Citation: Zhu Jiayao, Dong Yue, Zhang Su, Fan Zhuangjun. Application of Carbon-/Graphene Quantum Dots for Supercapacitors[J]. Acta Physico-Chimica Sinica, ;2020, 36(2): 190305. doi: 10.3866/PKU.WHXB201903052 shu

Application of Carbon-/Graphene Quantum Dots for Supercapacitors

  • Corresponding author: Zhang Su, suzhangs@163.com Fan Zhuangjun, fanzhj666@163.com
  • Received Date: 25 March 2019
    Revised Date: 23 April 2019
    Accepted Date: 25 April 2019
    Available Online: 8 February 2019

    Fund Project: the National Natural Science Foundation of China 51672055the National Natural Science Foundation of China 51702275the Scientific Research Program of the Higher Education Institution of Xinjiang, China XJEDU2017S003The project was supported by the National Natural Science Foundation of China (51702275, 51672055) and the Scientific Research Program of the Higher Education Institution of Xinjiang, China (XJEDU2017S003)

  • Supercapacitors have attracted considerable attention as new-generation energy storage devices because of their high charge-discharge rate, ultralong lifetime, and high power density. However, the performance of supercapacitors is severely restricted by either the low intrinsic capacitance of porous carbons or the poor conductivity and sluggish electrochemical kinetics of pseudocapacitive components. Therefore, high-performance electrode materials integrated with high gravimetric and volumetric capacitances, high rate capability, and superb cycling stability are urgently needed. As emerging carbon nanomaterials, carbon-/graphene quantum dots (CDs/GQDs) have uniquely small particle sizes, abundant edge sites, and various functional groups, thus endowing them with great potential for developing high-performance electrode materials for supercapacitors. With the purpose of identifying the application advantages and critical problems of CDs/GQDs for supercapacitor electrodes, this review summarizes the development of CDs/GQDs, quantum dots (QDs)/conductive carbon, QDs/metal oxides, QDs/conductive polymer composites, and QD-derived carbon materials in recent years. In each section of this paper, we introduce the typical and updated studies from corresponding fields in terms of novel preparation routes, the crucial roles of CDs/GQDs in composite materials, and the electrochemical performance of electrode materials and assembled devices. Finally, the advantages and limitations of CD/GQD electrode materials are described, and the future development of QD-based materials is discussed. In general, the previous studies have shown that when directly used as electrode materials for micro-supercapacitors, CDs/GQDs performed at an ultrahigh charge-discharge rate of up to 1000 V∙s−1. However, because of the discontinuous conductive network and good dispersibility in electrolytes, they are not suitable for use in common devices because of poor cycle stability. One of the most promising means for fully realizing active ion storage sites for portable devices is to strongly anchor CDs/GQDs onto conductive carbon scaffolds such as activated carbon, graphene nanosheets, and carbon nanofibers. QDs simultaneously improve the capacitive and rate performance owing to the active sites and improved surface wettability of the composite materials. To further improve the capacitance and cycle stability of electrode materials, different types of QDs/pseudocapacitive material composites (metal oxides or conductive polymers) have been developed. QDs have been shown to increase entire conductivity, accelerate ion transport, and depress the volume expansion of metal oxides and conductive polymers. Benefiting from their small-sized structure and outstanding reactivity, CDs/GQDs can also be used as emerging precursors for constructing advanced carbon electrode materials. Several forward-looking studies have shown that QDs can be converted to carbon nanosheets, heteroatom-doped carbon, and dense and porous carbon blocks with high gravimetric/volumetric capacitances and remarkable rate performance for fast and compact energy storage. Although related fields have rapidly developed in recent years, several critical problems including those related to green and effective methods to prepare CDs/GQDs, construction of entire conductive networks without active sites being sacrificed, the synergistic effect, and the underlying mechanism of QDs in composite materials still must be solved. We hope that this review can provide inspiration and references for further investigation in this promising field.
  • 加载中
    1. [1]

      Simon, P.; Gogotsi, Y. Nat. Mater. 2008, 7, 845. doi: 10.1038/nmat2297  doi: 10.1038/nmat2297

