Citation: Li Xiaowei, Wang Bin, Yin Wenxuan, Di Jun, Xia Jiexiang, Zhu Wenshuai, Li Huaming. Cu2+ Modified g-C3N4 Photocatalysts for Visible Light Photocatalytic Properties[J]. Acta Physico-Chimica Sinica, ;2020, 36(3): 190200. doi: 10.3866/PKU.WHXB201902001 shu

Cu2+ Modified g-C3N4 Photocatalysts for Visible Light Photocatalytic Properties

  • Corresponding author: Xia Jiexiang, xjx@ujs.edu.cn Zhu Wenshuai, zhuws@ujs.edu.cn
  • Received Date: 1 February 2019
    Revised Date: 3 May 2019
    Accepted Date: 13 May 2019
    Available Online: 17 March 2019

    Fund Project: the National Natural Science Foundation of China 21576122the National Natural Science Foundation of China 21722604Chinese Postdoctoral Science Foundation 2017M611726the National Natural Science Foundation of China (21722604, 21576122), Chinese Postdoctoral Science Foundation (2017M611726) and Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (SJKY19_2573)Postgraduate Research & Practice Innovation Program of Jiangsu Province, China SJKY19_2573

  • Photocatalytic technology can effectively solve the problem of increasingly serious water pollution, the core of which is the design and synthesis of highly efficient photocatalytic materials. Semiconductor photocatalysts are currently the most widely used photocatalysts. Among these is graphitic carbon nitride (g-C3N4), which has great potential in environment management and the development of new energy owing to its low cost, easy availability, unique band structure, and good thermal stability. However, the photocatalytic activity of g-C3N4 remains low because of problems such as wide bandgap, weakly absorb visible light, and the high recombination rate of photogenerated carriers. Among various modification strategies, doping modification is an effective and simple method used to improve the photocatalytic performance of materials. In this work, Cu/g-C3N4 photocatalysts were successfully prepared by incorporating Cu2+ into g-C3N4 to further optimize photocatalytic performance. At the same time, the structure, morphology, and optical and photoelectric properties of Cu/g-C3N4 photocatalysts were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy, UV-Vis diffuse reflectance spectroscopy (DRS), and photoelectric tests. XRD and XPS were used to ensure that the prepared photocatalysts were Cu/g-C3N4 and the valence state of Cu was in the form of Cu2+. Under visible light irradiation, the photocatalytic activity of Cu/g-C3N4 and pure g-C3N4 photocatalysts were investigated in terms of the degradation of RhB and CIP by comparing the amount of introduced copper ions. The experimental results showed that the degradation ability of Cu/g-C3N4 photocatalysts was stronger than that of pure g-C3N4. The N2 adsorption-desorption isotherms of g-C3N4 and Cu/g-C3N4 demonstrated that the introduction of copper had little effect on the microstructure of g-C3N4. The small difference in specific surface area indicates that the enhanced photocatalytic activity may be attributed to the effective separation of photogenerated carriers. Therefore, the enhanced photocatalytic degradation of RhB and CIP over Cu/g-C3N4 may be due to the reduction of carrier recombination rate by copper. The photoelectric test showed that the incorporation of Cu2+ into g-C3N4 could reduce the electron-hole recombination rate of g-C3N4 and accelerate the separation of electron-hole pairs, thus enhancing the photocatalytic activity of Cu/g-C3N4. Free radical trapping experiments and electron spin resonance indicated that the synergistic effect of superoxide radicals (O2•−), hydroxyl radicals (•OH) and holes could increase the photocatalytic activity of Cu/g-C3N4 materials.
  • 加载中
    1. [1]

      Hochbaum, A. I.; Yang, P. Chem. Rev. 2010, 110, 527. doi: 10.1021/cr900075v  doi: 10.1021/cr900075v

    2. [2]

      Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Nature 2001, 414, 625. doi: 10.1038/414625a  doi: 10.1038/414625a

    3. [3]

