Citation: ZHANG Chunmei, NIE Yihan, DU Aijun. Intrinsic Ultrahigh Negative Poisson's Ratio in Two-Dimensional Ferroelectric ABP2X6 Materials[J]. Acta Physico-Chimica Sinica, ;2019, 35(10): 1128-1133. doi: 10.3866/PKU.WHXB201812037 shu

Intrinsic Ultrahigh Negative Poisson's Ratio in Two-Dimensional Ferroelectric ABP2X6 Materials

  • Corresponding author: DU Aijun, aijun.du@qut.edu.au
  • Received Date: 21 December 2018
    Revised Date: 24 January 2019
    Accepted Date: 24 January 2019
    Available Online: 28 October 2019

    Fund Project: D.A. acknowledges the financial support by Australian Research Council under Discovery Project DP170103598D.A. acknowledges the financial support by Australian Research Council under Discovery Project (DP170103598)

  • Recently, ferroelectric materials have attracted considerable research attention. In particular, two dimensional (2D) ferroelectric materials have been considered as most crucial for next-generation circuit designs because of their application as novel electric memory devices. However, a 2D ferroelectric material is very rare. The ferroelectric materials with the form ABP2X6 (A = Ag, Cu; B = Bi, In; X = S, Se) are of interest because of their ferroelectric property maintained in their ultrathin structures. Within the ABP2X6 monolayer, the P―P bonds form the pillars that hold the top and bottom X planes, while the off-center A―B atoms between the X layers induce a spontaneous ferroelectric polarization. If the two off-center A―B sites are equally aligned, this would lead to the appearance of the paraelectric state. Such intriguing structures must impart novel mechanical properties to the materials. Until now, there has been no report on the mechanical properties of monolayer ABP2X6. Based on first-principles calculations, we studied the structural, electronic, mechanical as well as the electromechanical coupling properties of monolayer ABP2X6 (A = Ag, Cu; B = Bi, In; X = S, Se). We found that they are all semiconductors with wide bandgaps of 2.73, 2.17, 3.00, and 2.31 eV for CuInP2Se6, CuBiP2Se6, AgBiP2S6, and AgBiP2Se6, respectively, which are calculated based on the Heyd-Scuseria-Ernzerhof (HSE) exchange correlation functional model. The conduction band minimum is mainly from p orbitals of X and B atoms, whereas the valence band maximum is due to the hybridization of the p orbital of X atoms and the d orbital of A atoms. Moreover, there are three short and three long A/B―X bonds due to the A―B off-center displacement. Together with the d-p orbital hybridization, the main reason for the distorted ferroelectric structure in ABP2X6 monolayers is the Jahn-Teller effect. ABP2X6 monolayers are predicted to be a new class of auxetic materials with an out-of-plane negative Poisson's ratio, i.e., the values of the negative Poisson's ratio are in the order AgBiP2S6 (−0.805) < AgBiP2Se6 (−0.778) < CuBiP2Se6 (−0.670) < CuInP2S6 (−0.060). This is mainly due to the tensile strain applied in the x/y direction enlarging the angle between P―P bonds and top layer X atoms, thereby enhancing the bucking height of monolayer ABP2X6. Moreover, external strain has a significant impact on the A―B off-center displacement, rendering an out-of-plane piezoelectric polarization. The values of e13 for CuInP2S6, CuBiP2Se6, AgBiP2S6, AgBiP2Se6 monolayers are calculated to be −3.95 × 10−12, −5.68 × 10−12, −3.94 × 10−12, −2.71 × 10−12 C∙m−1, respectively, which are comparable to the only experimentally confirmed 2D out-of-plane piezoelectric Janus system (piezoelectric coefficient = −3.8 × 10−12 C∙m−1). This unusual auxetic behavior, ferroelectric polarization, and the electromechanical coupling in monolayer ABP2X6 could potentially lead to enormous technologically important applications in nanoelectronics, nanomechanics, and piezoelectrics.
  • 加载中
    1. [1]

      Evans, K. E.; Alderson, A. Adv. Mater. 2000, 12, 617. doi: 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617 >3.0.CO;2-3  doi: 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3

    2. [2]

      Dagdelen, J.; Montoya, J.; de Jong, M.; Persson, K. Nat. Commun. 2017, 8, 323. doi: 10.1038/s41467-017-00399-6  doi: 10.1038/s41467-017-00399-6

    3. [3]

      Wang, Y.; Li, F.; Li, Y.; Chen, Z. Nat. Commun. 2016, 7, 11488. doi: 10.1038/ncomms11488  doi: 10.1038/ncomms11488

    4. [4]

      Jiang, J. W.; Park, H. S. Nat. Commun. 2014, 5, 4727. doi: 10.1038/ncomms5727  doi: 10.1038/ncomms5727

    5. [5]

      Wang, H.; Li, X.; Sun, J.; Liu, Z.; Yang, J. 2D Mater. 2017, 4, 045020. doi: 10.1088/2053-1583/aa8abd  doi: 10.1088/2053-1583/aa8abd

    6. [6]

