Citation: GONG Yanyan, LIU Haichun, ZHANG Duo, TONG Jing. Thermodynamic Properties of the Ether-Based Functionalized Ionic Liquids [MOEMIm]Cl and [EOEMIm]Cl[J]. Acta Physico-Chimica Sinica, ;2019, 35(11): 1224-1231. doi: 10.3866/PKU.WHXB201901072 shu

Thermodynamic Properties of the Ether-Based Functionalized Ionic Liquids [MOEMIm]Cl and [EOEMIm]Cl

  • Corresponding author: TONG Jing, tongjinglnu@sina.com
  • Received Date: 27 January 2019
    Revised Date: 28 February 2019
    Accepted Date: 8 March 2019
    Available Online: 13 November 2019

    Fund Project: This project is supported by the National Natural Science Foundation of China (21773100) and "Liaoning BaiQianWan Talents Program", Chinathe National Natural Science Foundation of China 21773100

  • Functionalized ionic liquids containing ether groups can be obtained through reasonable design. The unique properties of ether-based functionalized ionic liquids are attractive for a variety of practical applications. To further develop these ether-based functionalized ionic liquids, it is important to accurately describe the thermophysical properties of ether-based functionalized ionic liquids and to predict, simulate, and optimize theoretical models of thermophysical properties. Herein, the ether-functionalized ionic liquids [MOEMIm]Cl and [EOEMIm]Cl were characterized by nuclear magnetic resonance spectroscopy, elemental analysis, and thermogravimetric analysis. The density (ρ), surface tension (γ), and refractive index (nD) of [MOEMIm]Cl and [EOEMIm]Cl were measured at 5 K intervals between 288.15 and 328.15 K. Based on the obtained experimental data, the molar volume (V), molecular volume (Vm), standard entropy (S(298)0), and lattice energy (UPOT) of [MOEMIm]Cl and [EOEMIm]Cl were calculated and the data obtained at 298.15 K were compared. The comparison results agreed well with the literature values within the experimental error range and indicated that both [MOEMIm]Cl and [EOEMIm]Cl exhibit small lattice energies and are in the molten state at room temperature (T = 298.15 K). Based on these experimental data, the molar surface Gibbs free energy (gs), molar surface entropy (s), molar surface enthalpy (h), molar polarization (Rm), and molar polarizability (αp) of [MOEMIm]Cl and [EOEMIm]Cl were also calculated. The calculation results show that the molar surface enthalpy (h) is approximately constant, that is, the molar surface constant pressure heat capacity is close to zero, indicating that the process of heat capacity change from the inside to the surface of the ionic liquid is an equivalent coulomb process. Simultaneously, the calculation results showed that the molar polarization (Rm) and molar polarizability (αp) of the ionic liquids were independent of temperature, indicating that Rm and αp reflect the induced dipole effect of the ionic liquid. The molar surface Gibbs free energy definition equation was combined with the Lorentz-Lorenz equation to obtain a novel modified Lorentz-Lorenz equation and was used to predict the surface tension of the [MOEMIm]Cl and [EOEMIm]Cl liquids. The values predicted using this combined equation were highly correlated with the experimental values.
  • 加载中
    1. [1]

      Cui, G.; Wang, J.; Zhang, S. Chem. Soc. Rev. 2016, 45, 4307. doi: 10.1039/c5cs00462d  doi: 10.1039/c5cs00462d

    2. [2]

      Wu, X. P.; Liu, Z. P.; Wang, W. C. Acta Phys. -Chim. Sin. 2015, 21 (10), 1138.  doi: 10.3866/PKU.WHXB201207181

    3. [3]

      Zhong, H. X.; Zhao, C. B.; Luo, H; Zhang, L. Z. Acta Phys. -Chim. Sin. 2012, 28 (11), 2641.  doi: 10.3866/PKU.WHXB201207181

    4. [4]

      Shi, J. F.; Huang, Q. Z.; Wan, Q. C.; Xu, X. Q.; Li, C. S.; Xu, G. Acta Phys. -Chim. Sin. 2016, 32 (4), 822.  doi: 10.3866/PKU.WHXB201602262

    5. [5]

      Davis, J. H., Jr. Chem. Lett. 2004, 33, 1072. doi: 10.1002/chin.200501222  doi: 10.1002/chin.200501222

    6. [6]

      Wytze Meindersma, G.; Galan Sanchez, L. M.; Hansmeier, A. R.; de Haan, A. B. Monatsh. Chem. 2007, 138, 1125. doi: 10.1007/s00706-007-0757-4  doi: 10.1007/s00706-007-0757-4

    7. [7]

      Tang, S. K.; Baker, G. A.; Zhao, H. Chem. Soc. Rev. 2012, 41, 4030. doi: 10.1039/c2cs15362a  doi: 10.1039/c2cs15362a

    8. [8]

      Monteiro, M. J.; Camilo, F. F.; Ribeiro, M. C. C.; Torresi, R. M. J. Phys. Chem. B 2010, 114, 12488. doi: 10.1021/jp104419k  doi: 10.1021/jp104419k

    9. [9]

      Smith, G. D.; Borodin, O.; Li, L. Y.; Kim, H.; Liu, Q.; Bara, J. E.; Gin, D. L.; Nobel, R. Phys. Chem. Chem. Phys. 2008, 10, 6301. doi: 10.1039/B808303G  doi: 10.1039/B808303G

    10. [10]

      Zheng, J. C.; Tong, X.; Lee, J. M. RSC Adv. 2012, 2, 10564. doi: 10.1039/C2RA21772D  doi: 10.1039/C2RA21772D

    11. [11]

