Citation: Tong Yongli, Dai Meizhen, Xing Lei, Liu Hengqi, Sun Wanting, Wu Xiang. Asymmetric Hybrid Capacitor Based on NiCo2O4 Nanosheets Electrode[J]. Acta Physico-Chimica Sinica, ;2020, 36(7): 190304. doi: 10.3866/PKU.WHXB201903046 shu

Asymmetric Hybrid Capacitor Based on NiCo2O4 Nanosheets Electrode

  • Corresponding author: Wu Xiang, wuxiang05@163.com
  • Received Date: 19 March 2019
    Revised Date: 18 April 2019
    Accepted Date: 19 April 2019
    Available Online: 26 April 2019

    Fund Project: The project was supported by the Research Project of Guangdong Province Key Laboratory of Display Material and Technology, China (2017B030314031)the Research Project of Guangdong Province Key Laboratory of Display Material and Technology, China 2017B030314031

  • The looming global energy crisis and ever-increasing energy demands have catalyzed the development of renewable energy storage systems. In this regard, supercapacitors (SCs) have attracted widespread attention because of their advantageous attributes such as high power density, excellent cycle stability, and environmental friendliness. However, SCs exhibit low energy density and it is important to optimize electrode materials to improve the overall performance of these devices. Among the various electrode materials available, spinel nickel cobaltate (NiCo2O4) is particularly interesting because of its excellent theoretical capacitance. Based on the understanding that the performances of the electrode materials strongly depend on their morphologies and structures, in this study, we successfully synthesized NiCo2O4 nanosheets on Ni foam via a simple hydrothermal route followed by calcination. The structures and morphologies of the as-synthesized products were characterized by X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller (BET) surface area analysis, and the results showed that they were uniformly distributed on the Ni foam support. The surface chemical states of the elements in the samples were identified by X-ray photoelectron spectroscopy. The as-synthesized NiCo2O4 products were then tested as cathode materials for supercapacitors in a traditional three-electrode system. The electrochemical performances of the NiCo2O4 electrode materials were studied and the area capacitance was found to be 1.26 C∙cm-2 at a current density of 1 mA∙cm-2. Furthermore, outstanding cycling stability with 97.6% retention of the initial discharge capacitance after 10000 cycles and excellent rate performance (67.5% capacitance retention with the current density from 1 to 14 mA∙cm-2) were achieved. It was found that the Ni foam supporting the NiCo2O4 nanosheets increased the conductivity of the electrode materials. However, it is worth noting that the contribution of nickel foam to the areal capacitance of the electrode materials was almost zero during the charge and discharge processes. To further investigate the practical application of the as-synthesized NiCo2O4 nanosheets-based electrode, a device was assembled with the as-prepared samples as the positive electrode and active carbon (AC) as the negative electrode. The assembled supercapacitor showed energy densities of 0.14 and 0.09 Wh∙cm-3 at 1.56 and 4.5 W∙cm-3, respectively. Furthermore, it was able to maintain 95% of its initial specific capacitance after 10000 cycles. The excellent electrochemical performance of the NiCo2O4 nanosheets could be ascribed to their unique spatial structure composed of interconnected ultrathin nanosheets, which facilitated electron transportation and ion penetration, suggesting their potential applications as electrode materials for high performance supercapacitors. The present synthetic route can be extended to other ternary transition metal oxides/sulfides for future energy storage devices and systems.
  • 加载中
    1. [1]

      Zeng, Y. X.; Lai, Z. Z.; Han, Y.; Zhang H. Z.; Xie, S. L.; Lu X. H. Adv. Mater. 2018, 33, 1802396. doi: 10.1002/adma.201802396  doi: 10.1002/adma.201802396

    2. [2]

      Zhao, M. Y.; Zhu, L.; Fu, B. W.; Jiang, S. H.; Zhou, Y. N.; Song, Y. Acta Phys. -Chim. Sin. 2019, 35, 193.  doi: 10.3866/PKU.WHXB201801241

    3. [3]

      Martek, I.; Hosseini, M. R.; Shrestha, A.; Edwards, D. J.; Durdyev, S. J. Cleaner Prod. 2019, 11, 281. doi: 10.1016/j.jclepro.2018.11.166  doi: 10.1016/j.jclepro.2018.11.166

    4. [4]

      Gao, S. N.; Liao, F.; Ma, S. Z.; Zhu, L. L.; Shao, M. W. J. Mater. Chem. A 2015, 3, 16520. doi: 10.1039/C5TA02876K  doi: 10.1039/C5TA02876K

    5. [5]