    2. [2]

      Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P. L.; Grey, C. P.; Dunn, B.; Simon, P. Nature Energy 2016, 1 (6), 16070. doi: 10.1038/nenergy.2016.70  doi: 10.1038/nenergy.2016.70

    3. [3]

      Wang, F.; Wu, X.; Yuan, X.; Liu, Z.; Zhang, Y.; Fu, L.; Zhu, Y.; Zhou, Q.; Wu, Y.; Huang, W. Chem. Soc. Rev. 2017, 46 (22), 6816. doi: 10.1039/c7cs00205j  doi: 10.1039/c7cs00205j

    4. [4]

      Wang, G.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2012, 41 (2), 797. doi: 10.1039/c1cs15060j  doi: 10.1039/c1cs15060j

    5. [5]

      Simon, P.; Gogotsi, Y. Acc. Chem. Res. 2013, 46 (5), 1094. doi: 10.1021/ar200306b  doi: 10.1021/ar200306b

    6. [6]

      Wang, Y.; Song, Y.; Xia, Y. Chem. Soc. Rev. 2016, 45 (21), 5925. doi: 10.1039/c5cs00580a  doi: 10.1039/c5cs00580a

    7. [7]

      Xu, Y.; Wang, X.; Zhang, W. L.; Lv, F.; Guo, S. Chem. Soc. Rev. 2018, 47 (2), 586. doi: 10.1039/c7cs00500h  doi: 10.1039/c7cs00500h

    8. [8]

      Lim, S. Y.; Shen, W.; Gao, Z. Chem. Soc. Rev. 2015, 44 (1), 362. doi: 10.1039/c4cs00269e  doi: 10.1039/c4cs00269e

    9. [9]

      Wang, Y.; Hu, A. J. Mater. Chem. C 2014, 2 (34), 6921. doi: 10.1039/c4tc00988f  doi: 10.1039/c4tc00988f

    10. [10]

      Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J. J. Nanoscale 2013, 5 (10), 4015. doi: 10.1039/c3nr33849e  doi: 10.1039/c3nr33849e

    11. [11]

      Zhang, Z.; Zhang, J.; Chen, N.; Qu, L. Energy Environ. Sci. 2012, 5 (10), 8869. doi: 10.1039/c2ee22982j  doi: 10.1039/c2ee22982j

    12. [12]

      Zheng, X. T.; Ananthanarayanan, A.; Luo, K. Q.; Chen, P. Small 2015, 11 (14), 1620. doi: 10.1002/smll.201402648  doi: 10.1002/smll.201402648

    13. [13]

      Xia, R.; Wang, S. M.; Dong, W. W.; Fang, X. D. Acta Phys. -Chim. Sin. 2017, 33 (4), 670.  doi: 10.3866/PKU.WHXB201701101

    14. [14]

      He, P.; Yuan, F. L.; Wang, Z. F.; Tan, Z. A.; Fan, L. Z. Acta Phys. -Chim. Sin. 2018, 34 (11), 1250.  doi: 10.3866/PKU.WHXB201804041

    15. [15]

      Hu, C.; Mu, Y.; Li, M. Y.; Qiu, J. S. Acta Phys. -Chim. Sin. 2019, 35 (6), 572.  doi: 10.3866/PKU.WHXB201806060

    16. [16]

      Liu, J.; Ye, J. L.; Pan, F.; Wang, X. Y.; Zhu, Y. W. Sci. China Mater. 2019, 62 (4), 545.  doi: 10.1007/s40843-018-9309-x

    17. [17]

      Xie, G. S.; Hao, F.; Lu, K. F.; Zhang, J. Battery Bimonthly 2017, 47 (6), 370.  doi: 10.19535/j.1001-1579.2017.06.014

    18. [18]

      Shi, Z. Q.; Niu, Y. F.; Duan, J.; Wang, J.; Zhang, J. J. Tianjin Polytech.c Univ. 2018, 37 (3), 49.  doi: 10.3969/j.issn.1671-024x.2018.03.009

    19. [19]

      Wu, K.; Xu, S. Z.; Zhou, X. J.; Wu, H. X. J. Electrochem. 2013, 19 (4), 361.
       