      Zhang, L. C.; Qin, G.; Fang, W. Z.; Cui, H. J.; Zheng, Q. R.; Yan, Q. B.; Su, G. Sci. Rep. 2016, 6, 19830. doi: 10.1038/srep19830  doi: 10.1038/srep19830

    7. [7]

      Zhang, S.; Zhou, J.; Wang, Q.; Chen, X.; Kawazoe, Y.; Jena, P. Proc. Natl. Acad. Sci. USA 2015, 112, 2372. doi: 10.1073/pnas.1416591112  doi: 10.1073/pnas.1416591112

    8. [8]

      Gao, Z.; Dong, X.; Li, N.; Ren, J. Nano Lett. 2017, 17, 772. doi: 10.1021/acs.nanolett.6b03921  doi: 10.1021/acs.nanolett.6b03921

    9. [9]

      Wang, H.; Li, Q.; Gao, Y.; Miao, F.; Zhou, X. F.; Wan, X. New J. Phy. 2016, 18, 073016. doi: 10.1088/1367-2630/18/7/073016  doi: 10.1088/1367-2630/18/7/073016

    10. [10]

      Kou, L.; Ma, Y.; Tang, C.; Sun, Z.; Du, A.; Chen, C. Nano Lett. 2016, 16, 7910. doi: 10.1021/acs.nanolett.6b04180  doi: 10.1021/acs.nanolett.6b04180

    11. [11]

      Zhou, L.; Zhuo, Z.; Kou, L.; Du, A.; Tretiak, S. Nano Lett. 2017, 17, 4466. doi:10.1021/acs.nanolett.7b01704  doi: 10.1021/acs.nanolett.7b01704

    12. [12]

      Zhang, C.; Jiao, Y.; He, T.; Bottle, S.; Frauenheim, T.; Du, A. J. Phys. Chem. Lett. 2018, 9, 858. doi: 10.1021/acs.jpclett.7b03449  doi: 10.1021/acs.jpclett.7b03449

    13. [13]

      Wang, B.; Yuan, S.; Li, Y.; Shi, L.; Wang, J. Nanoscale 2017, 9, 5577. doi: 10.1039/C7NR00455A  doi: 10.1039/C7NR00455A

    14. [14]

      Huang, C.; Du, Y.; Wu, H.; Xiang, H.; Deng, K.; Kan, E. Phys. Rev. Lett. 2018, 120, 147601. doi: 10.1103/Phys. Rev. Lett.120.147601  doi: 10.1103/Phys.Rev.Lett.120.147601

    15. [15]

      Zhang, C.; Nie, Y.; Sanvito, S.; Du, A. Nano Lett. 2019, doi: 10.1021/acs.nanolett.8b05050  doi: 10.1021/acs.nanolett.8b05050

    16. [16]

      Maisonneuve, V.; Cajipe, V.; Simon, A.; Von Der Muhll, R.; Ravez, J. Phys. Rev. B 1997, 56, 10860. doi: 10.1103/PhysRevB.56.10860  doi: 10.1103/PhysRevB.56.10860

    17. [17]

      Gave, M. A.; Bilc, D.; Mahanti, S.; Breshears, J. D.; Kanatzidis, M. G. Inorg. Chem. 2005, 44, 5293. doi: 10.1021/ic050357+  doi: 10.1021/ic050357+

    18. [18]

      Reimers, J. R.; Tawfik, S. A.; Ford, M. J. Chem. Sci. 2018, 9, 7620. doi: 10.1039/C8SC01274A  doi: 10.1039/C8SC01274A

    19. [19]

      Liu, F.; You, L.; Seyler, K. L.; Li, X.; Yu, P.; Lin, J.; Wang, X.; Zhou, J.; Wang, H.; He, H. Nat. Commun. 2016, 7, 12357. doi: 10.1038/ncomms12357  doi: 10.1038/ncomms12357

    20. [20]

      Song, W.; Fei, R.; Yang, L. Phys. Rev. B 2017, 96, 235420. doi: 10.1103/PhysRevB.96.235420  doi: 10.1103/PhysRevB.96.235420

    21. [21]

      Xu, B.; Xiang, H.; Xia, Y.; Jiang, K.; Wan, X.; He, J.; Yin, J.; Liu, Z. Nanoscale 2017, 9, 8427. doi:10.1039/C7NR02461D  doi: 10.1039/C7NR02461D

    22. [22]

      Lai Y., Song Z., Wan Y., Xue M., Ye Y., Dai L., Yang W., Du H. arXiv preprint arXiv: 1805.04280 2018.

