Citation: Cao Dan, An Hua, Yan Xiaoqing, Zhao Yuxin, Yang Guidong, Mei Hui. Fabrication of Z-Scheme Heterojunction of SiC/Pt/Cds Nanorod for Efficient Photocatalytic H2 Evolution[J]. Acta Physico-Chimica Sinica, ;2020, 36(3): 190105. doi: 10.3866/PKU.WHXB201901051 shu

Fabrication of Z-Scheme Heterojunction of SiC/Pt/Cds Nanorod for Efficient Photocatalytic H2 Evolution

  • Corresponding author: Yang Guidong, guidongyang@xjtu.edu.cn Mei Hui, meihui@nwpu.edu.cn
  • Received Date: 22 January 2019
    Revised Date: 9 March 2019
    Accepted Date: 28 March 2019
    Available Online: 1 March 2019

    Fund Project: Fundamental Research Funds for the Central Universities, China cxtd2017004The project was supported by the National Natural Science Foundation of China (U1862105), Natural Science Basic Research Plan in Shaanxi Province of China (2017JZ001, 2018KJXX-008), Key Research and Development Program of Shaanxi Province, China (2018ZDCXL-SF-02-04), Fundamental Research Funds for the Central Universities, China (cxtd2017004), and K. C. Wong Education Foundation and Hong Kong, Chinathe National Natural Science Foundation of China U1862105Natural Science Basic Research Plan in Shaanxi Province of China 2018KJXX-008Key Research and Development Program of Shaanxi Province, China 2018ZDCXL-SF-02-04Natural Science Basic Research Plan in Shaanxi Province of China 2017JZ001

  • In this study, a novel silicon carbide/platinum/cadmium sulfide (SiC/Pt/CdS) Z-scheme heterojunction nanorod is constructed using a simple chemical reduction-assisted hydrothermal method, in which Pt nanoparticles are anchored at the interface of SiC nanorods and CdS nanoparticles to induce an electron-hole pair transfer along the Z-scheme transport path. Multiple characterization techniques are used to analyze the structure, morphology, and properties of these materials. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results show that the SiC/Pt/CdS materials with good crystal structure are successfully synthesized. Transmission electron microscopy reveals that Pt nanoparticles grow between the interfaces of SiC nanorods and CdS nanoparticles. UV-Vis diffuse reflectance spectroscopy shows that the as-prepared Z-scheme heterojunction samples have a wider light absorption range in comparison with pristine CdS materials. Photoluminescence spectroscopy and the transient photocurrent response further demonstrate that the SiC/Pt/CdS nanorod sample with an optimal molar ratio possesses the highest electron-hole pair separation efficiency. The loading amount of CdS on the surface of SiC/Pt nanorods is effectively adjusted by controlling the molar ratio of SiC and CdS to achieve the optimal performance of the SiC/Pt/CdS nanorod photocatalysts. The optimal H2 evolution capacity is achieved at SiC : CdS = 5 : 1 (molar ratio) and the maximum H2 evolution rate reaches a high value of 122.3 µmol·h−1. In addition, scanning electron microscopy, XRD, and XPS analyses show that the morphology and crystal structure of the SiC/Pt/CdS photocatalyst remain unchanged after three cycles of activity testing, indicating that the SiC/Pt/CdS nanocomposite has a stable structure for H2 evolution under visible light. To prove the Z-scheme transfer mechanism of electron-hole pairs, selective photo-deposition technology is used to simultaneously carry out the photo-reduction deposition of Au nanoparticles and photo-oxidation deposition of Mn3O4 nanoparticles in the photoreaction. The experimental results indicate that during photocatalysis, the electrons in the conduction band of CdS participate mainly in the reduction reaction, and the holes in the valence band of SiC are more likely to undergo the oxidation reaction. The electrons in the conduction band of SiC combine with the holes in the valence band of CdS to form a Z-scheme transport path. Therefore, a possible Z-scheme charge migration path in SiC/Pt/CdS nanorods during photocatalytic H2 production is proposed to explain the enhancement in the activity. This study provides a new strategy for synthesizing a Z-scheme photocatalytic system based on SiC nanorods. Based on the characterization results, it is determined that SiC/Pt/CdS nanocomposites are highly efficient, inexpensive, easy to prepare, and are stable structures for H2 evolution under visible light with outstanding commercial application prospects.
  • 加载中
    1. [1]

      EatwellHall, R. E A.; Sharifi, V. N.; Swithenbank, J. Int. J. Hydrog. Energy 2010, 35, 13168. doi: 10.1016/j.ijhydene.2010.09.003  doi: 10.1016/j.ijhydene.2010.09.003

    2. [2]

