Nitrogen Doped Graphene with a p-Type Field-Effect and Its Fine Modulation
- Corresponding author: WU Bin, wubin@iccas.ac.cn TANG Qingxin, tangqx@nenu.edu.cn LIU Yunqi, liuyq@iccas.ac.cn # These authors contributed equally to this work
Citation: Peng PENG, LIU Hongtao, WU Bin, TANG Qingxin, LIU Yunqi. Nitrogen Doped Graphene with a p-Type Field-Effect and Its Fine Modulation[J]. Acta Physico-Chimica Sinica, ;2019, 35(11): 1282-1290. doi: 10.3866/PKU.WHXB201903002
Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. Science 2011, 332, 1537. doi: 10.1126/science.1200770
doi: 10.1126/science.1200770
Fowler, J. D.; Allen, M. J.; Tung, V. C.; Yang, Y.; Kaner, R. B.; Weiller, B. H. ACS Nano 2009, 3, 301. doi: 10.1021/nn800593m
doi: 10.1021/nn800593m
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896
doi: 10.1126/science.1102896
Paredes, J.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascon, J. Langmuir 2008, 24, 10560. doi: 10.1021/la801744a
doi: 10.1021/la801744a
Peng, P.; Liu, H.; Wu, B.; Tang, Q.; Liu, Y. ChemNanoMat 2019, 5, 472. doi: 10.1002/cnma.201800567
doi: 10.1002/cnma.201800567
Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Chem. Mater. 2006, 18, 2740. doi: 10.1021/cm060258+
doi: 10.1021/cm060258+
Mkhoyan, K. A.; Contryman, A. W.; Silcox, J.; Stewart, D. A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Nano Lett. 2009, 9, 1058. doi: 10.1021/nl8034256
doi: 10.1021/nl8034256
Liu, H.; Liu, Y.; Zhu, D. J. Mater. Chem. 2011, 21, 3335. doi: 10.1039/C0JM02922J
doi: 10.1039/C0JM02922J
Han, T. H.; Huang, Y. K.; Tan, A. T.; Dravid, V. P.; Huang, J. J. Am. Chem. Soc. 2011, 133, 15264. doi: 10.1021/ja205693t
doi: 10.1021/ja205693t
Long, D.; Li, W.; Ling, L.; Miyawaki, J.; Mochida, I.; Yoon, S. H. Langmuir 2010, 26, 16096. doi: 10.1021/la102425a
doi: 10.1021/la102425a
Wang, L.; Sofer, Z.; Luxa, J.; Pumera, M. J. Mater. Chem. C 2014, 2, 2887. doi: 10.1039/C3TC32359E
doi: 10.1039/C3TC32359E
Li, X.; Wang, H.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. J. Am. Chem. Soc. 2009, 131, 15939. doi: 10.1021/ja907098f
doi: 10.1021/ja907098f
Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. ACS Nano 2011, 5, 4350. doi: 10.1021/nn103584t
doi: 10.1021/nn103584t
Liu, R.; Wu, D.; Feng, X.; Müllen, K. Angew. Chem. Int. Ed. 2010, 122, 2619. doi: 10.1002/anie.200907289
doi: 10.1002/anie.200907289
Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Nano Lett. 2009, 9, 1752. doi: 10.1021/nl803279t
doi: 10.1021/nl803279t
Xue, Y.; Wu, B.; Jiang, L.; Guo, Y.; Huang, L.; Chen, J.; Tan, J.; Geng, D.; Luo, B.; Hu, W. J. Am. Chem. Soc. 2012, 134, 11060. doi: 10.1021/ja302483t
doi: 10.1021/ja302483t
Guo, Y.; Di, C. A.; Liu, H.; Zheng, J.; Zhang, L.; Yu, G.; Liu, Y. ACS Nano 2010, 4, 5749. doi: 10.1021/nn101463j
doi: 10.1021/nn101463j
Cote, L. J.; Kim, F.; Huang, J. J. Am. Chem. Soc. 2008, 131, 1043. doi: 10.1021/ja806262m
doi: 10.1021/ja806262m
Zhang, T.; Zhang, D.; Shen, M. Mater. Lett. 2009, 63, 2051. doi: 10.1016/j.matlet.2009.06.050
doi: 10.1016/j.matlet.2009.06.050
Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. J. Phys. Chem. B 2006, 110, 8535. doi: 10.1021/jp060936f
doi: 10.1021/jp060936f
Robinson, J. T.; Tabakman, S. M.; Liang, Y.; Wang, H.; Sanchez Casalongue, H.; Vinh, D.; Dai, H. J. Am. Chem. Soc. 2011, 133, 6825. doi: 10.1021/ja2010175
doi: 10.1021/ja2010175