      Liu, S; Shao, L. Y.; Zhang, X. J.; Tao, Z. L.; Chen, J. Acta Phys. -Chim. Sin. 2018, 34, 581.  doi: 10.3866/PKU.WHXB201711222

    6. [6]

      Zhang, H. Z.; Zhang, X. Y.; Li, H. D.; Zhang, Y. F.; Zeng, Y. X.; Tong, Y. X.; Zhang, P.; Lu, X. H. Green Energy Environ. 2018, 3, 56. doi: 10.1016/j.gee.2017.09.003  doi: 10.1016/j.gee.2017.09.003

    7. [7]

      Liu, C.; Jiang, W.; Hu, F.; Wu, X.; Xue, D. F. Inorg. Chem. Front. 2018, 5, 835. doi: 10.1039/C8QI00010G  doi: 10.1039/C8QI00010G

    8. [8]

      Wu, X.; Han, Z. C.; Zheng, X. Yao, S. Y.; Yang, X.; Zhai, T. Y. Nano Energy 2017, 31, 410. doi:10.1016/j.nanoen.2016.11.035  doi: 10.1016/j.nanoen.2016.11.035

    9. [9]

      Wang, F. X.; Wu, X. W.; Yuan, X. H.; Liu, Z. C.; Zhang, Y; Fu, L. J.; Zhu, Y. S.; Zhou, Q. M.; Wu, Y. P.; Huang, W. Chem. Soc. Rev. 2017, 46, 6816. doi: 10.1039/c7cs00205j  doi: 10.1039/c7cs00205j

    10. [10]

      Wang, H. Y.; Shi, G. Q. Acta Phys. -Chim. Sin. 2018, 34, 22.  doi: 10.3866/PKU.WHXB201706302

    11. [11]

      Wu, X.; Yao, S. Y. Nano Energy 2017, 42, 143. doi: 10.1016/j.nanoen.2017.10.058  doi: 10.1016/j.nanoen.2017.10.058

    12. [12]

      Li, G. M.; Chen, M. Z.; Yu, O. Y.; Yao, D.; Lu, L.; Wang, L.; Xia, X. F.; Wu, L.; Chen, S. M.; Daniel, M.; et al. Appl. Surf. Sci. 2019, 469, 941. doi: 10.1016/j.apsusc.2018.11.099  doi: 10.1016/j.apsusc.2018.11.099

    13. [13]

      Guo, D.; Zhang, P.; Zhang H.; Yu, X.; Zhu, J.; Li, Q.; Wang, T. J. Mater. Chem. A 2013, 1, 9024. doi:10.1039/C3TA11487B  doi: 10.1039/C3TA11487B

    14. [14]

      You, B.; Liu, X.; Hu, G. X.; Gul, S.; Yano, J.; Jiang, D. E.; Sun, Y. J. J. Am. Chem. Soc. 2017, 139, 12283. doi: 10.1021/jacs.7b06434  doi: 10.1021/jacs.7b06434

    15. [15]

      Huang, Y. L.; Zeng, Y. X.; Yu, M. H.; Liu, P.; Tong, Y. X.; Cheng, F. L.; Lu, X. H. Small Methods 2018, 2, 1700230. doi: 10.1002/smtd.201700230  doi: 10.1002/smtd.201700230

    16. [16]

      Zhao, D. P.; Wu, X. Mater. Lett. 2018, 210, 354. doi: 10.1016/j.matlet.2017.09.068  doi: 10.1016/j.matlet.2017.09.068

    17. [17]

      Xing, L.; Dong, Y. D. Hu, F. Wu, X.; Umar, A. Dalton Trans. 2018, 47, 5687 doi: 10.1039/C8DT00750K  doi: 10.1039/C8DT00750K

    18. [18]

      Yao, S. Y.; Qu, F. Y.; Wang, G.; Wu, X. J. Alloys Compd. 2017, 724, 695. doi: 10.1016/j.jallcom.2017.07.123  doi: 10.1016/j.jallcom.2017.07.123

    19. [19]

      Liu, C.; Wu, X. Mater. Res. Bull. 2018, 103, 55 doi:10.1016/j.materresbull.2018.03.014  doi: 10.1016/j.materresbull.2018.03.014

    20. [20]

      Zheng, X.; Han, Z. C.; Yao, S. Y.; Xiao, H. H.; Chai, F.; Qu, F. Y.; Wu, X. Dalton Trans. 2016, 45, 7094 doi:10.1039/C6DT00002A  doi: 10.1039/C6DT00002A

    21. [21]

      Sun, W. T.; Xiao, L.; Wu, X. J. Alloys Compd. 2019, 772, 465. doi: 10.1016/j.jallcom.2018.09.185  doi: 10.1016/j.jallcom.2018.09.185

