu, S. J. Mater. Sci. 2018, 53, 13111. doi: 10.1007/s10853-018-2562-3  doi: 10.1007/s10853-018-2562-3

    119. [119]

      Xie, D.; Zhang, Y.; Chen, J.; Mei, Y.; Lian, P. New Chem. Mater. 2017, 45, 23.

    120. [120]

      Kavil, J.; Anjana, P. M.; Periya, P.; Rakhi, R. B. Sustainable Energy & Fuels 2018, 2, 2244. doi: 10.1039/C8SE00279G  doi: 10.1039/C8SE00279G

    121. [121]

      Sun, S.; Guo, L.; Chang, X.; Yu, Y.; Zhai, X. Mater. Lett. 2019, 236, 558. doi: 10.1016/j.matlet.2018.11.001  doi: 10.1016/j.matlet.2018.11.001

    122. [122]

      Shan, Q. Y.; Guo, X. L.; Dong, F.; Zhang, Y. X. Mater. Lett. 2017, 202, 103. doi: 10.1016/j.matlet.2017.05.061  doi: 10.1016/j.matlet.2017.05.061

    123. [123]

      Choi, I. Y.; Lee, J.; Ahn, H.; Lee, J.; Choi, H. C.; Park, M. J. Angew. Chem. Int. Ed. 2015, 54 (36), 10497. doi: 10.1002/anie.201503332  doi: 10.1002/anie.201503332

    124. [124]

      Ma, Y.; Li, B.; Yang, S. Mater. Chem. Front. 2017, 2(3), 456. doi: 10.1039/C7QM00548B  doi: 10.1039/C7QM00548B

    125. [125]

      Yang, B.; Hao, C.; Wen, F. ACS Appl. Mater. Interfaces 2017, 9(51), 44478. doi: 10.1021/acsami.7b13572  doi: 10.1021/acsami.7b13572

    126. [126]

      Hao, C.; Yang, B.; Wen, F.; Xiang, J.; Li, L.; Wang, W. Adv. Mater. 2016, 28 (16), 3194. doi: 10.1002/adma.201505730  doi: 10.1002/adma.201505730

    127. [127]

      Liu, Z. F. Acta Phys. -Chim. Sin. 2016, 32 (4), 817.  doi: 10.3866/PKU.WHXB201603152

    128. [128]

      Sajedi-Moghaddam, A.; Mayorga-Martinez, C. C.; Sofer, Z.; Bouša, D.; Saievar-Iranizad, E.; Pumera, M. J. Phys. Chem. C 2017, 121, 20532. doi: 10.1021/acs.jpcc.7b06958  doi: 10.1021/acs.jpcc.7b06958

    129. [129]

      Liu, B.; Liu, Y.; Chen, H.; Yang, M.; Li, H. ACS Sustainable Chem. Eng.2019, 7 (3). doi: 10.1021/acssuschemeng.8b04817  doi: 10.1021/acssuschemeng.8b04817

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    5. [5]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    6. [6]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    9. [9]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    10. [10]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    11. [11]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    12. [12]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    13. [13]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(13)
  • Abstract views(1261)
  • HTML views(228)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return