    20. [20]

      Ding, Z. C.; Zhang, L.; Liu, J. Sci. China Chem. 2018, 48 (8), 902.  doi: 10.13208/j.electrochem.2013.04.004

    21. [21]

      Liu, H.; Ye, T.; Mao, C. Angew. Chem. Int. Ed. 2007, 46 (34), 6473. doi: 10.1002/anie.200701271  doi: 10.1002/anie.200701271

    22. [22]

      Dong, Y.; Zhou, N.; Lin, X.; Lin, J.; Chi, Y.; Chen, G. Chem. Mater. 2010, 22 (21), 5895. doi: 10.1021/cm1018844  doi: 10.1021/cm1018844

    23. [23]

      Liu, R.; Wu, D.; Liu, S.; Koynov, K.; Knoll, W.; Li, Q. Angew. Chem. Int. Ed. 2009, 48 (25), 4598. doi: 10.1002/anie.200900652  doi: 10.1002/anie.200900652

    24. [24]

      Pan, D.; Zhang, J.; Li, Z.; Wu, M. Adv. Mater. 2010, 22 (6), 734. doi: 10.1002/adma.200902825  doi: 10.1002/adma.200902825

    25. [25]

      Pan, D.; Guo, L.; Zhang, J.; Xi, C.; Xue, Q.; Huang, H.; Li, J.; Zhang, Z.; Yu, W.; Chen, Z.; e t al. J. Mater. Chem. 2012, 22 (8), 3314. doi: 10.1039/c2jm16005f  doi: 10.1039/c2jm16005f

    26. [26]

      Lu, J.; Yan, M.; Ge, L.; Ge, S.; Wang, S.; Yan, J.; Yu, J. Biosens. Bioelectron. 2013, 47, 271. doi: 10.1016/j.bios.2013.03.039  doi: 10.1016/j.bios.2013.03.039

    27. [27]

      Zhou, J. G.; Booker, C.; Li, R. Y.; Zhou, X. T.; Sham, T. -K.; Sun, X. L.; Ding, Z. F. J. Am. Chem. Soc. 2007, 129 (4), 744. doi: 10.1021/ja0669070  doi: 10.1021/ja0669070

    28. [28]

      Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L. B.; Zhan, X.; Gao, G.; et al. Nano Lett. 2012, 12 (2), 844. doi: 10.1021/nl2038979  doi: 10.1021/nl2038979

    29. [29]

      Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P. Small 2008, 4 (4), 455. doi: 10.1002/smll.200700578  doi: 10.1002/smll.200700578

    30. [30]

      Dong, Y.; Shao, J.; Chen, C.; Li, H.; Wang, R.; Chi, Y.; Lin, X.; Chen, G. Carbon 2012, 50 (12), 4738. doi: 10.1016/j.carbon.2012.06.002  doi: 10.1016/j.carbon.2012.06.002

    31. [31]

      Yang, Z. C.; Wang, M.; Yong, A. M.; Wong, S. Y.; Zhang, X. H.; Tan, H.; Chang, A. Y.; Li, X.; Wang, J. Chem. Commun. 2011, 47 (42), 11615. doi: 10.1039/c1cc14860e  doi: 10.1039/c1cc14860e

    32. [32]

      Tang, L. J., R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K. S.; Luk, C. M.; Zeng, S.; Hao, J.; Lau S. P. ACS Nano 2012, 6 (6), 5102. doi: 10.1021/nn300760g  doi: 10.1021/nn300760g

    33. [33]

      Lu, J.; Yeo, P. S.; Gan, C. K.; Wu, P.; Loh, K. P. Nat. Nanotechnol. 2011, 6 (4), 247. doi: 10.1038/nnano.2011.30  doi: 10.1038/nnano.2011.30

    34. [34]

