Citation: Fu Jingru, Ben Teng, Qiu Shilun. Fabrication of Polymer-Supported Metal Organic Framework Membrane and Its Gas Separation Performance[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190107. doi: 10.3866/PKU.WHXB201901079 shu

Fabrication of Polymer-Supported Metal Organic Framework Membrane and Its Gas Separation Performance

  • Corresponding author: Qiu Shilun, sqiu@jlu.edu.cn
  • Received Date: 29 January 2019
    Revised Date: 25 February 2019
    Accepted Date: 26 February 2019
    Available Online: 6 January 2019

    Fund Project: the National Natural Science Foundation of China 21390394The project was supported by the National Natural Science Foundation of China (21390394, 21471065, 21871103) and the Science and Technology Department of Jilin Province Foundation, China (20180414009GH)the National Natural Science Foundation of China 21471065the National Natural Science Foundation of China 21871103the Science and Technology Department of Jilin Province Foundation, China 20180414009GH

  • The fabrication of compact, continuous, and large-scale metal organic framework (MOF) membranes with high permeability and H2/CO2 selectivity remains challenging because of the wake interaction between the MOF membrane and the substrate. In addition, substrates with smooth and plain surfaces and suitable pore size are required to prepare high-quality MOF membranes because it is difficult to obtain dense and continuous MOF membranes on a substrate with large pores and rough surfaces. To overcome these challenges, numerous MOF membrane growth methods have emerged, including in situ (direct) growth, secondary (seeded) growth, and layer-by-layer growth methods as well as electrostatic spinning and the chemical modification of the substrate. Among these methods, usage of substrates suitable for surface-functionalization is a promising technique. Herein, Al2O3 was selected as the substrate and was coated with PIM-1 (one polymer of intrinsic microporosity), followed by carboxylation of PIM-1 to furnish a large number of carboxyl groups on the surface. In situ growth of the MOF membrane using the interactions between the carboxyl group and the metal yielded two types of compact, continuous, and large-scale polymer-supported MOF membranes (PIM-1-COOH/ZIF-8 and PIM-1-COOH/HKUST-1). Furthermore, the fabricated polymer-supported MOF membrane structures were investigated by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). Gas separation experiments were performed to explore the gas permeability and selectivity of the prepared MOF membranes. The XRD characterization confirmed the pure phase and high crystallinity of the MOF membranes. The SEM images showed that the MOF membranes were compact and continuous with a tight combination between the MOF crystal membrane and the substrate. Gas separation measurements showed that both MOF membranes exhibited high H2 permeability and selectivity for H2/CO2. For the PIM-1-COOH/ZIF-8 and PIM-1-COOH/HKUST-1 membranes, the 1 : 1 binary mixtures gas separation factors of H2/CO2 calculated as the gas molar ratios in the permeate and retentate side 7.32 and 9.69, respectively, at room temperature and atmospheric pressure. The H2/CO2 mixture separation factors of the two MOF membranes exceeded the corresponding Knudsen constants (4.7), with H2 permeances higher than 3.16 × 10-6 and 1.14 × 10-6 mol·m-2·s-1·Pa-1, respectively. The ideal separation factors of H2/CO2 of both MOF membranes calculated as the ratio of single gas permeances were 7.70 and 12.04, respectively, with the respective H2 permeances of up to 3.73 × 10-6 and 3.86 × 10-6 mol·m-2·s-1·Pa-1. Because of their outstanding characteristics, these novel MOF membranes can be widely used in the fields of H2 purification and separation.
  • 加载中
    1. [1]

      Venna, S. R.; Carreon, M. A. J. Am. Chem. Soc. 2010, 132, 76. doi: 10.1021/ja909263x  doi: 10.1021/ja909263x

    2. [2]

      Huang, A. S.; Chen, Y.; Liu, Q.; Wang, N.; Jiang, J.; Caro J. J. Membr. Sci. 2014, 454, 126. doi: 10.1016/j.memsci.2013.12.018  doi: 10.1016/j.memsci.2013.12.018

    3. [3]

      Zhao, Z. X.; Ma, X. L.; Kasik, A.; Li, Z.; Lin, Y. S. Ind. Eng. Chem. Res. 2013, 52, 1102. Doi: 10.1021/ie202777q  doi: 10.1021/ie202777q

    4. [4]

      Bux, H.; Feldhoff, A.; Cravillon, J.; Wiebcke, M.; Li Y. S.; Caro J. Chem. Mater. 2011, 23, 2262. doi: 10.1021/cm200555s  doi: 10.1021/cm200555s

    5. [5]