      Wei, J.; Dong, H. X.; Chen, X.; Yang, Y. X.; Fang, D. W.; Guan, W.; Yang, J, Z. Acta Phys. -Chim. Sin. 2018, 34 (8), 927.  doi: 10.3866/PKU.WHXB201801112

    12. [12]

      Li, B. X.; Guo, Q. J.; Xia, A. D. Acta Phys. -Chim. Sin. 2015, 31 (8), 1452.  doi: 10.3866/PKU.WHXB201506101

    13. [13]

      Zhao, H.; Song, Z. Y.; Olubojo, O. Biotechnol. Lett. 2010, 32, 1109. doi: 10.1007/s10529-010-0262-4  doi: 10.1007/s10529-010-0262-4

    14. [14]

      Tsurumaki, A.; Ohno, H.; Panero, S.; Navarra, M. A. Electrochim. Acta 2019, 293, 160. doi: 10.1016/j.electacta.2018.09.205  doi: 10.1016/j.electacta.2018.09.205

    15. [15]

      Kimizuka, N.; Nakashima, T. Langmuir 2001, 17 (22), 6759. doi: 10.1021/la015523e  doi: 10.1021/la015523e

    16. [16]

      Park, S.; Kazlauskas, R. J. J. Org. Chem. 2001, 66 (25), 8395. doi: 10.1021/jo015761e  doi: 10.1021/jo015761e

    17. [17]

      Deng, Y.; Morrissey, S.; Gathergood, N.; Delort, A. M.; Husson, P.; Costa Gomes, M. F. Chem. Sus. Chem. 2010, 3 (3), 377. doi: 10.1002/cssc.200900241  doi: 10.1002/cssc.200900241

    18. [18]

      Corvo, M. C.; Sardinha, J.; Casimiro, T.; Marin, G.; Seferin, M.; Einloft, S.; Menezes, S. C.; Dupont, J.; Cabrita, E. J. Chem. Sus. Chem. 2015, 8 (11), 1935. doi: 10.1002/cssc.201500104  doi: 10.1002/cssc.201500104

    19. [19]

      Jiang, B.; Huang, Z. H.; Zhang, L. H.; Sun, Y. L.; Yang, H. W.; Bi, H. R. J. Taiwan Inst. Chem. E 2016, 69, 85. doi: 10.1016/j.jtice.2016.10.009  doi: 10.1016/j.jtice.2016.10.009

    20. [20]

      Kanakubo, M.; Makino, T.; Taniguchi, T.; Nokami, T.; Itoh, T. ACS Sustain. Chem. Eng. 2016, 4 (2), 525. doi: 10.1021/acssuschemeng.5b00960  doi: 10.1021/acssuschemeng.5b00960

    21. [21]

      Zhang, J. H.; Fang, S. H.; Qu, L.; Jin, Y. D.; Li, Y.; Hirano, S. I. Ind. Eng. Chem. Res. 2014, 53, 16633. doi: 10.1021/ie502716p  doi: 10.1021/ie502716p

    22. [22]

      Pan, Y.; Zheng, L.; Xing, N. N.; Ji, H. X.; Guan, W. J. Chem. Thermodyn. 2017, 112, 213. doi: 10.1016/j.jct.2017.03.016  doi: 10.1016/j.jct.2017.03.016

    23. [23]

      Pan, Y.; Yang, Y. X.; Chang, N.; Wang, Z.; Guan, W.; Yang, J. Z. J. Chem. Thermodyn. 2018, 116, 107. doi: 10.1016/j.jct.2017.08.035  doi: 10.1016/j.jct.2017.08.035

    24. [24]

      Lide, D. R. Handbook of Chemistry and Physics, 82nd ed.; CRC Press: Boca Raton, FL, USA, 2001.

    25. [25]

      Fang, D.W.; Tong, J.; Guan, W.; Wang, H.; Yang, J. Z. J. Phys. Chem. B 2010, 114, 13808. doi: 10.1021/jp107452q  doi: 10.1021/jp107452q

    26. [26]

      Glasser, L. Thermochim. Acta 2004, 421, 87. doi: 10.1016/S0040-6031(04)00125-X  doi: 10.1016/S0040-6031(04)00125-X

    27. [27]

      Mountain, B. W.; Seward, T. M. Geochim. Cosmochim. Acta 2003, 67, 3005. doi: 10.1016/S0016-7037(03)00303-X  doi: 10.1016/S0016-7037(03)00303-X

    28. [28]

      Ersfeld, B.; Felderhof, B. U. Phys. Rev. E 1998, 57, 1118. doi: 10.1103/physreve.57.1118  doi: 10.1103/physreve.57.1118

    29. [29]

      Wei, J.; Li, Z.; Gu, C.; Pan, Y.; Xing, N. N.; Tong, J.; Guan, W. J. Therm. Anal. Calorim. 2016, 125, 547. doi: 10.1007/s10973-016-5318-9  doi: 10.1007/s10973-016-5318-9

    30. [30]

      Zhang, D.; Qu, Y.; Gong, Y. Y.; Tong, J.; Fang, D. W.; Tong, J. J. Chem. Thermodyn. 2018, 116, 107. doi: 10.1016/j.jct.2017.07.024  doi: 10.1016/j.jct.2017.07.024

  • 加载中
    1. [1]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    2. [2]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    3. [3]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    4. [4]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    7. [7]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    8. [8]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    9. [9]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    10. [10]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    11. [11]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    12. [12]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    13. [13]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    14. [14]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    15. [15]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    16. [16]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    17. [17]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    18. [18]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    19. [19]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    20. [20]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

Metrics
  • PDF Downloads(10)
  • Abstract views(702)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return