Citation: Guo Nannan, Zhang Su, Wang Luxiang, Jia Dianzeng. Application of Plant-Based Porous Carbon for Supercapacitors[J]. Acta Physico-Chimica Sinica, ;2020, 36(2): 190305. doi: 10.3866/PKU.WHXB201903055 shu

Application of Plant-Based Porous Carbon for Supercapacitors

  • Corresponding author: Zhang Su, suzhangs@163.com Wang Luxiang, wangluxiangxju@163.com
  • Received Date: 25 March 2019
    Revised Date: 3 May 2019
    Accepted Date: 24 May 2019
    Available Online: 3 February 2019

    Fund Project: the National Natural Science Foundation of China 51702275The project was supported by the National Natural Science Foundation of China (51702275, 21671166 and U1703251), the Scientific Research Program of the Higher Education Institution of Xinjiang, China (XJEDU2017S003 and XJEDU2018Y003) and the Xinjiang Tianchi Doctoral Project, Chinathe National Natural Science Foundation of China U1703251the National Natural Science Foundation of China 21671166the Scientific Research Program of the Higher Education Institution of Xinjiang, China XJEDU2017S003the Scientific Research Program of the Higher Education Institution of Xinjiang, China XJEDU2018Y003

  • Supercapacitors have been widely used in various fields because of their high power density, long cycle life, and cost-effectiveness. Plant-based porous carbon continues to be the most suitable alternative for manufacturing the commercial electrode materials of supercapacitors because of its good electrochemical performance, simple preparation process, high availability, and low cost. Although plant-based porous carbon prepared using physical activation has been widely used in commercial supercapacitors, its performance is severely restricted because of its low value of specific surface area and highly microporous structure. With a view to achieving high values of specific gravimetric/volumetric capacitances and outstanding rate performance in supercapacitors, this review summarizes the recently developed methods for preparing plant-based ultrahigh specific surface area porous carbon materials, mesoporous carbon materials, hierarchical porous carbon materials, and nitrogen-doped porous carbon materials. The factors affecting the electrochemical performance of plant-based porous carbon are also discussed. We also summarize some novel strategies to improve the volumetric electrochemical performance of plant-based porous carbon materials, such as preparing dense and porous carbon materials, performing heteroatom doping, and combining the carbon with pseudocapacitive materials (conductive polymers or metal oxides). Finally, the challenges and perspectives of using plant-based porous carbon in supercapacitors are also proposed. In brief, when used as the electrode material for supercapacitors, the ultrahigh surface area porous carbon prepared by KOH activation shows high value of specific capacitance at low current densities. However, the tortuous and deep micropores in the plant-based porous carbon result in its sluggish ion-transport kinetics and high value of equivalent series resistance, which, in turn, result in poor rate performance. To improve the rate performance, tremendous efforts have been made to introduce mesopores in the carbon as ion-transport channels. However, this strategy usually involves the coalescence of a large number of micropores, resulting in the reduced surface area as well as energy storage ability of the carbon. Hence, many researchers have utilized the inherent porous structure and inorganic templates of plants to prepare hierarchical porous carbon both with high specific surface area and high mesopore volume for use in devices with high capacitance and power. In addition to altering the surface area and pore structure of the carbon, doping with nitrogen is another promising approach to enhance the capacitance and electronic conductivity of the plant-based porous carbon. Surface nitrogen can be introduced by the direct carbonization/activation of nitrogen-rich plant precursors or by the reaction of the carbon with nitrogen-containing reagents. Porous carbon with large specific area and with developed mesoporous structure may exhibit superior gravimetric capacitance but inferior volumetric capacitance because of the trade-off between its well-developed microporous structure and packing density. To improve the volume performance, some methods, such as preparing dense and porous carbon with reasonably porous structure, using heteroatom-doped carbon, and incorporating the carbon with pseudocapacitive materials, have been developed. Although the electrochemical performance of plant-based porous carbon has been significantly improved using the aforementioned methods, yet issues such as the lack of green methods and low-cost activation methods to prepare large surface area porous carbon, the design and controlled modulation of carbon micro-structures, the influence of heteroatom doping on pseudocapacitance, and weak interaction between pseudocapacitive components and plant-based porous carbon still need to be resolved. We hope that this review may provide the necessary background and ideas to develop more effective preparation methods for high-performance plant-based porous carbon.
  • 加载中
    1. [1]

      Wang, J.; Nie, P.; Ding, B.; Dong, S.; Hao, X.; Dou, H.; Zhang, X. J. Mater. Chem. A 2017, 5 (6), 2411. doi: 10.1039/C6TA08742F  doi: 10.1039/C6TA08742F

    2. [2]

      Xie, K.; Wei, B. Adv. Mater. 2014, 26 (22), 3592. doi: 10.1002/adma.201305919  doi: 10.1002/adma.201305919

    3. [3]

      Yan, J.; Wang, Q.; Wei, T.; Fan, Z. Adv. Energy Mater. 2014, 4 (4), 1300816. doi: 10.1002/aenm.201300816  doi: 10.1002/aenm.201300816

    4. [4]

      El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Science 2012, 335 (6074), 1326. doi: 10.1126/science.1216744  doi: 10.1126/science.1216744

    5. [5]

      Islam, M. S.; Fisher, C. A. J. Chem. Soc. Rev. 2014, 43 (1), 185. doi: 10.1039/C3CS60199D  doi: 10.1039/C3CS60199D

    6. [6]

      Wu, Z. S.; Parvez, K.; Feng, X.; Müllen, K. Nat. Commun. 2013, 4, 2487. doi: 10.1038/ncomms3487  doi: 10.1038/ncomms3487

    7. [7]

      Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; et al. Science 2011, 332 (6037), 1537. doi: 10.1126/science.1200770  doi: 10.1126/science.1200770

    8. [8]