    22. [22]

      Ren, Q.; Wang, R. F.; Wang, H.; Key, J. L.; Brett, D. J. L.; Ji, S.; Yin, S. B.; Shen, P. K. J. Mater. Chem. A 2016, 4, 7591. doi: 10.1039/C6TA02596J  doi: 10.1039/C6TA02596J

    23. [23]

      Pang, H.; Li, X. R.; Zhao, Q. X.; Xue H. G.; Lai. W. Y.; Hu, Z.; Huang, W. Nano Energy 2017, 35, 138. doi: 10.1016/j.nanoen.2017.02.044  doi: 10.1016/j.nanoen.2017.02.044

    24. [24]

      Kong, D. Z.; Luo, J. S.; Wang, Y. L.; Ren, W. N.; Yu, T.; Luo, Y. S.; Yang, Y. P.; Cheng, C. W. Adv. Funct. Mater. 2014, 24, 3815. doi: 10.1002/adfm.201304206  doi: 10.1002/adfm.201304206

    25. [25]

      Yu, F.; Chang, Z.; Yuan, X. H.; Wang, F. X.; Zhu Y. S.; Fu, L. J.; Chen, Y. H.; Wang, H. X.; Wu, Y. P.; Li, W. S. J. Mater. Chem. A 2018, 6, 5856. doi: 10.1039/C8TA00835C  doi: 10.1039/C8TA00835C

    26. [26]

      Zhao, D. P.; Liu, H. Q.; Wu, X. Nano Energy 2019, 57, 363. doi: 10.1016/j.nanoen.2018.12.066  doi: 10.1016/j.nanoen.2018.12.066

    27. [27]

      Xing, L.; Dong, Y. D.; Wu, X. RSC Adv. 2018, 8, 28172. doi: 10.1039/C8RA05722B  doi: 10.1039/C8RA05722B

    28. [28]

      Zhao, D. P.; Hu, F.; Umar, A. Wu, X. New J. Chem. 2018, 42, 7399. doi: 10.1039/C8NJ00935J  doi: 10.1039/C8NJ00935J

    29. [29]

      Wang, Y.; Guo, J.; Wang, T. F; Shao. J. F.; Wang D.; Yang, Y. W. Nanomaterials 2015, 5, 1667. doi: 10.3390/nano5041667  doi: 10.3390/nano5041667

    30. [30]

      Yan, J.; Wang, Q.; Wei T.; Fan, Z. J. Adv. Energy Mater. 2014, 4, 1300816. doi: 10.1002/aenm.201300816  doi: 10.1002/aenm.201300816

    31. [31]

      Zhao, D. P.; Wu, X.; Guo, C. F. Inorg. Chem. Front. 2018, 5, 1378. doi: 10.1039/C8QI00170G  doi: 10.1039/C8QI00170G

    32. [32]

      Jiang, W.; Hu, F.; Yao, S. Y.; Sun, Z. P.; Wu, X. Mater. Res. Bull. 2017, 93, 303. doi: 10.1016/j.materresbull.2017.05.036  doi: 10.1016/j.materresbull.2017.05.036

    33. [33]

      Park, C. Y.; Hwang, J.; Hwang, Y. T.; Song C. H.; Ahn, S.; Kim, H. S.; Ahn, H. J. Electrochim. Acta 2017, 246, 757. doi: 10.1016/j.electacta.2017.06.087  doi: 10.1016/j.electacta.2017.06.087

    34. [34]

      El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Science 2012, 335, 1326. doi: 10.1126/science.1216744  doi: 10.1126/science.1216744

    35. [35]

      Jiang, W.; Hu, F.; Yan, Q. Y.; Wu, X. Inorg. Chem. Front. 2017, 4, 1642. doi: 10.1039/C7QI00391A  doi: 10.1039/C7QI00391A

    36. [36]

      Yuan, L. Y.; Lu, X. H.; Xiao, X.; Zhai, T.; Dai, J. J.; Zhang, F. C.; Hu, B.; Wang, X.; Gong, L.; Chen, J.; et al. ACS Nano 2012, 6, 656. doi: 10.1021/nn2041279  doi: 10.1021/nn2041279

  • 加载中
    1. [1]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    2. [2]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    3. [3]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    4. [4]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    5. [5]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    6. [6]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    7. [7]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    8. [8]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    9. [9]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    10. [10]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    12. [12]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    13. [13]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    14. [14]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    15. [15]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    16. [16]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    17. [17]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    18. [18]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    19. [19]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    20. [20]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

Metrics
  • PDF Downloads(15)
  • Abstract views(581)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return