      Li, Z.; Qin, P.; Wang, L.; Yang, C.; Li, Y.; Chen, Z.; Pan, D.; Wu, M. Electrochim. Acta 2016, 208, 260. doi: 10.1016/j.electacta.2016.05.030  doi: 10.1016/j.electacta.2016.05.030

    35. [35]

      Wang, L.; Wang, Y.; Xu, T.; Liao, H.; Yao, C.; Liu, Y.; Li, Z.; Chen, Z.; Pan, D.; Sun, L.; et al. Nat. Commun. 2014, 5(1), 5357. doi: 10.1038/ncomms6357  doi: 10.1038/ncomms6357

    36. [36]

      Randin, J. P.; Yeager, E. J. Electroanal. Chem. 1972, 36(2), 257. doi: 10.1016/S0022-0728(72)80249-3  doi: 10.1016/S0022-0728(72)80249-3

    37. [37]

      Randin, J. P.; Yeager, E. J. Electroanal. Chem. 1975, 58(2), 313. doi: 10.1016/S0022-0728(75)80089-1  doi: 10.1016/S0022-0728(75)80089-1

    38. [38]

      Chen, J.; Han, Y.; Kong, X.; Deng, X.; Park, H. J.; Guo, Y.; Jin, S.; Qi, Z.; Lee, Z.; Qiao, Z.; et al. Angew. Chem. Int. Ed. 2016, 55 (44), 13822. doi: 10.1002/anie.201605926  doi: 10.1002/anie.201605926

    39. [39]

      Zhu, J.; Childress, A. S.; Karakaya, M.; Dandeliya, S.; Srivastava, A.; Lin, Y.; Rao, A. M.; Podila, R. Adv. Mater. 2016, 28 (33), 7185. doi: 10.1002/adma.201602028  doi: 10.1002/adma.201602028

    40. [40]

      Wang, H.; Wang, Y.; Hu, Z.; Wang, X. ACS Appl. Mater. Interfaces 2012, 4 (12), 6827. doi: 10.1021/am302000z  doi: 10.1021/am302000z

    41. [41]

      Liu, W. W.; Feng, Y. Q.; Yan, X. B.; Chen, J. T.; Xue, Q. J. Adv. Funct. Mater. 2013, 23 (33), 4111. doi: 10.1002/adfm.201203771  doi: 10.1002/adfm.201203771

    42. [42]

      Liu, W.; Yan, X.; Chen, J.; Feng, Y.; Xue, Q. Nanoscale 2013, 5 (13), 6053. doi: 10.1039/c3nr01139a  doi: 10.1039/c3nr01139a

    43. [43]

      Shen, B.; Lang, J.; Guo, R.; Zhang, X.; Yan, X. ACS Appl. Mater. Interfaces 2015, 7 (45), 25378. doi: 10.1021/acsami.5b07909  doi: 10.1021/acsami.5b07909

    44. [44]

      Li, Z.; Cao, L.; Qin, P.; Liu, X.; Chen, Z.; Wang, L.; Pan, D.; Wu, M. Carbon 2018, 139, 67. doi: 10.1016/j.carbon.2018.06.042  doi: 10.1016/j.carbon.2018.06.042

    45. [45]

      Hassan, M.; Haque, E.; Reddy, K. R.; Minett, A. I.; Chen, J.; Gomes, V. G. Nanoscale 2014, 6 (20), 11988. doi: 10.1039/c4nr02365j  doi: 10.1039/c4nr02365j

    46. [46]

      Miah, M.; Bhattacharya, S.; Gupta, A.; Saha, S. K. Electrochim. Acta 2016, 222, 709. doi: 10.1016/j.electacta.2016.11.027  doi: 10.1016/j.electacta.2016.11.027

    47. [47]

      Lee, K.; Lee, H.; Shin, Y.; Yoon, Y.; Kim, D.; Lee, H. Nano Energy 2016, 26, 746. doi: 10.1016/j.nanoen.2016.06.030  doi: 10.1016/j.nanoen.2016.06.030

    48. [48]

      Li, Q.; Cheng, H.; Wu, X.; Wang, C. F.; Wu, G.; Chen, S. J. Mater. Chem. A 2018, 6 (29), 14112. doi: 10.1039/c8ta02124d  doi: 10.1039/c8ta02124d