      Nian, P.; Li, Y. J.; Zhang, X.; Cao, Y.; Liu, H. O.; Zhang, X. F. ACS Appl. Mater. Interfaces 2018, 10, 4151. doi: 10.1021/acsami.7b17568  doi: 10.1021/acsami.7b17568

    6. [6]

      Wang, W. J.; Dong, X. L.; Nan, J. P.; Jin, W. Q.; Hu, Z. Q.; Chen, Y. F.; Jiang, J. W. Chem. Commun. 2012, 48, 7022. doi: 10.1039/c2cc32595k  doi: 10.1039/c2cc32595k

    7. [7]

      Dong, X. L.; Lin, Y. S. Chem. Commun. 2013, 49, 1196. doi: 10.1039/C2CC38512K  doi: 10.1039/C2CC38512K

    8. [8]

      Wang, C.; deKrafft, K. E.; Lin, W. B. J. Am. Chem. Soc. 2012, 134, 7211. doi: 10.1021/ja300539p  doi: 10.1021/ja300539p

    9. [9]

      Maina, J. W.; Schutz, J. A.; Grundy, L.; Ligneris, E. D.; Yi, Z. F.; Kong, L. X.; Pozo-Gonzalo, C.; Ionescu, M.; Dumee, L. F. ACS Appl. Mater. Interfaces 2017, 9, 35010. doi: 10.1021/acsami.7b11150  doi: 10.1021/acsami.7b11150

    10. [10]

      Jain, I. P. J. Hydrog. Energy 2009, 34, 7368. doi: 10.1016/j.ijhydene.2009.05.093  doi: 10.1016/j.ijhydene.2009.05.093

    11. [11]

      Berry, G. D.; Pasternak, A. D.; Bambach, G. D.; Ray, Smith, J.; Schock, R. N. Energy 1996, 21, 289. doi: 10.1016/0360-5442(95)00104-2  doi: 10.1016/0360-5442(95)00104-2

    12. [12]

      Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444. doi: 10.1126/science.1230444  doi: 10.1126/science.1230444

    13. [13]

      Liu, Y. Y.; Ng, Z. F.; Khan, K. A.; Jeong, H. K.; Ching, C. B.; Lai, Z. P. Microporous Mesoporous Mater. 2009, 118, 296. doi: 10.1016/j.micromeso.2008.08.054  doi: 10.1016/j.micromeso.2008.08.054

    14. [14]

      Liu, Y. Y.; Hu, E. P.; Khan, E. A.; Lai, Z. P. J. Membr. Sci. 2010, 353, 36. doi: 10.1016/j.memsci.2010.02.023  doi: 10.1016/j.memsci.2010.02.023

    15. [15]

      Zhuang, J. L.; Terfort, A.; W ll, C. Coord. Coordination Chem. Rev. 2016, 307, 391. doi: 10.1016/j.ccr.2015.09.013  doi: 10.1016/j.ccr.2015.09.013

    16. [16]

      Makiura, R.; Motoyama, S.; Umemura, Y.; Yamanake, H.; Sakata, O.; Kitagawa, H. Nat. Mater. 2010, 9, 565. doi: 10.1038/nmat2769  doi: 10.1038/nmat2769

    17. [17]

      Shekhah, O.; Wang, H.; Kowarik, S.; Schreiber, F.; Paulus, M.; Tolan, M.; Sternemann, C.; Evers, F.; Zacher, D.; Fischer, R. A.; et al. J. Am. Chem. Soc. 2007, 129, 15118. doi: 10.1021/ja076210u  doi: 10.1021/ja076210u

    18. [18]

      Nijem, N.; Fürsich, K.; Kelly, S. T.; Swain, C.; Leone, S. R.; Gilles, M. K. Cryst. Growth Des. 2015, 15, 2948. doi: 10.1021/acs.cgd.5b00384  doi: 10.1021/acs.cgd.5b00384

    19. [19]

      Ranjan, R.; Tsapatsis, M. Chem. Mater. 2009, 21, 4920. doi: 10.1021/cm902032y  doi: 10.1021/cm902032y

    20. [20]

      Hu, Y. X.; Dong, X. L.; Nan, J. P.; Jin, W. Q.; Ren, X. M.; Xu, N. P.; Lee, Y. M. Chem. Commun. 2011, 47, 737. doi: 10.1039/c0cc03927f  doi: 10.1039/c0cc03927f

    21. [21]

      Nan, J. P.; Dong, X. L.; Wang, W. J.; Jin, W. Q.; Xu, N. P. Langmuir 2011, 27, 4309. doi: 10.1021/la200103w  doi: 10.1021/la200103w

    22. [22]

