Citation: GUO Feng, CHEN Peng, KANG Tuo, WANG Yalong, LIU Chenghao, SHEN Yanbin, LU Wei, CHEN Liwei. Silicon-loaded Lithium-Carbon Composite Microspheres as Lithium Secondary Battery Anodes[J]. Acta Physico-Chimica Sinica, ;2019, 35(12): 1365-1371. doi: 10.3866/PKU.WHXB201903008 shu

Silicon-loaded Lithium-Carbon Composite Microspheres as Lithium Secondary Battery Anodes

  • Corresponding author: SHEN Yanbin, ybshen2017@sinano.ac.cn CHEN Liwei, lwchen2008@sinano.ac.cn
  • Received Date: 4 March 2019
    Revised Date: 2 April 2019
    Accepted Date: 2 April 2019
    Available Online: 10 December 2019

    Fund Project: The project was supported by the National Basic Research Program of China (2016YFB0100102), the "Strategic Priority Research Program" of the CAS, China (XDA09010600, XDA09010303), and the National Nature Science Foundation of China (21625304, 21733012)the National Nature Science Foundation of China 21733012the National Basic Research Program of China 2016YFB0100102the National Nature Science Foundation of China 21625304the "Strategic Priority Research Program" of the CAS, China XDA09010600the "Strategic Priority Research Program" of the CAS, China XDA09010303

  • Lithium metal is the most promising anode material for Li (ion) batteries from the viewpoint of energy density because of its high theoretical specific capacity (3860 mAh∙g-1, 2061 mAh∙cm−3) and low reduction potential (−3.04 V vs standard hydrogen electrode (SHE)). Lithium has been used as an anode material for lithium metal batteries since the 1970s. However because of the serious reaction between Li and non-aqueous electrolytes, the large volume expansion during Li plating, and the formation of Li dendrites during cycling, Li batteries with Li metal anodes show very low Coulombic efficiency (CE) and are easily short-circuited. This limits the widespread commercialization of Li metal anodes for Li batteries. Motivated by our previous study on the development of a Li carbon nanotube (Li-CNT) composite anode material, in this study, we prepared a Si-loaded Li carbon nanotube composite (Li-CNT-Si) via a facile molten impregnation method. The introduction of Si nanoparticles increased the Li content of the composite, thus increasing its specific capacity (the specific capacity of the Li-CNT composite increased from 2000 mAh∙g-1 to 2600 mAh∙g-1 with the addition of 10% Si (mass fraction)). Moreover, Si nanoparticles decreased the polarization for Li plating/stripping, resulting in an improved electrochemical performance. The Li-CNT-Si composite showed the merits of the Li-CNT composite with the advantages of limited electrode volume expansion and negligible Li dendrite formation during cycling. Furthermore, the Si nanoparticles filled the pores inside the Li-CNT microspheres, thus preventing the electrolyte from flowing into the microspheres to corrode the Li metal present inside them. Hence, the incorporation of Si nanoparticles improved the CE of the composite anode. When the 10% Si-loaded Li-CNT-Si composite was used as an anode and coupled with a commercial LiFePO4 cathode, the resulting battery showed more than 900 stable cycles in an ether-based electrolyte at a charge/discharge rate of 1C (0.7 mA∙cm-2) corresponding to a CE of 96.7%, which is considerably higher than those of the Li-CNT (90.1%) and Li metal foil (79.3%) anodes obtained under the same conditions. We believe that the Li-CNT-Si composite prepared in this study is a promising anode material for Li secondary batteries having high energy density, particularly for those employing Li-free cathodes, e.g., Li-sulfur and Li-oxygen batteries.
  • 加载中
    1. [1]

      Tarascon, J. M.; Armand, M. Nature 2001, 414 (6861), 359. doi: 10.1038/35104644  doi: 10.1038/35104644

    2. [2]

      Li, M.; Lu, J.; Chen, Z.; Amine, K. Adv. Mater. 2018, 1800561. doi: 10.1002/adma.201800561  doi: 10.1002/adma.201800561

    3. [3]

      George, E. B. J. Electrochem Soc. 2017, 164 (1), A5019. doi: 10.1149/2.0251701jes  doi: 10.1149/2.0251701jes

    4. [4]

      Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. Energy Environ. Sci. 2014, 7. doi: 10.1039/C3EE40795K  doi: 10.1039/C3EE40795K

    5. [5]

      Zhang, S. S. J. Power Sources 2013, 231 (2), 153. doi: 10.1016/j.jpowsour.2012.12.102  doi: 10.1016/j.jpowsour.2012.12.102

    6. [6]

      Zhang, Y. T.; Liu, Z. J.; Wang, J. W.; Wang, L.; Peng, Z. Q. Acta Phys. -Chim. Sin. 2017, 33 (3), 486.  doi: 10.3866/PKU.WHXB201611181

    7. [7]

      Lin, D.; Liu, Y.; Cui, Y. Nat. Nanotechnol. 2017, 12 (3), 194. doi: 10.1038/nnano.2017.16  doi: 10.1038/nnano.2017.16

    8. [8]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    9. [9]

      Lang, J.; Qi, L.; Luo, Y.; Wu, H. Energy Storage Mater. 2017, 7, 115. doi: 10.1016/j.ensm.2017.01.006  doi: 10.1016/j.ensm.2017.01.006

    10. [10]

      Zheng, J.; Engelhard, M. H.; Mei, D.; Jiao, S.; Polzin, B. J.; Zhang, J. G.; Xu, W. Nat. Energy 2017, 2 (3), 17012. doi: 10.1038/nenergy.2017.12  doi: 10.1038/nenergy.2017.12

    11. [11]

