Citation: GUO Feng, CHEN Peng, KANG Tuo, WANG Yalong, LIU Chenghao, SHEN Yanbin, LU Wei, CHEN Liwei. Silicon-loaded Lithium-Carbon Composite Microspheres as Lithium Secondary Battery Anodes[J]. Acta Physico-Chimica Sinica, ;2019, 35(12): 1365-1371. doi: 10.3866/PKU.WHXB201903008 shu

Silicon-loaded Lithium-Carbon Composite Microspheres as Lithium Secondary Battery Anodes

  • Corresponding author: SHEN Yanbin, ybshen2017@sinano.ac.cn CHEN Liwei, lwchen2008@sinano.ac.cn
  • Received Date: 4 March 2019
    Revised Date: 2 April 2019
    Accepted Date: 2 April 2019
    Available Online: 10 December 2019

    Fund Project: The project was supported by the National Basic Research Program of China (2016YFB0100102), the "Strategic Priority Research Program" of the CAS, China (XDA09010600, XDA09010303), and the National Nature Science Foundation of China (21625304, 21733012)the National Nature Science Foundation of China 21733012the National Basic Research Program of China 2016YFB0100102the National Nature Science Foundation of China 21625304the "Strategic Priority Research Program" of the CAS, China XDA09010600the "Strategic Priority Research Program" of the CAS, China XDA09010303

  • Lithium metal is the most promising anode material for Li (ion) batteries from the viewpoint of energy density because of its high theoretical specific capacity (3860 mAh∙g-1, 2061 mAh∙cm−3) and low reduction potential (−3.04 V vs standard hydrogen electrode (SHE)). Lithium has been used as an anode material for lithium metal batteries since the 1970s. However because of the serious reaction between Li and non-aqueous electrolytes, the large volume expansion during Li plating, and the formation of Li dendrites during cycling, Li batteries with Li metal anodes show very low Coulombic efficiency (CE) and are easily short-circuited. This limits the widespread commercialization of Li metal anodes for Li batteries. Motivated by our previous study on the development of a Li carbon nanotube (Li-CNT) composite anode material, in this study, we prepared a Si-loaded Li carbon nanotube composite (Li-CNT-Si) via a facile molten impregnation method. The introduction of Si nanoparticles increased the Li content of the composite, thus increasing its specific capacity (the specific capacity of the Li-CNT composite increased from 2000 mAh∙g-1 to 2600 mAh∙g-1 with the addition of 10% Si (mass fraction)). Moreover, Si nanoparticles decreased the polarization for Li plating/stripping, resulting in an improved electrochemical performance. The Li-CNT-Si composite showed the merits of the Li-CNT composite with the advantages of limited electrode volume expansion and negligible Li dendrite formation during cycling. Furthermore, the Si nanoparticles filled the pores inside the Li-CNT microspheres, thus preventing the electrolyte from flowing into the microspheres to corrode the Li metal present inside them. Hence, the incorporation of Si nanoparticles improved the CE of the composite anode. When the 10% Si-loaded Li-CNT-Si composite was used as an anode and coupled with a commercial LiFePO4 cathode, the resulting battery showed more than 900 stable cycles in an ether-based electrolyte at a charge/discharge rate of 1C (0.7 mA∙cm-2) corresponding to a CE of 96.7%, which is considerably higher than those of the Li-CNT (90.1%) and Li metal foil (79.3%) anodes obtained under the same conditions. We believe that the Li-CNT-Si composite prepared in this study is a promising anode material for Li secondary batteries having high energy density, particularly for those employing Li-free cathodes, e.g., Li-sulfur and Li-oxygen batteries.
  • 加载中
    1. [1]

      Tarascon, J. M.; Armand, M. Nature 2001, 414 (6861), 359. doi: 10.1038/35104644  doi: 10.1038/35104644

    2. [2]

      Li, M.; Lu, J.; Chen, Z.; Amine, K. Adv. Mater. 2018, 1800561. doi: 10.1002/adma.201800561  doi: 10.1002/adma.201800561

    3. [3]

      George, E. B. J. Electrochem Soc. 2017, 164 (1), A5019. doi: 10.1149/2.0251701jes  doi: 10.1149/2.0251701jes

    4. [4]

      Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. Energy Environ. Sci. 2014, 7. doi: 10.1039/C3EE40795K  doi: 10.1039/C3EE40795K

    5. [5]

      Zhang, S. S. J. Power Sources 2013, 231 (2), 153. doi: 10.1016/j.jpowsour.2012.12.102  doi: 10.1016/j.jpowsour.2012.12.102

    6. [6]

      Zhang, Y. T.; Liu, Z. J.; Wang, J. W.; Wang, L.; Peng, Z. Q. Acta Phys. -Chim. Sin. 2017, 33 (3), 486.  doi: 10.3866/PKU.WHXB201611181

    7. [7]

      Lin, D.; Liu, Y.; Cui, Y. Nat. Nanotechnol. 2017, 12 (3), 194. doi: 10.1038/nnano.2017.16  doi: 10.1038/nnano.2017.16

    8. [8]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    9. [9]

      Lang, J.; Qi, L.; Luo, Y.; Wu, H. Energy Storage Mater. 2017, 7, 115. doi: 10.1016/j.ensm.2017.01.006  doi: 10.1016/j.ensm.2017.01.006

    10. [10]

      Zheng, J.; Engelhard, M. H.; Mei, D.; Jiao, S.; Polzin, B. J.; Zhang, J. G.; Xu, W. Nat. Energy 2017, 2 (3), 17012. doi: 10.1038/nenergy.2017.12  doi: 10.1038/nenergy.2017.12