    49. [49]

      Jiang, L.; Sheng, L.; Long, C.; Wei, T.; Fan, Z. Adv. Energy Mater. 2015, 5 (15), 1500771. doi: 10.1002/aenm.201500771  doi: 10.1002/aenm.201500771

    50. [50]

      Xu, Y.; Li, X.; Hu, G.; Wu, T.; Luo, Y.; Sun, L.; Tang, T.; Wen, J.; Wang, H.; Li, M. Appl. Surfurce Sci. 2017, 422, 847. doi: 10.1016/j.apsusc.2017.05.189  doi: 10.1016/j.apsusc.2017.05.189

    51. [51]

      Kumar, V. B.; Borenstein, A.; Markovsky, B.; Aurbach, D.; Gedanken, A.; Talianker, M.; Porat, Z. J. Phys. Chem. C 2016, 120 (25), 13406. doi: 10.1021/acs.jpcc.6b04045  doi: 10.1021/acs.jpcc.6b04045

    52. [52]

      Islam, M. S.; Deng, Y.; Tong, L.; Roy, A. K.; Faisal, S. N.; Hassan, M.; Minett, A. I.; Gomes, V. G. Mater. Today Commun. 2017, 10, 112. doi: 10.1016/j.mtcomm.2016.11.002  doi: 10.1016/j.mtcomm.2016.11.002

    53. [53]

      Li, Z.; Li, Y.; Wang, L.; Cao, L.; Liu, X.; Chen, Z.; Pan, D.; Wu, M. Electrochim. Acta 2017, 235, 561. doi: 10.1016/j.electacta.2017.03.147  doi: 10.1016/j.electacta.2017.03.147

    54. [54]

      Li, Z.; Bu, F.; Wei, J.; Yao, W.; Wang, L.; Chen, Z.; Pan, D.; Wu, M. Nanoscale 2018, 10 (48), 22871. doi: 10.1039/c8nr06986g  doi: 10.1039/c8nr06986g

    55. [55]

      Chen, Q.; Hu, Y.; Hu, C.; Cheng, H.; Zhang, Z.; Shao, H.; Qu, L. Phys. Chem. Chem. Phys. 2014, 16 (36), 19307. doi: 10.1039/c4cp02761b  doi: 10.1039/c4cp02761b

    56. [56]

      Li, Z.; Liu, X.; Wang, L.; Bu, F.; Wei, J.; Pan, D.; Wu, M. Small 2018, 14 (39), e1801498. doi: 10.1002/smll.201801498  doi: 10.1002/smll.201801498

    57. [57]

      Zhao, X.; Li, M.; Dong, H. W.; Liu, Y. L.; Hu, H.; Cai, Y. J.; Liang, Y. R.; Xiao, X.; Zheng, M. T. ChemSusChem 2017, 10 (12), 2626. doi: 10.1002/cssc.201700474  doi: 10.1002/cssc.201700474

    58. [58]

      Tan, W.; Fu, R.; Ji, H.; Kong, Y.; Xu, Y.; Qin, Y. Int. J. Biol. Macromol. 2018, 112, 561. doi: 10.1016/j.ijbiomac.2018.02.014  doi: 10.1016/j.ijbiomac.2018.02.014

    59. [59]

      Wei, J. S.; Ding, C.; Zhang, P.; Ding, H.; Niu, X. Q.; Ma, Y. Y.; Li, C.; Wang, Y. G.; Xiong, H. M. Adv. Mater. 2019, 31 (5), e1806197. doi: 10.1002/adma.201806197  doi: 10.1002/adma.201806197

    60. [60]

      Qing, Y.; Jiang, Y. T.; Lin, H.; Wang, L. X.; Liu, A. J.; Cao, Y. L.; Sheng, R.; Guo, Y.; Fan, C. W.; Zhang, S.; et al. J. Mater. Chem. A 2019. doi: 10.1039/C8TA11620B  doi: 10.1039/C8TA11620B

    61. [61]