      Weingarth, D.; Zeiger, M.; Jäckel, N.; Aslan, M.; Feng, G.; Presser, V. Adv. Energy Mater. 2014, 4 (13), 1400316. doi: 10.1002/aenm.201400316  doi: 10.1002/aenm.201400316

    9. [9]

      Chen, C.; Yu, D.; Zhao, G.; Du, B.; Tang, W.; Sun, L.; Sun, Y.; Besenbacher, F.; Yu, M. Nano Energy 2016, 27, 377. doi: 10.1016/j.nanoen.2016.07.020  doi: 10.1016/j.nanoen.2016.07.020

    10. [10]

      Li, D. Y.; Zhang, J. C.; Wang, Z. Y.; Jin, X. B. Acta Phys. -Chim. Sin. 2017, 33 (11), 2245.  doi: 10.3866/PKU.WHXB201705241

    11. [11]

      Long, W.; Fang, B.; Ignaszak, A.; Wu, Z.; Wang, Y. J.; Wilkinson, D. Chem. Soc. Rev. 2017, 46 (23), 7176. doi: 10.1039/C6CS00639F  doi: 10.1039/C6CS00639F

    12. [12]

      Deng, J.; Li, M.; Wang, Y. Green Chem. 2016, 18 (18), 4824. doi: 10.1039/C6GC01172A  doi: 10.1039/C6GC01172A

    13. [13]

      Field, C. B.; Behrenfeld, M. J.; Randerson, J. T.; Falkowski, P. Science 1998, 281 (5374), 237. doi: 10.1126/science.281.5374.237  doi: 10.1126/science.281.5374.237

    14. [14]

      Long, C.; Jiang, L.; Wu, X.; Jiang, Y.; Yang, D.; Wang, C.; Wei, T.; Fan, Z. Carbon 2015, 93, 412. doi: 10.1016/j.carbon.2015.05.040  doi: 10.1016/j.carbon.2015.05.040

    15. [15]

      Guo, N.; Li, M.; Wang, Y.; Sun, X.; Wang, F.; Yang, R. ACS Appl. Mater. Interfaces 2016, 8 (49), 33626. doi: 10.1021/acsami.6b11162  doi: 10.1021/acsami.6b11162

    16. [16]

      Qiu, Z.; Wang, Y.; Bi, X.; Zhou, T.; Zhou, J.; Zhao, J.; Miao, Z.; Yi, W.; Fu, P.; Zhuo, S. J. Power Sources 2018, 376, 82. doi: 10.1016/j.jpowsour.2017.11.077  doi: 10.1016/j.jpowsour.2017.11.077

    17. [17]

      Qiu, D.; Guo, N.; Gao, A.; Zheng, L.; Xu, W.; Li, M.; Wang, F.; Yang, R. Electrochim. Acta 2019, 294, 398. doi: 10.1016/j.electacta.2018.10.049  doi: 10.1016/j.electacta.2018.10.049

    18. [18]

      Sun, L.; Tian, C.; Li, M.; Meng, X.; Wang, L.; Wang, R.; Yin, J.; Fu, H. J. Mater. Chem. A 2013, 1 (21), 6462. doi: 10.1039/C3TA10897J  doi: 10.1039/C3TA10897J

    19. [19]

      Li, Z.; Lv, W.; Zhang, C.; Li, B.; Kang, F.; Yang, Q. H. Carbon 2015, 92, 11. doi: 10.1016/j.carbon.2015.02.054  doi: 10.1016/j.carbon.2015.02.054

    20. [20]

      Wang, Y.; Ben, T.; Qiu, S. L. Chem. J. Chin. Univ. 2016, 37 (6), 1042.  doi: 10.7503/cjcu20160075

    21. [21]

      Ma, Y. W.; Xiong, C. Y.; Huang, W.; Zhao, J.; Li, X. A.; Fan, Q. L.; Huang, W. Chin. J. Inorg. Chem. 2012, 28 (3), 546.
       

    22. [22]

      Wu. Z. Y; Fan, L.; Tao, Y. R.; Wang, W.; Wu, X. C.; Zhao, J. W.; Chin. J. Inorg. Chem. 2018, 34 (7), 1249.  doi: 10.11862/CJIC.2018.166

    23. [23]

      Guo, P.; Ji, Q.; Zhang, L.; Zhao, S.; Zhao, X. Acta Phys. -Chim. Sin. 2011, 27 (12), 2836.  doi: 10.3866/PKU.WHXB20112836

    24. [24]

      Jiang, L.; Sheng, L.; Fan, Z. Sci. China Mater. 2018, 61 (2), 133. doi: 10.1007/s40843-017-9169-4  doi: 10.1007/s40843-017-9169-4

    25. [25]

      Lu, H.; Zhao, X. S. Sustain. Energy Fuels 2017, 1 (6), 1265. doi: 10.1039/C7SE00099E  doi: 10.1039/C7SE00099E

    26. [26]

      Xia, W.; Li, Z.; Xu, Yin.; Zhuang, X.; Jia, S.; Zhang, J. Prog. Chem. 2016, 28 (11), 1682.  doi: 10.7536/PC160517

    27. [27]

      Wu, Z.; Zhang, X. B.; Acta Phys. -Chim. Sin. 2017, 33 (2), 305.  doi: 10.3866/PKU.WHXB201611012

    28. [28]

      Li, X. Q.; Chang, L.; Zhao, S. L.; Hao, C. L.; Lu, C. G.; Zhu, Y. H.; Tang, Z. Y. Acta Phys. -Chim. Sin. 2017, 33 (1), 130.  doi: 10.3866/PKU.WHXB201609012

    29. [29]

      Isikgor, F. H.; Becer, C. R. Polym. Chem. 2015, 6 (25), 4497. doi: 10.1039/C5PY00263J  doi: 10.1039/C5PY00263J

    30. [30]

      Balat, M. Energy Source Part A 2008, 30 (7), 620. doi: 10.1080/15567030600817258  doi: 10.1080/15567030600817258

    31. [31]