      Grigoriev, S. A.; Porembsky, V. I.; Fateev, V. N. Int. J. Hydrog. Energy 2006, 31, 171. doi: 10.1016/j.ijhydene.2005.04.038  doi: 10.1016/j.ijhydene.2005.04.038

    3. [3]

      Ming, Q.; Healey, T.; Allen, L.; Irving, P. Catal. Today 2002, 77, 51. doi: 10.1016/S0920-5861(02)00232-8  doi: 10.1016/S0920-5861(02)00232-8

    4. [4]

      Yu, K. H.; Yan, G. L.; Ying, C. C. Electrochem. Commun. 2011, 13, 1383. doi: 10.1016/j.elecom.2011.08.016  doi: 10.1016/j.elecom.2011.08.016

    5. [5]

      Tsuji, I.; Kato, H.; Kudo, A. Angew. Chem. Int. Ed. 2005, 44, 3565. doi: 10.1002/anie.200500314  doi: 10.1002/anie.200500314

    6. [6]

      Zhou, W.; Li, W.; Wang, J. Q. J. Am. Chem. Soc. 2014, 136, 9280. doi: 10.1021/ja504802q  doi: 10.1021/ja504802q

    7. [7]

      Ni, M.; Leung, M. K. H.; Leung, D. Y. C. Renew. Sust. Energ. Rev. 2007, 11, 401. doi: 10.1016/j.rser.2005.01.009  doi: 10.1016/j.rser.2005.01.009

    8. [8]

      Zhou, H. L.; Liu, Y. C.; Zhang, L. J. Colloid Interface Sci. 2019, 533, 287. doi: 10.1016/j.jcis.2018.07.084  doi: 10.1016/j.jcis.2018.07.084

    9. [9]

      Xu, J.; Yu, H.; Guo, H. Mater. Res. Bull. 2018, 105, 342. doi: 10.1016/j.materresbull.2018.04.006  doi: 10.1016/j.materresbull.2018.04.006

    10. [10]

      Zhang, Y. X.; Li, K.; Yu, Y. X. J. Colloid Interface Sci. 2018, 526, 374. doi: 10.1016/j.jcis.2018.05.003  doi: 10.1016/j.jcis.2018.05.003

    11. [11]

      Dang, H. F.; Li, B. Q.; Li, C. P. Electrochim. Acta 2018, 267, 24. doi: 10.1016/j.electacta.2018.02.070  doi: 10.1016/j.electacta.2018.02.070

    12. [12]

      Chang, F.; Zheng, J.; Wang, X.; Xu, Q.; Deng, B.; Hu, X.; Liu, X. Mat. Sci. Semicon. Proc. 2018, 75, 183. doi: 10.1016/j.mssp.2017.11.043  doi: 10.1016/j.mssp.2017.11.043

    13. [13]

      Meenakshi, G.; Sivasamy, A. J. Environ. Chem. Eng. 2018, 6, 3757. doi: 10.1016/j.jece.2016.12.013  doi: 10.1016/j.jece.2016.12.013

    14. [14]

      Yang, J. J.; Yang, Y. R.; Zeng, X. P. Catal. Sci. Technol. 2015, 5, 2798. doi: 10.1039/C4CY01757A  doi: 10.1039/C4CY01757A

    15. [15]

      Sun, L.; Wang, B.; Wang, Y. Int. J. Appl. Ceram. Technol. 2018, 15, 111. doi: 10.1111/ijac.12792  doi: 10.1111/ijac.12792

    16. [16]

      Wang, M. M.; Chen, J. J.; Liao, X. Int. J. Hydrog. Energy 2014, 39, 1458. doi: 10.1016/j.ijhydene.2014.07.068  doi: 10.1016/j.ijhydene.2014.07.068

    17. [17]

      Nagakawa, H.; Ochiai, T.; Nagata, M. Int. J. Hydrog. Energy 2018, 43, 2207. doi: 10.1016/j.ijhydene.2017.12.006  doi: 10.1016/j.ijhydene.2017.12.006

    18. [18]

      Bora, L. V.; Mewada, R. K. J. Environ. Chem. Eng. 2017, 5, 5556. doi: 10.1016/j.jece.2017.10.037  doi: 10.1016/j.jece.2017.10.037

    19. [19]

      Zhou, X. F.; Li, X.; Gao, Q. Z. Catal. Sci. Technol. 2015, 5, 2798. doi: 10.1039/C4CY01757A  doi: 10.1039/C4CY01757A

    20. [20]

      Wang, B.; Zhang, J. T.; Huang, F. Appl. Surf. Sci. 2017, 391, 449. doi: 10.1016/j.apsusc.2016.07.056  doi: 10.1016/j.apsusc.2016.07.056

    21. [21]