      Ganganboina, A. B.; Chowdhury, A. D.; Doong, R. Electrochim. Acta 2017, 245, 912. doi: 10.1016/j.electacta.2017.06.002  doi: 10.1016/j.electacta.2017.06.002

    62. [62]

      Ganganboina, A. B.; Chowdhury, A. D.; Doong, R. A. ACS Sustainable Chem. Eng. 2017, 5 (6), 4930. doi: 10.1021/acssuschemeng.7b00329  doi: 10.1021/acssuschemeng.7b00329

    63. [63]

      Wei, G.; Du, K.; Zhao, X.; Wang, Z.; Liu, M.; Li, C.; Wang, H.; An, C.; Xing, W. Nano Res. 2017, 10 (9), 3005. doi: 10.1007/s12274-017-1516-4  doi: 10.1007/s12274-017-1516-4

    64. [64]

      Zhu, C.; Chao, D.; Sun, J.; Bacho, I. M.; Fan, Z.; Ng, C. F.; Xia, X.; Huang, H.; Zhang, H.; Shen, Z. X.; et al. Adv. Mater. Interfaces 2015, 2 (2), 1400499. doi: 10.1002/admi.201400499  doi: 10.1002/admi.201400499

    65. [65]

      Yin, X.; Chen, H.; Zhi, C.; Sun, W.; Lv, L. P.; Wang, Y. Small 2018, 14 (22), e1800589. doi: 10.1002/smll.201800589  doi: 10.1002/smll.201800589

    66. [66]

      Zhang, W.; Xu, T.; Liu, Z.; Wu, N. L.; Wei, M. Chem. Commun. 2018, 54 (12), 1413. doi: 10.1039/c7cc09406j  doi: 10.1039/c7cc09406j

    67. [67]

      Chao, D.; Zhu, C.; Xia, X.; Liu, J.; Zhang, X.; Wang, J.; Liang, P.; Lin, J.; Zhang, H.; Shen, Z. X.; et al. Nano Lett. 2015, 15 (1), 565. doi: 10.1021/nl504038s  doi: 10.1021/nl504038s

    68. [68]

      Deng, G.; Chao, D.; Guo, Y.; Chen, Z.; Wang, H.; Savilov, S. V.; Lin, J.; Shen, Z. X. Energy Storage Mater. 2016, 5, 198. doi: 10.1016/j.ensm.2016.07.007  doi: 10.1016/j.ensm.2016.07.007

    69. [69]

      Zhu, Y.; Ji, X.; Pan, C.; Sun, Q.; Song, W.; Fang, L.; Chen, Q.; Banks, C. E. Energy Environ. Sci. 2013, 6 (12), 3665. doi: 10.1039/c3ee41776j  doi: 10.1039/c3ee41776j

    70. [70]

      Lv, H.; Gao, X.; Xu, Q.; Liu, H.; Wang, Y. G.; Xia, Y. ACS Appl. Mater. Interfaces 2017, 9 (46), 40394. doi: 10.1021/acsami.7b14761  doi: 10.1021/acsami.7b14761

    71. [71]

      Jia, H.; Cai, Y.; Lin, J.; Liang, H.; Qi, J.; Cao, J.; Feng, J.; Fei, W. Adv. Sci. 2018, 5 (5), 1700887. doi: 10.1002/advs.201700887  doi: 10.1002/advs.201700887

    72. [72]

      Zhu, Y.; Wu, Z.; Jing, M.; Hou, H.; Yang, Y.; Zhang, Y.; Yang, X.; Song, W.; Jia, X.; Ji, X. J. Mater. Chem. A 2015, 3 (2), 866. doi: 10.1039/c4ta05507a  doi: 10.1039/c4ta05507a

    73. [73]

      Wei, J. S.; Ding, H.; Zhang, P.; Song, Y. F.; Chen, J.; Wang, Y. G.; Xiong, H. M. Small 2016, 12 (43), 5927. doi: 10.1002/smll.201602164  doi: 10.1002/smll.201602164

    74. [74]