      Mészáros, E.; Jakab, E.; Várhegyi, G.; Bourke, J.; Manley-Harris, M.; Nunoura, T.; Antal, M. J. Ind. Eng. Chem. Res. 2007, 46 (18), 5943. doi: 10.1021/ie0615842  doi: 10.1021/ie0615842

    32. [32]

      Mi, J.; Wang, X. R.; Fan, R. J.; Qu, W. H.; Li, W. C. Energy Fuels 2012, 26 (8), 5321. doi: 10.1021/ef3009234  doi: 10.1021/ef3009234

    33. [33]

      Wei, J.; Iglesia, E. J. Catal. 2004, 224 (2), 370. doi: 10.1016/j.jcat.2004.02.032  doi: 10.1016/j.jcat.2004.02.032

    34. [34]

      Sevilla, M.; Fuertes, A. B.; Mokaya, R. Energy Environ. Sci. 2011, 4 (4), 1400. doi: 10.1039/C0EE00347F  doi: 10.1039/C0EE00347F

    35. [35]

      Wang, J.; Kaskel, S. J. Mater. Chem. 2012, 22 (45), 23710. doi: 10.1039/C2JM34066F  doi: 10.1039/C2JM34066F

    36. [36]

      Cabal, B.; Budinova, T.; Ania, C. O.; Tsyntsarski, B.; Parra, J. B.; Petrova, B. J. Hazard. Mater. 2009, 161 (2), 1150. doi: 10.1016/j.jhazmat.2008.04.108  doi: 10.1016/j.jhazmat.2008.04.108

    37. [37]

      Duan, X. H.; Srinivasakannan, C.; Peng, J. H.; Zhang, L. B.; Zhang, Z. Y. Fuel Process. Technol. 2011, 92 (3), 394. doi: 10.1016/j.fuproc.2010.09.033  doi: 10.1016/j.fuproc.2010.09.033

    38. [38]

      Aworn, A.; Thiravetyan, P.; Nakbanpote, W. J. Anal. Appl. Pyrolysis 2008, 82 (2), 279. doi: 10.1016/j.jaap.2008.04.007  doi: 10.1016/j.jaap.2008.04.007

    39. [39]

      Bouchelta, C.; Medjram, M. S.; Bertrand, O.; Bellat, J. P. J. Anal. Appl. Pyrolysis 2008, 82 (1), 70. doi: 10.1016/j.jaap.2007.12.009  doi: 10.1016/j.jaap.2007.12.009

    40. [40]

      Yang, K.; Peng, J.; Srinivasakannan, C.; Zhang, L.; Xia, H.; Duan, X. Bioresour. Technol. 2010, 101 (15), 6163. doi: 10.1016/j.biortech.2010.03.001  doi: 10.1016/j.biortech.2010.03.001

    41. [41]

      Nabais, J. M. V.; Nunes, P.; Carrott, P. J. M.; Ribeiro Carrott, M. M. L.; García, A. M.; Díaz-Díez, M. A. Fuel Process. Technol. 2008, 89 (3), 262. doi: 10.1016/j.fuproc.2007.11.030  doi: 10.1016/j.fuproc.2007.11.030

    42. [42]

      Shu, Y.; Maruyama, J.; Iwasaki, S.; Maruyama, S.; Shen, Y.; Uyama, H. J. Power Sources 2017, 364, 374. doi: 10.1016/j.jpowsour.2017.08.059  doi: 10.1016/j.jpowsour.2017.08.059

    43. [43]

      Rufford, T. E.; Hulicova-Jurcakova, D.; Khosla, K.; Zhu, Z.; Lu, G. Q. J. Power Sources 2010, 195 (3), 912. doi: 10.1016/j.jpowsour.2009.08.048  doi: 10.1016/j.jpowsour.2009.08.048

    44. [44]

      Cai, Y.; Luo, Y.; Dong, H.; Zhao, X.; Xiao, Y.; Liang, Y.; Hu, H.; Liu, Y.; Zheng, M. J. Power Sources 2017, 353, 260. doi: 10.1016/j.jpowsour.2017.04.021  doi: 10.1016/j.jpowsour.2017.04.021

    45. [45]

      Tian, W.; Gao, Q.; Tan, Y.; Li, Z. Carbon 2017, 119, 287. doi: 10.1016/j.carbon.2017.04.050  doi: 10.1016/j.carbon.2017.04.050

    46. [46]

      Xu, B.; Chen, Y.; Wei, G.; Cao, G.; Zhang, H.; Yang, Y. Mater. Chem. Phys. 2010, 124 (1), 504. doi: 10.1016/j.matchemphys.2010.07.002  doi: 10.1016/j.matchemphys.2010.07.002

    47. [47]

      Foo, K. Y.; Hameed, B. H. Chem. Eng. J. 2011, 173 (2), 385. doi: 10.1016/j.cej.2011.07.073  doi: 10.1016/j.cej.2011.07.073

    48. [48]

      Deng, H.; Zhang, G.; Xu, X.; Tao, G.; Dai, J. J. Hazard. Mater. 2010, 182 (1), 217. doi: 10.1016/j.jhazmat.2010.06.018  doi: 10.1016/j.jhazmat.2010.06.018

    49. [49]

      Huang, L.; Sun, Y.; Wang, W.; Yue, Q.; Yang, T. Chem. Eng. J. 2011, 171 (3), 1446. doi: 10.1016/j.cej.2011.05.041  doi: 10.1016/j.cej.2011.05.041

    50. [50]

      Hejazifar, M.; Azizian, S.; Sarikhani, H.; Li, Q.; Zhao, D. J. Anal. Appl. Pyrolysis 2011, 92 (1), 258. doi: 10.1016/j.jaap.2011.06.007  doi: 10.1016/j.jaap.2011.06.007

    51. [51]

      Tay, T.; Ucar, S.; Karagöz, S. J. Hazard. Mater. 2009, 165 (1), 481. doi: 10.1016/j.jhazmat.2008.10.011  doi: 10.1016/j.jhazmat.2008.10.011