      Xin, Z. C.; Li, L.; Zhang, W. Z. Mol. Catal. 2018, 447, 1. doi: 10.1016/j.mcat.2018.01.001  doi: 10.1016/j.mcat.2018.01.001

    22. [22]

      Hao, J. Y.; Wang, Y. Y.; Tong, X. L. Int. J. Hydrog. Energy 2012, 37, 15038. doi: 10.1016/j.ijhydene.2012.08.021  doi: 10.1016/j.ijhydene.2012.08.021

    23. [23]

      Yang, T.; Chang, X.; Chen, J. Nanoscale. 2015, 7, 8955. doi: 10.1039/c5nr01742d  doi: 10.1039/c5nr01742d

    24. [24]

      Wang, D.; Wang, W. J.; Wang, Q. Mater. Lett. 2017, 201, 114. doi: 10.1016/j.matlet.2017.04.140  doi: 10.1016/j.matlet.2017.04.140

    25. [25]

      Liang, Y.; Yang, Y.; Zhou, H. Appl. Surf. Sci. 2019, 471, 124. doi: 10.1016/j.apsusc.2018.12.012  doi: 10.1016/j.apsusc.2018.12.012

    26. [26]

      Li, L.; Yin, X.; Sun, Y. Sep. Purif. Technol. 2019, 212, 135. doi: 10.1016/j.seppur.2018.11.032  doi: 10.1016/j.seppur.2018.11.032

    27. [27]

      Yu, H. G.; Zhong, W.; Huang, X. ACS Sustainable Chem. Eng. 2018, 6, 5513. doi: 10.1021/acssuschemeng.8b00398  doi: 10.1021/acssuschemeng.8b00398

    28. [28]

      Shi, R.; Cao, Y. H.; Bao, Y. J. Adv. Mater. 2017, 29, 1700803. doi: 10.1002/adma.201700803  doi: 10.1002/adma.201700803

    29. [29]

      Li, R. G.; Zhang, F. X.; Wang, D. G. Nat. Commun. 2013, 4, 1432. doi: 10.1038/ncomms2401  doi: 10.1038/ncomms2401

    30. [30]

      Wu, J.; Wang, J.; Du, Y.; Li, H.; Yang, Y.; Jia, X. Appl. Catal. B: Environ. 2015, 174, 435. doi: 10.1016/j.apcatb.2015.03.040  doi: 10.1016/j.apcatb.2015.03.040

    31. [31]

      Xue, C.; Yan, X.; Ding, S.; Yang, G. RSC Adv. 2016, 6, 68653. doi: 10.1039/C6RA13269C  doi: 10.1039/C6RA13269C

    32. [32]

      Jo, W.; Natarajan, T. S. ACS Appl. Mater. Interfaces 2015, 7, 17138. doi: 10.1021/acsami.5b03935  doi: 10.1021/acsami.5b03935

    33. [33]

      Kumar, A.; Khan, M.; Zeng, X.; Lo, I. M. Chem. Eng. J. 2018, 353, 645. doi: 10.1016/j.cej.2018.07.153  doi: 10.1016/j.cej.2018.07.153

    34. [34]

      Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. Nat. Mater. 2006, 5, 782. doi: 10.1038/nmat1734  doi: 10.1038/nmat1734

    35. [35]

      Zhou, P.; Yu, J.; Jaroniec, M. Adv. Mater. 2014, 26, 4920. doi: 10.1002/adma.201400288  doi: 10.1002/adma.201400288

    36. [36]

      Maeda, K. ACS Catal. 2013, 3, 1486. doi: 10.1021/cs4002089  doi: 10.1021/cs4002089

    37. [37]

      Li, H. Y.; Sun, Y. J.; Cai, B. Appl. Catal. B: Environ. 2015, 170, 206. doi: 10.1016/j.apcatb.2015.01.043  doi: 10.1016/j.apcatb.2015.01.043

    38. [38]

      Zhu, H. M.; Yang, B. F.; Xu, J. Appl. Catal. B: Environ. 2009, 90, 463. doi: 10.1016/j.apcatb.2009.04.006  doi: 10.1016/j.apcatb.2009.04.006

  • 加载中
    1. [1]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    2. [2]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    3. [3]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    4. [4]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    5. [5]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Yun-Fei ZhangChun-Hui ZhangJian-Hui XuLei LiDan LiJin-Hong FanJiale GaoXin QuanQi WuYue ZouYan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385

    8. [8]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    9. [9]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    10. [10]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    11. [11]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    12. [12]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    13. [13]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    14. [14]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    15. [15]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    16. [16]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    17. [17]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    18. [18]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    19. [19]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    20. [20]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

Metrics
  • PDF Downloads(7)
  • Abstract views(665)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return