      Mondal, S.; Rana, U.; Malik, S. Chem. Commun. 2015, 51 (62), 12365. doi: 10.1039/c5cc03981a  doi: 10.1039/c5cc03981a

    75. [75]

      Ghosh, T.; Ghosh, R.; Basak, U.; Majumdar, S.; Ball, R.; Mandal, D.; Nandi, A. K.; Chatterjee, D. P. J. Mater. Chem. A 2018, 6 (15), 6476. doi: 10.1039/c7ta11050b  doi: 10.1039/c7ta11050b

    76. [76]

      Zhao, Z.; Xie, Y. J. Power Sources 2017, 337, 54. doi: 10.1016/j.jpowsour.2016.10.110  doi: 10.1016/j.jpowsour.2016.10.110

    77. [77]

      Jian, X.; Li, J.; Yang, H.; Cao, L.; Zhang, E.; Liang, Z. H. Carbon 2017, 114, 533. doi: 10.1016/j.carbon.2016.12.033  doi: 10.1016/j.carbon.2016.12.033

    78. [78]

      Zhang, X.; Wang, J.; Liu, J.; Wu, J.; Chen, H.; Bi, H. Carbon 2017, 115, 134. doi: 10.1016/j.carbon.2017.01.005  doi: 10.1016/j.carbon.2017.01.005

    79. [79]

      De, B.; Kuila, T.; Kim, N. H.; Lee, J. H. Carbon 2017, 122, 247. doi: 10.1016/j.carbon.2017.06.076  doi: 10.1016/j.carbon.2017.06.076

    80. [80]

      Unnikrishnan, B.; Wu, C. W.; Chen, I. W. P.; Chang, H. T.; Lin, C. H.; Huang, C. C. ACS Sustainable Chem. Eng. 2016, 4 (6), 3008. doi: 10.1021/acssuschemeng.5b01700  doi: 10.1021/acssuschemeng.5b01700

    81. [81]

      Lv, H.; Yuan, Y.; Xu, Q.; Liu, H.; Wang, Y. G.; Xia, Y. J. Power Sources 2018, 398, 167. doi: 10.1016/j.jpowsour.2018.07.059  doi: 10.1016/j.jpowsour.2018.07.059

    82. [82]

      Chen, G.; Wu, S.; Hui, L.; Zhao, Y.; Ye, J.; Tan, Z.; Zeng, W.; Tao, Z.; Yang, L.; Zhu, Y. Sci. Rep. 2016, 6, 19028. doi: 10.1038/srep19028  doi: 10.1038/srep19028

    83. [83]

      Tan, Z.; Ni, K.; Chen, G.; Zeng, W.; Tao, Z.; Ikram, M.; Zhang, Q.; Wang, H.; Sun, L.; Zhu, X.; et al. Adv. Mater. 2017, 29 (8), 1603414. doi: 10.1002/adma.201603414  doi: 10.1002/adma.201603414

    84. [84]

      Strauss, V.; Marsh, K.; Kowal, M. D.; El-Kady, M.; Kaner, R. B. Adv. Mater. 2018, 30 (8), 1704449. doi: 10.1002/adma.201704449  doi: 10.1002/adma.201704449

    85. [85]

      Zhang, S.; Zhu, J.; Qing, Y.; Fan, C.; Wang, L.; Huang, Y.; Sheng, R.; Guo, Y.; Wang, T.; Pan, Y.; et al. Mater. Today Energy 2017, 6, 36. doi: 10.1016/j.mtener.2017.08.003  doi: 10.1016/j.mtener.2017.08.003

    86. [86]

      Zhang, S.; Zhu, J.; Qing, Y.; Wang, L.; Zhao, J.; Li, J.; Tian, W.; Jia, D.; Fan, Z. Adv. Funct. Mater. 2018, 28 (52), 1805898. doi: 10.1002/adfm.201805898  doi: 10.1002/adfm.201805898

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    10. [10]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    11. [11]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    12. [12]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    18. [18]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    19. [19]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    20. [20]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

Metrics
  • PDF Downloads(15)
  • Abstract views(1250)
  • HTML views(150)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return