      Shi, R.; Waterhouse, G. I. N.; Zhang, T. Solar Rrl. 2017, 1, 1700126. doi: 10.1002/solr.201700126  doi: 10.1002/solr.201700126

    4. [4]

      Cao, S.; Li, H.; Tong, T.; Chen, H.; Yu, A.; Yu, J.; Chen, H. M. Adv. Funct. Mater. 2018, 28, 180216932. doi: 10.1002/adfm.201802169  doi: 10.1002/adfm.201802169

    5. [5]

      弓程, 向思弯, 张泽阳, 孙岚, 叶陈清, 林昌健.物理化学学报, 2019, 35, 616. doi: 10.3866/PKU.WHXB201805082  doi: 10.3866/PKU.WHXB201805082

    6. [6]

      Guo, X.; Li, X.; Qin, L.; Kang, S.; Li, G. Appl. Catal. B-Environ. 2019, 243, 1. doi: 10.1016/j.apcatb.2018.10.030  doi: 10.1016/j.apcatb.2018.10.030

    7. [7]

      Casillas, J. E.; Tzompantzi, F.; Castellanos, S. G.; Mendoza-Damian, G.; Perez-Hernandez, R.; Lopez-Gaona, A.; Barrera, A. Appl. Catal. B-Environ. 2017, 208, 161. doi: 10.1016/j.apcatb.2017.02.030  doi: 10.1016/j.apcatb.2017.02.030

    8. [8]

      Lops, C.; Ancona, A.; Di Cesare, K.; Dumontel, B.; Garino, N.; Canavese, G.; Hernandez, S.; Cauda, V. Appl. Catal. B-Environ. 2019, 243, 629. doi: 10.1016/j.apcatb.2018.10.078  doi: 10.1016/j.apcatb.2018.10.078

    9. [9]

      Jin, Z.; Zhang, Q.; Hu, L.; Chen, J.; Cheng, X.; Zeng, Y.; Ruan, S.; Ohno, T. Appl. Catal. B-Environ. 2017, 205, 569. doi: 10.1016/j.apcatb.2016.12.069  doi: 10.1016/j.apcatb.2016.12.069

    10. [10]

      Jelinska, A.; Bienkowski, K.; Jadwiszczak, M.; Pisarek, M.; Strawski, M.; Kurzydlowski, D.; Solarska, R.; Augustynski, J. ACS Catal. 2018, 8, 10573. doi: 10.1021/acscatal.8b03497  doi: 10.1021/acscatal.8b03497

    11. [11]

      Chen, Y.; Zhu, G.; Hojamberdiev, M.; Gao, J.; Zhu, R.; Wang, C.; Wei, X.; Liu, P. J. Hazard. Mater. 2018, 344, 42. doi: 10.1016/j.jhazmat.2017.10.015  doi: 10.1016/j.jhazmat.2017.10.015

    12. [12]

      Yamaguchi, Y.; Usuki, S.; Kanai, Y.; Yamatoya, K.; Suzuki, N.; Katsumata, K.; Terashima, C.; Suzuki, T.; Fujishima, A.; Sakai, H.; et al. ACS Appl. Mater. Inter. 2017, 9, 31393. doi: 10.1021/acsami.7b07786  doi: 10.1021/acsami.7b07786

    13. [13]

      Guo, S.; Tang, Y.; Xie, Y.; Tian, C.; Feng, Q.; Zhou, W.; Jiang, B. Appl. Catal. B-Environ. 2017, 218, 664. doi: 10.1016/j.apcatb.2017.07.022  doi: 10.1016/j.apcatb.2017.07.022

    14. [14]

      Weon, S.; Kim, J.; Choi, W. Appl. Catal. B-Environ. 2018, 220, 1. doi: 10.1016/j.apcatb.2017.08.036  doi: 10.1016/j.apcatb.2017.08.036

    15. [15]