      Liu, F. Q.; Wang, W. P.; Yin, Y. X.; Zhang, S. F.; Shi, J. L.; Wang, L.; Zhang, X.; Zheng, Y.; Zhou, J.; Li, L.; et al. Sci. Adv. 2018, 4 (10), 1. doi: 10.1126/sciadv.aat5383  doi: 10.1126/sciadv.aat5383

    12. [12]

      Cha, E.; Patel, M. D.; Park, J.; Hwang, J.; Prasad, V.; Cho, K.; Choi, W. Nat. Nanotechnol. 2018. doi: 10.1038/s41565-018-0061-y  doi: 10.1038/s41565-018-0061-y

    13. [13]

      Lopez, J; Pei, A.; Oh, J. Y.; Wang, G. J. N.; Cui, Y.; Bao, Z. N. J. Am. Chem. Soc. 2018, 140, 11735. doi: 10.1021/jacs.8b06047  doi: 10.1021/jacs.8b06047

    14. [14]

      Xie, J.; Wang, J.; Lee, H. R.; Yan, K.; Li, Y.; Shi, F.; Huang, W.; Pei, A.; Chen, G.; Subbaraman, R.; et al. Sci. Adv. 2018, 4 (7), eaat5168. doi: 10.1126/sciadv.aat5168  doi: 10.1126/sciadv.aat5168

    15. [15]

      Liu, K.; Kong, B.; Liu, W.; Sun Y.; Song, M. S.; Chen, J.; Liu, Y.; Lin, D.; Pei A.; Cui Y. Joule 2018, 2, 1. doi: 10.1016/j.joule.2018.06.003  doi: 10.1016/j.joule.2018.06.003

    16. [16]

      Guo, Y.; Ouyang, Y.; Li, D.; Wei, Y.; Zhai, T.; Li, H. Energy Storage Mater. 2018, 2, 1. doi: 10.1016/j.ensm.2018.05.012  doi: 10.1016/j.ensm.2018.05.012

    17. [17]

      Wang, Y.; Shen, Y.; Du, Z.; Zhang, X.; Wang, K.; Zhang, H.; Kang, T.; Guo, F.; Liu, C.; Wu, X.; et al. J. Mater. Chem. A 2017, 5, 23434. doi: 10.1039/C7TA08531A  doi: 10.1039/C7TA08531A

    18. [18]

      Guo, F.; Wang, Y.; Kang, T.; Liu, C.; Shen, Y.; Lu, W.; Wu, X.; Chen, L. Energy Storage Mater. 2018, 15, 116. doi: 10.1016/j.ensm.2018.03.018  doi: 10.1016/j.ensm.2018.03.018

    19. [19]

      Shen X.; Tian Z.; Fan R.; Shao, L.; Zhang, D.; Cao, G.; Kou, L.; Bai, Y. J. Energy Chem. 2018, 27, 1067. doi: 10.1016/j.jechem.2017.12.012  doi: 10.1016/j.jechem.2017.12.012

    20. [20]

      Wang, J.; Chen, Z.; Guo, Y.; Huang, R.; Wang, J. J. Inorg. Mater. 2018, 33 (3), 313.  doi: 10.15541/jim20170145

    21. [21]

      Li, J. Y.; Li, G.; Zhang, J.; Yin, Y. X.; Yue, F.S.; Xu, Q.; Guo, Y. G. ACS Appl. Mater. Interfaces 2019, 11, 405. doi: 10.1021/acsami.8b20213  doi: 10.1021/acsami.8b20213

    22. [22]

      Yi, R.; Dai, F.; Gordin, M. L.; Chen, S.; Wang, D. H. Adv. Energy Mater. 2013, 3, 295. doi: 10.1002/aenm.201200857  doi: 10.1002/aenm.201200857

    23. [23]

      Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K.; Zhang, J.; Thornton, K.; Dasgupta, N. P. ACS Cent. Sci. 2016, 2 (11), 790. doi: 10.1021/acscentsci.6b00260  doi: 10.1021/acscentsci.6b00260

    24. [24]

      Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X.; Zhang, X.; Yan, C.; Zhang, Q. Angew. Chem. Int. Ed. 2017, 129 (27), 7764. doi: 10.1002/ange.201702099  doi: 10.1002/ange.201702099

    25. [25]

      Aurbach, D. J. Power Sources 2000, 89 (2), 206. doi: 10.1016/s0378-7753(00)00431-6  doi: 10.1016/s0378-7753(00)00431-6

    26. [26]

      Liu, Y.; Lin, D.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Nat. Commun. 2016, 7, 10992. doi: 10.1038/ncomms10992  doi: 10.1038/ncomms10992

    27. [27]

      Zhao, J.; Lu, Z.; Liu, N.; Lee, H. W.; McDowell, M. T.; Cui, Y. Nat. Commun. 2014, 5, 5088. doi: 10.1038/ncomms6088  doi: 10.1038/ncomms6088

    28. [28]

      Zhao, J.; Zhou, G.; Yan, K.; Xie, J.; Li, Y.; Liao, L.; Jin, Y.; Liu, K.; Hsu, P. C.; Wang, J.; et al. Nat. Nanotechnol. 2017, 12, 993. doi: 10.1038/nnano.2017.129  doi: 10.1038/nnano.2017.129

  • 加载中
    1. [1]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    2. [2]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    3. [3]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    4. [4]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    5. [5]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    6. [6]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    7. [7]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    8. [8]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    9. [9]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    10. [10]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    11. [11]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    12. [12]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    13. [13]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    14. [14]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    15. [15]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    16. [16]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    17. [17]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    18. [18]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    19. [19]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(5)
  • Abstract views(1060)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return