Citation: ZHU Yuelu, ZHAO Xinyang, WU Qian, CHEN Ying, ZHAO Jing. Research Advances in C―H Bond Activation of Multitasking N-Phenoxyamides[J]. Acta Physico-Chimica Sinica, ;2019, 35(9): 989-1004. doi: 10.3866/PKU.WHXB201812016 shu

Research Advances in C―H Bond Activation of Multitasking N-Phenoxyamides

  • Corresponding author: ZHAO Jing, jingzhao@nju.edu.cn
  • Received Date: 5 December 2018
    Revised Date: 15 January 2019
    Accepted Date: 15 January 2019
    Available Online: 21 September 2019

    Fund Project: The project was supported by the National Science Foundation of China (21622103, 21571098, 91753121), Natural Science Foundation of Jiangsu Province, China (BK20160022), Shenzhen Basic Research Program, China (JCYJ20170413150538897), and Fundamental Research Funds for the Central Universities, China (020514380139)the National Science Foundation of China 21571098the National Science Foundation of China 91753121Fundamental Research Funds for the Central Universities, China 020514380139Natural Science Foundation of Jiangsu Province, China BK20160022the National Science Foundation of China 21622103Shenzhen Basic Research Program, China JCYJ20170413150538897

  • Transition-metal-catalyzed C―H functionalization reactions, assisted by directing groups (DGs), have become some of the most powerful strategies to form C―C and C―X (X = O, N, S, etc.) bonds. It has brought about a revolution in the synthesis of drugs and natural products, and the method is widely applicable in the fields of material chemistry and pharmaceutical industry. This strategy has mainly focused on regioselective C―H functionalization of amides, esters, carbamates, and enamides with DGs to form C―C and C―X bonds. Since these DGs are relatively stable, they must be removed by other methods when the reaction is completed. Therefore, the use of a traceless DG is one of the important challenges for transition-metal-catalyzed C―H functionalization. Recently, N-phenoxyamide has been attracting significant research attention as a versatile DG. Oxyacetamide (O―NHAc) is one of the most versatile functionalities for directed C―H functionalization cascades, such as the internal oxidation with N―O bond cleavage. The O―NHAc has been reported as a superb DG for redox-neutral C―H activation/annulation cascade reactions to synthesize phenol and complex heterocyclic scaffolds by coupling with alkynes, alkenes, heteroarenes, and diazo compounds. However, for the external oxidation with preservation of the N―O bond, e.g. when a stoichiometric external oxidant is present, N-phenoxyamides could react with aldehydes or α, β-unsaturated aldehydes. In addition, the solvent can control the chemoselectivity. In this minireview, the C―H bond functionalization of N-phenoxyamide is divided into five categories according to the different substrates, viz. alkenes, alkynes, diazo, and other compounds and intramolecular C―H bond activation reactions. Based on experimental and theoretical research results, the reaction mechanism was discussed. In the first part, we summarize the ortho-alkylation, alkenylation, and cyclization of N-phenoxyamide with olefins. In the second part, we present the Rh- and Ir-catalyzed C―H activation or cyclization of N-phenoxyamide with alkanes to synthesize phenol or benzofuran compounds. In the third part, we describe the synthesis of phenolic compounds functionalized by Rh-catalyzed diazo compounds by carbene intermediates and N-phenoxyamides. The forth part summarizes the C―H activation/annulation reaction using aldehydes, heterocyclic aromatic, and sulfur reagents as substrates. The last part of the paper generalizes the intramolecular ortho-hydroxylation and ortho, para-amidation reactions.
  • 加载中
    1. [1]

      Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976. doi: 10.1039/C0CS00182A  doi: 10.1039/C0CS00182A

    2. [2]

      Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. doi: 10.1039/C1CS15083A  doi: 10.1039/C1CS15083A

    3. [3]

      Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879. doi: 10.1021/cr300153j  doi: 10.1021/cr300153j

    4. [4]

      Li, B. J.; Shi, Z. J. Chem. Soc. Rev. 2012, 41, 5588. doi: 10.1039/C2CS35096C  doi: 10.1039/C2CS35096C

    5. [5]

      Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev. 2015, 115, 12138. doi: 10.1021/cr500431s  doi: 10.1021/cr500431s

    6. [6]

      He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J. Q. Chem. Rev. 2017, 117, 8754. doi: 10.1021/acs.chemrev.6b00622  doi: 10.1021/acs.chemrev.6b00622