    52. [52]

      Foo, K. Y.; Hameed, B. H. Bioresour. Technol. 2012, 104, 679. doi: 10.1016/j.biortech.2011.10.005  doi: 10.1016/j.biortech.2011.10.005

    53. [53]

      Sevilla, M.; Ferrero, G. A.; Fuertes, A. B. Carbon 2017, 114, 50. doi: 10.1016/j.carbon.2016.12.010  doi: 10.1016/j.carbon.2016.12.010

    54. [54]

      Sevilla, M.; Fuertes, A. B. ChemSusChem 2016, 9 (14), 1880. doi: 10.1002/cssc.201600426  doi: 10.1002/cssc.201600426

    55. [55]

      Wang, Y.; Yang, R.; Li, M.; Zhao, Z. Ind. Crop. Prod. 2015, 65, 216. doi: 10.1016/j.indcrop.2014.12.008  doi: 10.1016/j.indcrop.2014.12.008

    56. [56]

      Sun, Z.; Zheng, M.; Hu, H.; Dong, H.; Liang, Y.; Xiao, Y.; Lei, B.; Liu, Y. Chem. Eng. J. 2018, 336, 550. doi: 10.1016/j.cej.2017.12.019  doi: 10.1016/j.cej.2017.12.019

    57. [57]

      Liang, Q.; Ye, L.; Huang, Z. H.; Xu, Q.; Bai, Y.; Kang, F.; Yang, Q. H. Nanoscale 2014, 6 (22), 13831. doi: 10.1039/C4NR04541F  doi: 10.1039/C4NR04541F

    58. [58]

      Yu, Z. L.; Li, G. C.; Fechler, N.; Yang, N.; Ma, Z. Y.; Wang, X.; Antonietti, M.; Yu, S. H. Angew. Chem. Int. Ed. 2016, 55 (47), 14623. doi: 10.1002/anie.201605510  doi: 10.1002/anie.201605510

    59. [59]

      Hou, J.; Cao, C.; Idrees, F.; Ma, X. ACS Nano 2015, 9 (3), 2556. doi: 10.1021/nn506394r  doi: 10.1021/nn506394r

    60. [60]

      Yahya, M. A.; Al-Qodah, Z.; Ngah, C. W. Z. Renewable Sustain. Energy Rev. 2015, 46, 218. doi: 10.1016/j.rser.2015.02.051  doi: 10.1016/j.rser.2015.02.051

    61. [61]

      Donald, J.; Ohtsuka, Y.; Xu, C. Mater. Lett. 2011, 65 (4), 744. doi: 10.1016/j.matlet.2010.11.049  doi: 10.1016/j.matlet.2010.11.049

    62. [62]

      Funke, A.; Ziegler, F. Bioful Bioprod. Biorefin. 2010, 4 (2), 160. doi: 10.1002/bbb.198  doi: 10.1002/bbb.198

    63. [63]

      Titirici, M. M.; White, R. J.; Brun, N.; Budarin, V. L.; Su, D. S.; del Monte, F.; Clark, J. H.; MacLachlan, M. J. Chem. Soc. Rev. 2015, 44 (1), 250. doi: 10.1039/C4CS00232F  doi: 10.1039/C4CS00232F

    64. [64]

      Baccile, N.; Falco, C.; Titirici, M. M. Green Chem. 2014, 16 (12), 4839. doi: 10.1039/C3GC42570C  doi: 10.1039/C3GC42570C

    65. [65]

      Libra, J. A.; Ro, K. S.; Kammann, C.; Funke, A.; Berge, N. D.; Neubauer, Y.; Titirici, M. M.; Fühner, C.; Bens, O.; Kern, J. R. Biofuels 2011, 2 (1), 71. doi: 10.4155/bfs.10.81  doi: 10.4155/bfs.10.81

    66. [66]

      Titirici, M. M.; Antonietti, M.; Baccile, N. Green Chem. 2008, 10 (11), 1204. doi: 10.1039/B807009A  doi: 10.1039/B807009A

    67. [67]

      Zhao, L.; Fan, L. Z.; Zhou, M. Q.; Guan, H.; Qiao, S.; Antonietti, M.; Titirici, M. M. Adv. Mater. 2010, 22 (45), 5202. doi: 10.1002/adma.201002647  doi: 10.1002/adma.201002647

    68. [68]

      Kubo, S.; Tan, I.; White, R. J.; Antonietti, M.; Titirici, M. M. Chem. Mater. 2010, 22 (24), 6590. doi: 10.1021/cm102556h  doi: 10.1021/cm102556h

    69. [69]

      Ren, Y.; Xu, Q.; Zhang, J.; Yang, H.; Wang, B.; Yang, D.; Hu, J.; Liu, Z. ACS Appl. Mater. Interfaces 2014, 6 (12), 9689. doi: 10.1021/am502035g  doi: 10.1021/am502035g

    70. [70]

      Yu, Z.; Wang, X.; Song, X.; Liu, Y.; Qiu, J. Carbon 2015, 95, 852. doi: 10.1016/j.carbon.2015.08.105  doi: 10.1016/j.carbon.2015.08.105

    71. [71]

      Wang, J.; Ding, B.; Hao, X.; Xu, Y.; Wang, Y.; Shen, L.; Dou, H.; Zhang, X. Carbon 2016, 102, 255. doi: 10.1016/j.carbon.2016.02.047  doi: 10.1016/j.carbon.2016.02.047

    72. [72]

      Chang, Y.; Antonietti, M.; Fellinger, T.-P. Angew. Chem. Int. Ed. 2015, 54 (18), 5507. doi: 10.1002/anie.201411685  doi: 10.1002/anie.201411685

    73. [73]

      Yin, H.; Lu, B.; Xu, Y.; Tang, D.; Mao, X.; Xiao, W.; Wang, D.; Alshawabkeh, A. N. Environ. Sci. Technol. 2014, 48 (14), 8101. doi: 10.1021/es501739v  doi: 10.1021/es501739v