      Guo, H. L.; Zhu, G. S.; Hewitt, I. J.; Qiu, S. L. J. Am. Chem. Soc. 2009, 131, 1646. doi: 10.1021/ja8074874  doi: 10.1021/ja8074874

    23. [23]

      Zacher, D.; Baunemann, A.; Hermes, S.; Fischer, R. A. J. Mater. Chem. 2007, 17, 2785. doi: 10.1039/B703098C  doi: 10.1039/B703098C

    24. [24]

      Biemmi, E.; Scherb, C.; Bein, T. J. Am. Chem. Soc. 2007, 129, 8054. doi: 10.1021/ja0701208  doi: 10.1021/ja0701208

    25. [25]

      Li, Y. S.; Liang, F. Y.; Bux, H.; Feldhoff, A.; Yang, W. S.; Caro, J. Angew. Chem. Int. Ed. 2010, 49, 548. doi: 10.1002/anie.200905645  doi: 10.1002/anie.200905645

    26. [26]

      Huang, A. S.; Bux, H.; Steinbach, F.; Caro, J. Angew. Chem. Int. Ed. 2010, 49, 4958. doi: 10.1002/anie.201001919  doi: 10.1002/anie.201001919

    27. [27]

      Huang, A. S.; Wang, N.; Kong, C. L.; Caro, J. Angew. Chem. Int. Ed. 2012, 51, 10551. doi: 10.1002/anie.201204621  doi: 10.1002/anie.201204621

    28. [28]

      Huang, A. S.; Chen, Y. F.; Wang, N.; Hu, Z. Q.; Jiang, J.; Caro, J. Chem. Commun. 2012, 48, 10981. doi: 10.1039/C2CC35691K  doi: 10.1039/C2CC35691K

    29. [29]

      Ben, T.; Lu, C. J.; Pei, C. Y.; Xu, S. X.; Qiu, S. L. Chem. Eur. J. 2012, 18, 10250. doi: 10.1002/chem.201201574  doi: 10.1002/chem.201201574

    30. [30]

      Budd, P. M.; Elabas, E. S.; Ghanem, B. S.; Makhseed, S.; Mckeown, N. B.; Msayib, K. J.; Tattershall, C. E.; Wang, D. Adv. Mater. 2004, 16, 456. doi: 10.1002/adma.200306053  doi: 10.1002/adma.200306053

    31. [31]

      Zhao, H. Y.; Xie, Q.; Ding, X. L.; Chen, J. M.; Hua, M. M.; Tan, X. Y.; Zhang, Y. Z. J. Membr. Sci. 2016, 514, 305. doi: 10.1016/j.memsci.2016.05.013  doi: 10.1016/j.memsci.2016.05.013

    32. [32]

      Fu, J. R.; Das, D.; Xing, G. L.; Valtchev, V.; Qiu, S. L. J. Am. Chem. Soc. 2016, 138, 7673. doi: 10.1021/jacs.6b03348  doi: 10.1021/jacs.6b03348

    33. [33]

      McCarthy, M. C.; Varela-Guerrero, V.; Barnett, G. V.; Jeong, H. K. Langmuir 2010, 26, 14636. doi: 10.1021/la102409e  doi: 10.1021/la102409e

    34. [34]

      Pan, Y. C.; Lai Z. P. Chem. Commun. 2011, 47, 10275. doi: 10.1039/C1CC14051E  doi: 10.1039/C1CC14051E

    35. [35]

      Nagaraju, D.; Bhagat, D. G.; Banerjee, R.; Kharul, U. K. J. Mater. Chem. A 2013, 1, 8828. doi: 10.1039/c3ta10438a  doi: 10.1039/c3ta10438a

    36. [36]

      Guerrero, V. V.; Yoo, Y.; McCarthy, M. C.; Jeong, H. K. J. Mater. Chem. 2010, 20, 3938. doi: 10.1039/B924536G  doi: 10.1039/B924536G

    37. [37]

      Budd, P. M.; Msayib, K. J.; Tattershall, C. E.; Ghanem, B. S.; Reynolds, K. J.; McKeown, N. B.; Fritsch, D. J. Membr. Sci. 2005, 251, 263. doi: 10.1016/j.memsci.2005.01.009  doi: 10.1016/j.memsci.2005.01.009

    38. [38]

      Li, P.; Chung, T. S.; Paul, D. R. J. Membr. Sci. 2013, 432, 50. doi: 10.1016/j.memsci.2013.01.009  doi: 10.1016/j.memsci.2013.01.009

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    14. [14]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    17. [17]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    18. [18]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    19. [19]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    20. [20]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

Metrics
  • PDF Downloads(5)
  • Abstract views(300)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return