Acik, M.; Lee, G.; Mattevi, C.; Chhowalla, M.; Cho, K.; Chabal, Y. Nat. Mater. 2010, 9, 840. doi: 10.1038/NMAT2858
doi: 10.1038/NMAT2858
Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M. Nat. Chem. 2009, 1, 403. doi: 10.1038/nchem.281
doi: 10.1038/nchem.281
Kim, T.; Lee, H.; Kim, J.; Suh, K. S. ACS Nano 2010, 4, 1612. doi: 10.1021/nn901525e
doi: 10.1021/nn901525e
Chang, D. W.; Choi, H. J.; Baek, J. B. J. Mater. Chem. A 2015, 3, 7659. doi: 10.1039/C4TA07035F
doi: 10.1039/C4TA07035F
Mei, X.; Ouyang, J. Carbon 2011, 49, 5389. doi: 10.1016/j.carbon.2011.08.019
doi: 10.1016/j.carbon.2011.08.019
Díez-Betriu, X.; Álvarez-García, S.; Botas, C.; Álvarez, P.; Sánchez-Marcos, J.; Prieto, C.; Menéndez, R.; de Andrés, A. J. Mater. Chem. C 2013, 1, 6905. doi: 10.1039/C3TC31124D
doi: 10.1039/C3TC31124D
Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558. doi: 10.1016/j.carbon.2007.02.034
doi: 10.1016/j.carbon.2007.02.034
Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. Nat. Nanotechnol. 2009, 4, 25. doi: 10.1038/nnano.2008.329
doi: 10.1038/nnano.2008.329
Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Adv. Funct. Mater. 2009, 19, 2577. doi: 10.1002/adfm.200900166
doi: 10.1002/adfm.200900166
Krishnamoorthy, K.; Veerapandian, M.; Mohan, R.; Kim, S. J. Appl. Phys. A 2012, 106, 501. doi: 10.1007/s00339-011-6720-6
doi: 10.1007/s00339-011-6720-6
Jeon, I. Y.; Yu, D.; Bae, S. Y.; Choi, H. J.; Chang, D. W.; Dai, L.; Baek, J. B. Chem. Mater. 2011, 23, 3987. doi: 10.1021/cm201542m
doi: 10.1021/cm201542m
Chang, D. W.; Lee, E. K.; Park, E. Y.; Yu, H.; Choi, H. J.; Jeon, I. Y.; Sohn, G. J.; Shin, D.; Park, N.; Oh, J. H. J. Am. Chem. Soc. 2013, 135, 8981. doi: 10.1021/ja402555n
doi: 10.1021/ja402555n
Wang, H.; Xie, M.; Thia, L.; Fisher, A.; Wang, X. J. Phys. Chem. Lett. 2013, 5, 119. doi: 10.1021/jz402416a
doi: 10.1021/jz402416a
Yang, S.; Zhi, L.; Tang, K.; Feng, X.; Maier, J.; Müllen, K. Adv. Funct. Mater. 2012, 22, 3634. doi: 10.1002/adfm.201200186
doi: 10.1002/adfm.201200186
Li, X.; Tang, T.; Li, M.; He, X. Appl. Phys. Lett. 2015, 106, 013110. doi: 10.1063/1.4905342
doi: 10.1063/1.4905342
Eda, G.; Fanchini, G.; Chhowalla, M. Nat. Nanotechnol. 2008, 3, 270. doi: 10.1038/nnano.2008.83
doi: 10.1038/nnano.2008.83
Wang, Y.; Shao, Y.; Matson, D. W.; Li, J.; Lin, Y. ACS Nano 2010, 4, 1790. doi: 10.1021/nn100315s
doi: 10.1021/nn100315s
Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M. ACS Nano 2010, 4, 6337. doi: 10.1021/nn101926g
doi: 10.1021/nn101926g
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Min Chen , Boyu Peng , Xuyun Guo , Ye Zhu , Hanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Jaeyong Ahn , Zhenping Li , Zhiwei Wang , Ke Gao , Huagui Zhuo , Wanuk Choi , Gang Chang , Xiaobo Shang , Joon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Tingting Huang , Zhuanlong Ding , Hao Liu , Ping-An Chen , Longfeng Zhao , Yuanyuan Hu , Yifan Yao , Kun Yang , Zebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Junchen Peng , Xue Yin , Dandan Dong , Zhongyuan Guo , Qinqin Wang , Minmin Liu , Fei He , Bin Dai , Chaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589
Qiang Fu , Shouhong Sun , Kangzhi Lu , Ning Li , Zhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Sajid Mahmood , Haiyan Wang , Fang Chen , Yijun Zhong , Yong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550