    74. [74]

      Elumeeva, K.; Fechler, N.; Fellinger, T. P.; Antonietti, M. Mater. Horiz. 2014, 1 (6), 588. doi: 10.1039/C4MH00123K  doi: 10.1039/C4MH00123K

    75. [75]

      Liu, X.; Giordano, C.; Antonietti, M. Small 2014, 10 (1), 193. doi: 10.1002/smll.201300812  doi: 10.1002/smll.201300812

    76. [76]

      Simon, P.; Gogotsi, Y. Nat. Mater. 2008, 7, 845. doi: 10.1038/nmat2297  doi: 10.1038/nmat2297

    77. [77]

      Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. Angew. Chem. Int. Ed. 2008, 47 (2), 373. doi: 10.1002/anie.200702721  doi: 10.1002/anie.200702721

    78. [78]

      Wang, Q.; Yan, J.; Wang, Y.; Wei, T.; Zhang, M.; Jing, X.; Fan, Z. Carbon 2014, 67, 119. doi: 10.1016/j.carbon.2013.09.070  doi: 10.1016/j.carbon.2013.09.070

    79. [79]

      Huang, W.; Zhang, H.; Huang, Y.; Wang, W.; Wei, S. Carbon 2011, 49 (3), 838. doi: 10.1016/j.carbon.2010.10.025  doi: 10.1016/j.carbon.2010.10.025

    80. [80]

      Chen, C.; Zhang, Y.; Li, Y.; Dai, J.; Song, J.; Yao, Y.; Gong, Y.; Kierzewski, I.; Xie, J.; Hu, L. Energy Environ. Sci. 2017, 10 (2), 538. doi: 10.1039/C6EE03716J  doi: 10.1039/C6EE03716J

    81. [81]

      Cheng, P.; Li, T.; Yu, H.; Zhi, L.; Liu, Z.; Lei, Z. J. Phys. Chem. C 2016, 120 (4), 2079. doi: 10.1021/acs.jpcc.5b11280  doi: 10.1021/acs.jpcc.5b11280

    82. [82]

      Guo, N.; Li, M.; Wang, Y.; Sun, X.; Wang, F.; Yang, R. RSC Adv. 2016, 6 (103), 101372. doi: 10.1039/C6RA22426A  doi: 10.1039/C6RA22426A

    83. [83]

      Li, H.; Qi. C.; Tao, Y.; Liu, H.; Wang D.; Li, F.; Yang, Q. H.; Cheng, H. M. Adv. Energy Mater. 2019, 1900079. doi: 10.1002/aenm.201900079  doi: 10.1002/aenm.201900079

    84. [84]

      Wang, Q.; Yan, J.; Dong, Z. L.; Qu, L. T.; Fan, Z. J.. Energy. Storage. Mater. 2015, 1 (42), 504. doi: 10.1016/j.ensm.2015.09.001  doi: 10.1016/j.ensm.2015.09.001

    85. [85]

      Xu, B.; Wu, F.; Chen, R.; Cao, G. P.; Chen, S.; Zhou, Z.; Yang, Y. S. Electrochem. Commun. 2008, 10 (5), 795. doi: 10.1016/j.elecom.2008.02.033.  doi: 10.1016/j.elecom.2008.02.033

    86. [86]

      Xu, B.; Zhang, H.; Cao, G. P.; Zhang, W. F.; Yang, Y. S. Prog. Chem. 2011, 23 (Z1), 605.

    87. [87]

      Wang, Q.; Yan, J.; Fan, Z. Energy Environ. Sci. 2016, 9 (3), 729. doi: 10.1039/C5EE03109E  doi: 10.1039/C5EE03109E

    88. [88]

      Liu, H.; Song, H.; Chen, X.; Zhang, S.; Zhou, J.; Ma, Z. J. Power Sources 2015, 285, 303. doi: 10.1016/j.jpowsour.2015.03.115  doi: 10.1016/j.jpowsour.2015.03.115

    89. [89]

      Xu, B.; Zheng, D.; Jia, M.; Cao, G. P.; Yang, Y. S. Electrochim. Acta 2013, 98, 176. doi: 10.1016/j.electacta.2013.03.053  doi: 10.1016/j.electacta.2013.03.053

    90. [90]

      Zhu, Z. H.; Hatori, H.; Wang, S. B.; Lu, G. Q. J. Phys. Chem. B 2005, 109 (35), 16744. doi: 10.1021/jp051787o  doi: 10.1021/jp051787o

    91. [91]

      Zhi, M.; Xiang, C.; Li, J.; Li, M.; Wu, N. Nanoscale 2013, 5 (1), 72. doi: 10.1039/C2NR32040A  doi: 10.1039/C2NR32040A

    92. [92]

      Wang, G.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2012, 41 (2), 797. doi: 10.1039/C1CS15060J  doi: 10.1039/C1CS15060J

    93. [93]

      Wang, P.; Ye, H.; Yin, Y. X.; Chen, H.; Bian, Y. B.; Wang, Z. R.; Cao, F. F.; Guo, Y. G. Adv. Mater. 2019, 31 (4), 1805134. doi: 10.1002/adma.201805134  doi: 10.1002/adma.201805134

    94. [94]

      Guo, N.; Li, M.; Sun, X.; Wang, F.; Yang, R. Mater. Chem. Phys. 2017, 201, 399. doi: 10.1016/j.matchemphys.2017.08.054  doi: 10.1016/j.matchemphys.2017.08.054

    95. [95]

      Wang, R.; Wang, P.; Yan, X.; Lang, J.; Peng, C.; Xue, Q. ACS Appl. Mater. Interfaces 2012, 4 (11), 5800. doi: 10.1021/am302077c  doi: 10.1021/am302077c

    96. [96]

      Cheng, B. H.; Tian, K.; Zeng, R. J.; Jiang, H. Sustain. Energy Fuels 2017, 1 (4), 891. doi: 10.1039/C7SE00029D  doi: 10.1039/C7SE00029D