      Liu, J.; Zhang, C.; Ma, B.; Yang, T.; Gu, X.; Wang, X.; Zhang, J.; Hu, C. Nano Energy. 2017, 38, 271. doi: 10.1016/j.nanoen.2017.05.052  doi: 10.1016/j.nanoen.2017.05.052

    16. [16]

      Wang, B.; Di, J.; Zhang, P.; Xia, J.; Dai, S.; Li, H. Appl. Catal. B-Environ. 2017, 206, 127. doi: 10.1016/j.apcatb.2016.12.049  doi: 10.1016/j.apcatb.2016.12.049

    17. [17]

      Wang, B.; Di, J.; Liu, G.; Yin, S.; Xia, J.; Zhang, Q.; Li, H. J. Colloid Interf. Sci. 2017, 507, 310. doi: 10.1016/j.jcis.2017.07.094  doi: 10.1016/j.jcis.2017.07.094

    18. [18]

      Teixeira, I. F.; Barbosa, E. C. M.; Tsang, S. C. E.; Camargo, P. H. C. Chem. Soc. Rev. 2018, 47, 7783. doi: 10.1039/c8cs00479j  doi: 10.1039/c8cs00479j

    19. [19]

      Huang, D.; Yan, X.; Yan, M.; Zeng, G.; Zhou, C.; Wan, J.; Cheng, M.; Xue, W. ACS Appl Mater Inter. 2018, 10, 21035. doi: 10.1021/acsami.8b03620  doi: 10.1021/acsami.8b03620

    20. [20]

      Yu, H.; Shi, R.; Zhao, Y.; Bian, T.; Zhao, Y.; Zhou, C.; Waterhouse, G. I. N.; Wu, L.; Tung, C.; Zhang, T. Adv. Mater. 2017, 29, 160514816. doi: 10.1002/adma.201605148  doi: 10.1002/adma.201605148

    21. [21]

      Zhou, C.; Shi, R.; Shang, L.; Wu, L.; Chen-Ho, T.; Tierui, Z. Nano Res. 2018, 11, 3462. doi: 10.1007/s12274-018-2003-2  doi: 10.1007/s12274-018-2003-2

    22. [22]

      Han, C.; Li, J.; Ma, Z.; Xie, H.; Waterhouse, G. I. N.; Ye, L.; Zhang, T. Sci. China Mater. 2018, 61, 1159. doi: 10.1007/s40843-018-9245-y  doi: 10.1007/s40843-018-9245-y

    23. [23]

      Zhao, H.; Ding, X.; Zhang, B.; Li, Y.; Wang, C. Sci. Bull. 2017, 62, 602. doi: 10.1016/j.scib.2017.03.005  doi: 10.1016/j.scib.2017.03.005

    24. [24]

      Xia, P.; Antonietti, M.; Zhu, B.; Heil, T.; Yu, J.; Cao, S. Adv. Funct. Mater. 2019, 29, 1900093. doi: 10.1002/adfm.201900093  doi: 10.1002/adfm.201900093

    25. [25]

      Wu, M.; Zhang, J.; He, B.; Wang, H.; Wang, R.; Gong, Y. Appl. Catal. B-Environ. 2019, 241, 159. doi: 10.1016/j.apcatb.2018.09.037  doi: 10.1016/j.apcatb.2018.09.037

    26. [26]

      Xu, Y.; Ge, F.; Chen, Z.; Huang, S.; Wei, W.; Xie, M.; Xu, H.; Li, H. Appl. Surf. Sci. 2019, 469, 739. doi: 10.1016/j.apsusc.2018.11.062  doi: 10.1016/j.apsusc.2018.11.062

    27. [27]

      Cao, S.; Huang, Q.; Zhu, B.; Yu, J. J. Power Sources. 2017, 351, 151. doi: 10.1016/j.jpowsour.2017.03.089  doi: 10.1016/j.jpowsour.2017.03.089

    28. [28]

      Zheng, Y.; Lin, L.; Wang, B.; Wang, X. Angew. Chem. Int. Edit. 2015, 54, 12868. doi: 10.1002/anie.201501788  doi: 10.1002/anie.201501788