    11. [11]

      Liu, F. Q.; Wang, W. P.; Yin, Y. X.; Zhang, S. F.; Shi, J. L.; Wang, L.; Zhang, X.; Zheng, Y.; Zhou, J.; Li, L.; et al. Sci. Adv. 2018, 4 (10), 1. doi: 10.1126/sciadv.aat5383  doi: 10.1126/sciadv.aat5383

    12. [12]

      Cha, E.; Patel, M. D.; Park, J.; Hwang, J.; Prasad, V.; Cho, K.; Choi, W. Nat. Nanotechnol. 2018. doi: 10.1038/s41565-018-0061-y  doi: 10.1038/s41565-018-0061-y

    13. [13]

      Lopez, J; Pei, A.; Oh, J. Y.; Wang, G. J. N.; Cui, Y.; Bao, Z. N. J. Am. Chem. Soc. 2018, 140, 11735. doi: 10.1021/jacs.8b06047  doi: 10.1021/jacs.8b06047

    14. [14]

      Xie, J.; Wang, J.; Lee, H. R.; Yan, K.; Li, Y.; Shi, F.; Huang, W.; Pei, A.; Chen, G.; Subbaraman, R.; et al. Sci. Adv. 2018, 4 (7), eaat5168. doi: 10.1126/sciadv.aat5168  doi: 10.1126/sciadv.aat5168

    15. [15]

      Liu, K.; Kong, B.; Liu, W.; Sun Y.; Song, M. S.; Chen, J.; Liu, Y.; Lin, D.; Pei A.; Cui Y. Joule 2018, 2, 1. doi: 10.1016/j.joule.2018.06.003  doi: 10.1016/j.joule.2018.06.003

    16. [16]

      Guo, Y.; Ouyang, Y.; Li, D.; Wei, Y.; Zhai, T.; Li, H. Energy Storage Mater. 2018, 2, 1. doi: 10.1016/j.ensm.2018.05.012  doi: 10.1016/j.ensm.2018.05.012

    17. [17]

      Wang, Y.; Shen, Y.; Du, Z.; Zhang, X.; Wang, K.; Zhang, H.; Kang, T.; Guo, F.; Liu, C.; Wu, X.; et al. J. Mater. Chem. A 2017, 5, 23434. doi: 10.1039/C7TA08531A  doi: 10.1039/C7TA08531A

    18. [18]

      Guo, F.; Wang, Y.; Kang, T.; Liu, C.; Shen, Y.; Lu, W.; Wu, X.; Chen, L. Energy Storage Mater. 2018, 15, 116. doi: 10.1016/j.ensm.2018.03.018  doi: 10.1016/j.ensm.2018.03.018

    19. [19]

      Shen X.; Tian Z.; Fan R.; Shao, L.; Zhang, D.; Cao, G.; Kou, L.; Bai, Y. J. Energy Chem. 2018, 27, 1067. doi: 10.1016/j.jechem.2017.12.012  doi: 10.1016/j.jechem.2017.12.012

    20. [20]

      Wang, J.; Chen, Z.; Guo, Y.; Huang, R.; Wang, J. J. Inorg. Mater. 2018, 33 (3), 313.  doi: 10.15541/jim20170145

    21. [21]

      Li, J. Y.; Li, G.; Zhang, J.; Yin, Y. X.; Yue, F.S.; Xu, Q.; Guo, Y. G. ACS Appl. Mater. Interfaces 2019, 11, 405. doi: 10.1021/acsami.8b20213  doi: 10.1021/acsami.8b20213

    22. [22]

      Yi, R.; Dai, F.; Gordin, M. L.; Chen, S.; Wang, D. H. Adv. Energy Mater. 2013, 3, 295. doi: 10.1002/aenm.201200857  doi: 10.1002/aenm.201200857

    23. [23]

      Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K.; Zhang, J.; Thornton, K.; Dasgupta, N. P. ACS Cent. Sci. 2016, 2 (11), 790. doi: 10.1021/acscentsci.6b00260  doi: 10.1021/acscentsci.6b00260

    24. [24]

      Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X.; Zhang, X.; Yan, C.; Zhang, Q. Angew. Chem. Int. Ed. 2017, 129 (27), 7764. doi: 10.1002/ange.201702099  doi: 10.1002/ange.201702099

    25. [25]

      Aurbach, D. J. Power Sources 2000, 89 (2), 206. doi: 10.1016/s0378-7753(00)00431-6  doi: 10.1016/s0378-7753(00)00431-6

    26. [26]

      Liu, Y.; Lin, D.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Nat. Commun. 2016, 7, 10992. doi: 10.1038/ncomms10992  doi: 10.1038/ncomms10992

    27. [27]

      Zhao, J.; Lu, Z.; Liu, N.; Lee, H. W.; McDowell, M. T.; Cui, Y. Nat. Commun. 2014, 5, 5088. doi: 10.1038/ncomms6088  doi: 10.1038/ncomms6088

    28. [28]

      Zhao, J.; Zhou, G.; Yan, K.; Xie, J.; Li, Y.; Liao, L.; Jin, Y.; Liu, K.; Hsu, P. C.; Wang, J.; et al. Nat. Nanotechnol. 2017, 12, 993. doi: 10.1038/nnano.2017.129  doi: 10.1038/nnano.2017.129

  • 加载中
    1. [1]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    2. [2]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    3. [3]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    6. [6]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    7. [7]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    10. [10]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    11. [11]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    14. [14]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    17. [17]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    20. [20]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(5)
  • Abstract views(838)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return