    97. [97]

      Jin, Z.; Yan, X.; Yu, Y.; Zhao, G. J. Mater. Chem. A 2014, 2 (30), 11706. doi: 10.1039/C4TA01413H  doi: 10.1039/C4TA01413H

    98. [98]

      Wang, P.; Wang, Q.; Zhang, G.; Jiao, H.; Deng, X.; Liu, L. J. Solid State Electrochem. 2016, 20 (2), 319. doi: 10.1007/s10008-015-3042-1  doi: 10.1007/s10008-015-3042-1

    99. [99]

      Yang, C. S.; Jang, Y. S.; Jeong, H. K. Current Applied Phys. 2014, 14 (12), 1616. doi: 10.1016/j.cap.2014.09.021  doi: 10.1016/j.cap.2014.09.021

    100. [100]

      Zhang, L.; Zhang, F.; Yang, X.; Leng, K.; Huang, Y.; Chen, Y. Small 2013, 9 (8), 1342. doi: 10.1002/smll.201202943  doi: 10.1002/smll.201202943

    101. [101]

      Zhang, Q.; Han, K.; Li, S.; Li, M.; Li, J.; Ren, K. Nanoscale 2018, 10 (5), 2427. doi: 10.1039/C7NR07158B  doi: 10.1039/C7NR07158B

    102. [102]

      Niu, Q.; Gao, K.; Tang, Q.; Wang, L.; Han, L.; Fang, H.; Zhang, Y.; Wang, S.; Wang, L. Carbon 2017, 123, 290. doi: 10.1016/j.carbon.2017.07.078  doi: 10.1016/j.carbon.2017.07.078

    103. [103]

      Falco, C.; Sieben, J. M.; Brun, N.; Sevilla, M.; vander Mauelen, T.; Morallón, E.; Cazorla-Amorós, D.; Titirici, M. M. ChemSusChem 2013, 6 (2), 374. doi: 10.1002/cssc.201200817  doi: 10.1002/cssc.201200817

    104. [104]

      Wang, C.; Wu, D.; Wang, H.; Gao, Z.; Xu, F.; Jiang, K. J. Power Sources 2017, 363, 375. doi: 10.1016/j.jpowsour.2017.07.097  doi: 10.1016/j.jpowsour.2017.07.097

    105. [105]

      Ferrero, G. A.; Fuertes, A. B.; Sevilla, M. Sci. Rep. 2015, 5, 16618. doi: 10.1038/srep16618  doi: 10.1038/srep16618

    106. [106]

      Zhao, Y. Q.; Lu, M.; Tao, P. Y.; Zhang, Y. J.; Gong, X. T.; Yang, Z.; Zhang, G. Q.; Li, H. L. J. Power Sources 2016, 307, 391. doi: 10.1016/j.jpowsour.2016.01.020  doi: 10.1016/j.jpowsour.2016.01.020

    107. [107]

      Guo, N.; Li, M.; Sun, X.; Wang, F.; Yang, R. Green Chem. 2017, 19 (11), 2595. doi: 10.1039/C7GC00506G  doi: 10.1039/C7GC00506G

    108. [108]

      Yu, D.; Chen, C.; Zhao, G.; Sun, L.; Du, B.; Zhang, H.; Li, Z.; Sun, Y.; Besenbacher, F.; Yu, M. ChemSusChem 2018, 11 (10), 1678. doi: 10.1002/cssc.201800202  doi: 10.1002/cssc.201800202

    109. [109]

      Jiang, L.; Sheng, L.; Chen, X.; Wei, T.; Fan, Z. J. Mater. Chem. A 2016, 4 (29), 11388. doi: 10.1039/C6TA02570F  doi: 10.1039/C6TA02570F

    110. [110]

      Yi, J.; Qing, Y.; Wu, C.; Zeng, Y.; Wu, Y.; Lu, X.; Tong, Y. J. Power Sources 2017, 351, 130. doi: 10.1016/j.jpowsour.2017.03.036  doi: 10.1016/j.jpowsour.2017.03.036

    111. [111]

      Zhu, B.; Liu, B.; Qu, C.; Zhang, H.; Guo, W.; Liang, Z.; Chen, F.; Zou, R. J. Mater. Chem. A 2018, 6 (4), 1523. doi: 10.1039/C7TA09608A  doi: 10.1039/C7TA09608A

    112. [112]

      Long, C.; Qi, D.; Wei, T.; Yan, J.; Jiang, L.; Fan, Z. Adv. Funct. Mater. 2014, 24 (25), 3953. doi: 10.1002/adfm.201304269  doi: 10.1002/adfm.201304269

    113. [113]

      Subramanian, V.; Luo, C.; Stephan, A. M.; Nahm, K. S.; Thomas, S.; Wei, B. J. Phys. Chem. C 2007, 111 (20), 7527. doi: 10.1021/jp067009t  doi: 10.1021/jp067009t

    114. [114]

      Lu, S. Y.; Jin, M.; Zhang, Y.; Niu, Y. B.; Gao, J. C.; Li, C. M. Adv. Energy Mater. 2018, 8 (11), 1702545. doi: 10.1002/aenm.201702545  doi: 10.1002/aenm.201702545

    115. [115]

      Rufford, T. E.; Hulicova-Jurcakova, D.; Zhu, Z.; Lu, G. Q. Electrochem. Commun. 2008, 10 (10), 1594. doi: 10.1016/j.elecom.2008.08.022  doi: 10.1016/j.elecom.2008.08.022

    116. [116]

      Pang, J.; Zhang, W.; Zhang, J.; Cao, G.; Han, M.; Yang, Y. Green Chem. 2017, 19 (16), 3916. doi: 10.1039/C7GC01434A  doi: 10.1039/C7GC01434A

    117. [117]