    29. [29]

      Yang, L.; Li, H.; Yu, Y.; Yu, H.Catal. Commun. 2018, 110, 51. doi: 10.1016/j.catcom.2018.03.014  doi: 10.1016/j.catcom.2018.03.014

    30. [30]

      Jiang, L.; Yuan, X.; Pan, Y.; Liang, J.; Zeng, G.; Wu, Z.; Wang, H. Appl. Catal. B-Environ. 2017, 217, 388. doi: 10.1016/j.apcatb.2017.06.003  doi: 10.1016/j.apcatb.2017.06.003

    31. [31]

      Jiang, J.; Cao, S.; Hu, C.; Chen, C. Chin. J. Catal. 2017, 38, 1981. doi: 10.1016/S1872-2067(17)62936-X  doi: 10.1016/S1872-2067(17)62936-X

    32. [32]

      Zhang, H.; Guo, L.; Wang, D.; Zhao, L.; Wan, B. ACS Appl. Mater. Inter. 2015, 7, 1816. doi: 10.1021/am507483q  doi: 10.1021/am507483q

    33. [33]

      Yan, Y.; Yu, Y.; Huang, S.; Yang, Y.; Yang, X.; Yin, S.; Cao, Y. J. Phys. Chem. C 2017, 121, 1089. doi: 10.1021/acs.jpcc.6b07180  doi: 10.1021/acs.jpcc.6b07180

    34. [34]

      Mao, Z.; Chen, J.; Yang, Y.; Wang, D.; Bie, L.; Fahlman, B. D. ACS Appl. Mater. Inter. 2017, 9, 12427. doi: 10.1021/acsami.7b00370  doi: 10.1021/acsami.7b00370

    35. [35]

      Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/NMAT2317  doi: 10.1038/NMAT2317

    36. [36]

      Tian, N.; Zhang, Y.; Li, X.; Xiao, K.; Du, X.; Dong, F.; Waterhouse, G. I. N.; Zhang, T.; Huang, H. Nano Energy 2017, 38, 72. doi: 10.1016/j.nanoen.2017.05.038  doi: 10.1016/j.nanoen.2017.05.038

    37. [37]

      Sun, Z.; Zhu, M.; Fujitsuka, M.; Wang, A.; Shi, C.; Majima, T. ACS Appl. Mater. Inter. 2017, 9, 30583. doi: 10.1021/acsami.7b06386  doi: 10.1021/acsami.7b06386

    38. [38]

      Kong, C.; Tang, L.; Zhang, X.; Sun, S.; Yang, S.; Song, X.; Yang, Z. J. Mater. Chem. A. 2014, 2, 7306. doi: 10.1039/c4ta00703d  doi: 10.1039/c4ta00703d

    39. [39]

      Wang, W.; Li, G.; An, T.; Chan, D. K. L.; Yu, J. C.; Wong, P. K. Appl. Catal. B-Environ. 2018, 238, 126. doi: 10.1016/j.apcatb.2018.07.004  doi: 10.1016/j.apcatb.2018.07.004

    40. [40]

      Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Z. Energy Environ Sci. 2012, 5, 6717. doi: 10.1039/C2EE03479D  doi: 10.1039/C2EE03479D

    41. [41]

      Akbarzadeh, R.; Fung, C. S. L.; Rather, R. A.; Lo, I. M. C. Chem. Eng. J. 2018, 341, 248. doi: 10.1016/j.cej.2018.02.042  doi: 10.1016/j.cej.2018.02.042

  • 加载中
    1. [1]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    2. [2]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    3. [3]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    4. [4]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    5. [5]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    6. [6]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    7. [7]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    8. [8]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    9. [9]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    10. [10]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    11. [11]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    12. [12]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    13. [13]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    15. [15]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    20. [20]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

Metrics
  • PDF Downloads(8)
  • Abstract views(450)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return