    23. [23]

      Shirodkar, S. N.; Waghmare, U. V. Phys. Rev. Lett. 2014, 112, 157601. doi: 10.1103/PhysRevLett.112.157601  doi: 10.1103/PhysRevLett.112.157601

    24. [24]

      Fei, R.; Kang, W.; Yang, L. Phys. Rev. Lett. 2016, 117, 097601. doi: 10.1103/PhysRevLett.117.097601  doi: 10.1103/PhysRevLett.117.097601

    25. [25]

      Yu, L.; Yan, Q.; Ruzsinszky, A. Nat. Commun. 2017, 8, 15224. doi: 10.1038/ncomms15224  doi: 10.1038/ncomms15224

    26. [26]

      Wu, M.; Zeng, X. C. Nano Lett. 2016, 16, 3236. doi: 10.1021/acs.nanolett.6b00726  doi: 10.1021/acs.nanolett.6b00726

    27. [27]

      Kresse, G.; Furthmüller, J. Comp. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0  doi: 10.1016/0927-0256[96]00008-0

    28. [28]

      Kresse, G.; Furthmüller, J. Phy. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169  doi: 10.1103/PhysRevB.54.11169

    29. [29]

      Blöchl, P. E. Phy. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953  doi: 10.1103/PhysRevB.50.17953

    30. [30]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi:10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    31. [31]

      Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207. doi:10.1063/1.1564060  doi: 10.1063/1.1564060

    32. [32]

      Grimme, S. J. Comput. Chem. 2006, 27, 1787. doi: 10.1002/jcc.20495  doi: 10.1002/jcc.20495

    33. [33]

      King-Smith, R.; Vanderbilt, D. Phys. Rev. B 1993, 47, 1651. doi: 10.1103/PhysRevB.47.1651  doi: 10.1103/PhysRevB.47.1651

    34. [34]

      Zhang, C.; Kou, L.; He, T.; Jiao, Y.; Liao, T.; Bottle, S.; Du, A. Computat. Mater. Sci. 2018, 149, 158. doi: 10.1016/j.commatsci.2018.03.027  doi: 10.1016/j.commatsci.2018.03.027

    35. [35]

      Zhang, C.; Jiao, Y.; Ma, F.; Bottle, S.; Zhao, M.; Chen, Z.; Du, A. Phys. Chem. Chem. Phys. 2017, 19, 5449. doi: 10.1039/C7CP00157F  doi: 10.1039/C7CP00157F

    36. [36]

      Zhang, C.; Jiao, Y.; He, T.; Ma, F.; Kou, L.; Liao, T.; Bottle, S.; Du, A. Phys. Chem. Chem. Phys. 2017, 19, 25886. doi: 10.1039/C7CP04758D  doi: 10.1039/C7CP04758D

    37. [37]

      Zhang, C.; Du, A. Beilstein J. Nanotechnol. 2018, 9, 1399. doi: 10.3762/bjnano.9.132  doi: 10.3762/bjnano.9.132

    38. [38]

      Zhang, C.; Nie, Y.; Liao, T.; Kou, L.; Du, A. Phys. Rev. B 2019, 99, 035424. doi:10.1103/PhysRevB.99.035424  doi: 10.1103/PhysRevB.99.035424

    39. [39]

      Wei, S. H.; Zhang, S.; Zunger, A. Phys. Rev. Lett. 1993, 70, 1639. doi: 10.1103/PhysRevLett.70.1639  doi: 10.1103/PhysRevLett.70.1639

    40. [40]

      Wu, W.; Wang, L.; Li, Y.; Zhang, F.; Lin, L.; Niu, S.; Chenet, D.; Zhang, X.; Hao, Y.; Heinz, T. F. Nature 2014, 514, 470. doi: 10.1038/nature13792  doi: 10.1038/nature13792

    41. [41]

      Lu, A. Y.; Zhu, H.; Xiao, J.; Chuu, C. P.; Han, Y.; Chiu, M. H.; Cheng, C. C.; Yang, C. W.; Wei, K. H.; Yang, Y. Nat. Nanotechnol. 2017, 12, 744. doi: 10.1038/nnano.2017.100  doi: 10.1038/nnano.2017.100

    42. [42]

      Li, R.; Cheng, Y.; Huang, W. Small 2018, 14, 1802091. doi: 10.1002/smll.201802091  doi: 10.1002/smll.201802091

  • 加载中
    1. [1]

      Zheng ZhangLei ShiBin WangJingyuan QuXiaoling WangTao WangQitao JiangWuhong XueXiaohong Xu . Epitaxial growth of full-vdW α-In2Se3/MoS2 heterostructures for all-in-one sensing and memory-computing artificial visual system. Chinese Chemical Letters, 2025, 36(3): 109687-. doi: 10.1016/j.cclet.2024.109687

    2. [2]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    3. [3]

      Hao-Fei NiJia-He LinGele TeriQiang-Qiang JiaPei-Zhi HuangHai-Feng LuChang-Feng WangZhi-Xu ZhangDa-Wei FuYi Zhang . B-site ion regulation strategy enables performance optimization and multifunctional integration of hybrid perovskite ferroelectrics. Chinese Chemical Letters, 2025, 36(3): 109690-. doi: 10.1016/j.cclet.2024.109690

    4. [4]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    5. [5]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    6. [6]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    7. [7]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    8. [8]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    9. [9]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    10. [10]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    11. [11]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    12. [12]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    13. [13]

      Xin HeFeng LiuTao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621

    14. [14]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    15. [15]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    16. [16]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    17. [17]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    18. [18]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    19. [19]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    20. [20]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

Metrics
  • PDF Downloads(10)
  • Abstract views(627)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return