      Kim, T.; Jung, G.; Yoo, S.; Suh, K. S.; Ruoff, R. S. ACS Nano 2013, 7(8), 6899-6905. doi:10.1021/nn402077v  doi: 10.1021/nn402077v

    118. [118]

      Xu, J.; Tan, Z.; Zeng, W.; Chen, G.; Wu, S.; Zhao, Y.; Ni, K.; Tao, Z.; Ikram, M.; Ji, H.; et al. Adv. Mater. 2016, 28 (26), 5222. doi: 10.1002/adma.201600586  doi: 10.1002/adma.201600586

    119. [119]

      Bu, Y.; Sun, T.; Cai, Y.; Du, L.; Zhuo, O.; Yang, L.; Wu, Q.; Wang, X.; Hu, Z. Adv. Mater. 2017, 29 (24), 1700470. doi: 10.1002/adma.201700470  doi: 10.1002/adma.201700470

    120. [120]

      Vix-Guterl, C.; Frackowiak, E.; Jurewicz, K.; Friebe, M.; Parmentier, J.; Béguin, F. Carbon 2005, 43 (6), 1293. doi: 10.1016/j.carbon.2004.12.028  doi: 10.1016/j.carbon.2004.12.028

    121. [121]

      Yoon, Y.; Lee, K.; Baik, C.; Yoo, H.; Min, M.; Park, Y.; Lee, S.; Lee, H. Adv. Mater. 2013, 25 (32), 4437. doi: 10.1002/adma.201301230  doi: 10.1002/adma.201301230

    122. [122]

      Zapata-Benabithe, Z.; Carrasco-Marín, F.; de Vicente, J.; Moreno-Castilla, C. Langmuir 2013, 29 (20), 6166. doi: 10.1021/la4007422  doi: 10.1021/la4007422

    123. [123]

      Chang, L.; Stacchiola, D.; Hu, Y. ACS Appl. Mater. Interfaces 2017, 9 (29), 24655-24661. doi: 10.1021/acsami.7b07381  doi: 10.1021/acsami.7b07381

    124. [124]

      Pham, D.; Lee, T.; Luong, D.; Yao, F.; Ghosh, A.; Le, V.; Kim, T.; Li, B.; Chang, J.; Lee, Y. ACS Nano 2015, 9 (2), 2018. doi: 10.1021/nn507079x  doi: 10.1021/nn507079x

    125. [125]

      Lei, Z.; Lu, L.; Zhao, X. S. Energy Environ. Sci. 2012, 5 (4), 6391. doi: 10.1039/C1EE02478G  doi: 10.1039/C1EE02478G

    126. [126]

      Hulicova-jurcakova, D.; Seredych, M.; Lu, G. Q.; Bandosz, T. J. Adv. Funct. Mater. 2009, 19 (3), 438. doi: 10.1002/adfm.200801236  doi: 10.1002/adfm.200801236

    127. [127]

      He, X.; Ling, P.; Yu, M.; Wang, X.; Zhang, X.; Zheng, M. Electrochim. Acta 2013, 105, 635. doi: 10.1016/j.electacta.2013.05.050  doi: 10.1016/j.electacta.2013.05.050

    128. [128]

      Candelaria, S. L.; Garcia, B. B.; Liu, D. W.; Cao, G. Z. J. Mater. Chem. 2012, 22, 9884. doi: 10.1039/c2jm30923h  doi: 10.1039/c2jm30923h

    129. [129]

      Paraknowitsch, J.P; Thomas, A.; Antonietti, M. J. Mater Chem. 2010, 20, 6746. doi: 10.1039/C0JM00869A  doi: 10.1039/C0JM00869A

    130. [130]

      Xu, S. W.; Zhao, Y. Q.; Xu, Y. X.; Chen, Q. H.; Zhang, G. Q.; Xu, Q. Q.; Zhao, D. D.; Zhang, X.; Xu, C. L. J. Power Sources 2018, 401, 375. doi: 10.1016/j.jpowsour.2018.09.012  doi: 10.1016/j.jpowsour.2018.09.012

    131. [131]

      Li, L.; Zhou, Y.; Zhou, H.; Qu, H.; Zhang, C.; Guo, M.; Liu, X.; Zhang, Q.; Gao, B. ACS Sustain. Chem. Eng. 2019, 7 (1), 1337. doi: 10.1021/acssuschemeng.8b05022  doi: 10.1021/acssuschemeng.8b05022

    132. [132]

      Yu, W.; Wang, H.; Liu, S.; Mao, N.; Liu, X.; Shi, J.; Liu, W.; Chen, S.; Wang, X. J. Mater. Chem. A 2016, 4 (16), 5973. doi: 10.1039/C6TA01821A  doi: 10.1039/C6TA01821A

    133. [133]

      Li, Z.; Mi, H.; Bai, Z.; Ji, C.; Sun, L.; Gao, S.; Qiu, J. J. Power Sources 2019, 418, 112. doi: 10.1016/j.jpowsour.2019.02.034  doi: 10.1016/j.jpowsour.2019.02.034

    134. [134]

      Cheng, P.; Gao, S.; Zang, P.; Yang, X.; Bai, Y.; Xu, H.; Liu, Z.; Lei, Z. Carbon 2015, 93, 315. doi: 10.1016/j.carbon.2015.05.056  doi: 10.1016/j.carbon.2015.05.056

    135. [135]

      Wu, X.; Jiang, L.; Long, C.; Fan, Z. Nano Energy 2015, 13, 527. doi: 10.1016/j.nanoen.2015.03.013  doi: 10.1016/j.nanoen.2015.03.013

    136. [136]

      Yang, X.; Li, M.; Guo, N.; Yan, M.; Yang, R.; Wang, F. RSC Adv. 2016, 6 (6), 4365. doi: 10.1039/C5RA24055G  doi: 10.1039/C5RA24055G

    137. [137]

      Zhu, G.; Ma, L.; Lv, H.; Hu, Y.; Chen, T.; Chen, R.; Liang, J.; Wang, X.; Wang, Y.; Yan, C.; et al. Nanoscale 2017, 9 (3), 1237. doi: 10.1039/C6NR08139H  doi: 10.1039/C6NR08139H

    138. [138]

      Ma, G.; Yang, Q.; Sun, K.; Peng, H.; Ran, F.; Zhao, X.; Lei, Z. Bioresour. Technol. 2015, 197, 137. doi: 10.1016/j.biortech.2015.07.100  doi: 10.1016/j.biortech.2015.07.100

    139. [139]

      Gao, S.; Liu, H.; Geng, K.; Wei, X. .Nano Energy 2015, 12, 785. doi: 10.1016/j.nanoen.2015.02.004  doi: 10.1016/j.nanoen.2015.02.004

    140. [140]

      Liu, B.; Liu, Y.; Chen, H.; Yang, M.; Li, H. J. Power Sources 2017, 341, 309. doi: 10.1016/j.jpowsour.2016.12.022  doi: 10.1016/j.jpowsour.2016.12.022

    141. [141]

      Liu, J.; Deng, Y.; Li, X.; Wang, L. ACS Sustain. Chem. Eng. 2016, 4 (1), 177. doi: 10.1021/acssuschemeng.5b00926  doi: 10.1021/acssuschemeng.5b00926

    142. [142]

      Chen, L.; Ji, T.; Mu, L.; Zhu, J. Carbon 2017, 111, 839. doi: 10.1016/j.carbon.2016.10.054  doi: 10.1016/j.carbon.2016.10.054

    143. [143]

      Shen, W.; Fan, W. J. Mater. Chem. A 2013, 1 (4), 999. doi: 10.1039/C2TA00028H  doi: 10.1039/C2TA00028H

    144. [144]

      Li, Y.; Zhang, S.; Song, H.; Chen, X.; Zhou, J.; Hong, S; Electrochim. Acta 2015, 180, 879. doi: 10.1016/j.electacta.2015.09.039  doi: 10.1016/j.electacta.2015.09.039

    145. [145]

      Liu, J.; Li, H.; Zhang, H.; Liu, Q.; Li, R.; Li, B.; Wang, J. J. Solid State Chem. 2018, 257, 64. doi: 10.1016/j.jssc.2017.07.033  doi: 10.1016/j.jssc.2017.07.033

    146. [146]

      Wang, K.; Yan, R.; Zhao, N.; Tian, X.; Li, X.; Lei, S.; Song, Y.; Guo, Q.; Liu, L. Mater. Lett. 2016, 174, 249. doi: 10.1016/j.matlet.2016.03.063  doi: 10.1016/j.matlet.2016.03.063

    147. [147]

      Long, C.; Chen, X.; Jiang, L.; Zhi, L.; Fan, Z. Nano Energy 2015, 12, 141. doi: 10.1016/j.nanoen.2014.12.014  doi: 10.1016/j.nanoen.2014.12.014

    148. [148]

      Li, J.; Liu, K.; Gao, X.; Yao, B.; Huo, K.; Cheng, Y.; Cheng, X.; Chen, D.; Wang, B.; Sun, W.; et al. ACS Appl. Mater. Interfaces 2015, 7 (44), 24622. doi: 10.1021/acsami.5b06698  doi: 10.1021/acsami.5b06698

    149. [149]

      Dong, X.; Jin, H.; Wang, R.; Zhang, J.; Feng, X.; Yan, C.; Chen, S.; Wang, S.; Wang, J.; Lu, J. Adv. Energy Mater. 2018, 8 (11), 1702695. doi: 10.1002/aenm.201702695  doi: 10.1002/aenm.201702695

    150. [150]

      Liu, X.; Ma, C.; Li, J.; Zielinska, B.; Kalenczuk, R. J.; Chen, X.; Chu, P. K.; Tang, T.; Mijowska, E. J. Power Sources 2019, 412, 1. doi: 10.1016/j.jpowsour.2018.11.032  doi: 10.1016/j.jpowsour.2018.11.032

    151. [151]

      Jiang, Y.; Yan, J.; Wu, X.; Shan, D.; Zhou, Q.; Jiang, L.; Yang, D.; Fan, Z. J. Power Sources 2016, 307, 190. doi: 10.1016/j.jpowsour.2015.12.081  doi: 10.1016/j.jpowsour.2015.12.081

    152. [152]

      Xie, Q.; Bao, R.; Zheng, A.; Zhang, Y.; Wu, S.; Xie, C.; Zhao, P. ACS Sustain. Chem. Eng. 2016, 4 (3), 1422. doi: 10.1021/acssuschemeng.5b01417  doi: 10.1021/acssuschemeng.5b01417

    153. [153]

      Lee, S. W.; Kim, B. S.; Chen, S.; Shao-Horn, Y.; Hammond, P. T. J. Am. Chem. Soc. 2008, 131 (2), 671. doi: 10.1021/ja807059k  doi: 10.1021/ja807059k

    154. [154]

      Zhou, Y.; Ghaffari, M.; Lin, M.; Parsons, E. M.; Liu, Y.; Wardle, B. L.; Zhang, Q. M. Electrochim. Acta 2013, 111, 608. doi: 10.1016/j.electacta.2013.08.032  doi: 10.1016/j.electacta.2013.08.032

    155. [155]

      Xu, Y.; Lin, Z.; Zhong, X.; Huang, X.; Weiss, N. O.; Huang, Y.; Duan, X. Nat. Commun. 2014, 5, 4554. doi: 10.1038/ncomms5554  doi: 10.1038/ncomms5554

  • 加载中
    1. [1]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    9. [9]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Chunyang Zheng Shiyu Liu Nuo Yi Hong Shang . The Adventures in the Kingdom of Plant Pigments. University Chemistry, 2024, 39(9): 170-176. doi: 10.3866/PKU.DXHX202308085

    19. [19]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    20. [20]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

Metrics
  • PDF Downloads(18)
  • Abstract views(930)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return