    7. [7]

      Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247. doi: 10.1021/acs.chemrev.6b00644  doi: 10.1021/acs.chemrev.6b00644

    8. [8]

      Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.; Lei, A. Chem. Rev. 2017, 117, 9016. doi: 10.1021/acs.chemrev.6b00620  doi: 10.1021/acs.chemrev.6b00620

    9. [9]

      Guo, X. X.; Gu, D. W.; Wu, Z.; Zhang, W. Chem. Rev. 2015, 115, 1622. doi: 10.1021/cr500410y  doi: 10.1021/cr500410y

    10. [10]

      Liu, J.; Chen, G.; Tan, Z. Adv. Synth. Catal. 2016, 358, 1174. doi: 10.1002/adsc.201600031  doi: 10.1002/adsc.201600031

    11. [11]

      Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem. Int. Edit. 2011, 50, 11062. doi: 10.1002/anie.201103945  doi: 10.1002/anie.201103945

    12. [12]

      Abrams, D. J.; Provencher, P. A.; Sorensen, E. J. Chem. Soc. Rev. 2018, 47, 8925. doi: 10.1039/c8cs00716k  doi: 10.1039/c8cs00716k

    13. [13]

      Jayakumar, J.; Parthasarathy, K.; Chen, Y. H.; Lee, T. H.; Chuang, S. C.; Cheng, C. H. Angew. Chem. Int. Edit. 2014, 53, 9889. doi: 10.1002/anie.201405183  doi: 10.1002/anie.201405183

    14. [14]

      Shan, G.; Flegel, J.; Li, H.; Merten, C.; Ziegler, S.; Antonchick, A. P.; Waldmann, H. Angew. Chem. Int. Edit. 2018, 57, 14250. doi: 10.1002/anie.201809680  doi: 10.1002/anie.201809680

    15. [15]

      Yang, W.; Dong, J.; Wang, J.; Xu, X. Org. Lett. 2017, 19, 616. doi: 10.1021/acs.orglett.6b03777  doi: 10.1021/acs.orglett.6b03777

    16. [16]

      Wu, J. Q.; Zhang, S. S.; Gao, H.; Qi, Z.; Zhou, C. J.; Ji, W. W.; Liu, Y.; Chen, Y.; Li, Q.; Li, X.; et al. J. Am. Chem. Soc. 2017, 139, 3537. doi: 10.1021/jacs.7b00118  doi: 10.1021/jacs.7b00118

    17. [17]

      Wang, H. W.; Lu, Y.; Zhang, B.; He, J.; Xu, H. J.; Kang, Y. S.; Sun, W. Y.; Yu, J. Q. Angew. Chem. Int. Edit. 2017, 56, 7449. doi: 10.1002/anie.201703300  doi: 10.1002/anie.201703300

    18. [18]

      Wang, C. Q.; Zhang, Y.; Feng, C. Angew. Chem. Int. Edit. 2017, 56, 14918. doi: 10.1002/anie.201708505  doi: 10.1002/anie.201708505

    19. [19]

      Wang, C. Q.; Ye, L.; Feng, C.; Loh, T. P. J. Am. Chem. Soc. 2017, 139, 1762. doi: 10.1021/jacs.6b12142  doi: 10.1021/jacs.6b12142

    20. [20]

      Tan, E.; Quinonero, O.; Elena de Orbe, M.; Echavarren, A. M. ACS Catal. 2018, 8, 2166. doi: 10.1021/acscatal.7b04395  doi: 10.1021/acscatal.7b04395

    21. [21]

      Hua, Y.; Asgari, P.; Avullala, T.; Jeon, J. J. Am. Chem. Soc. 2016, 138, 7982. doi: 10.1021/jacs.6b04018  doi: 10.1021/jacs.6b04018

    22. [22]

      Wu, Y.; Li, W.; Jiang, L.; Zhang, L.; Lan, J.; You, J. Chem. Sci. 2018, 9, 6878. doi: 10.1039/C8SC02529K  doi: 10.1039/C8SC02529K

    23. [23]

      Lv, S.; Li, Y.; Yao, T.; Yu, X.; Zhang, C.; Hai, L.; Wu, Y. Org. Lett. 2018, 20, 4994. doi: 10.1021/acs.orglett.8b01952  doi: 10.1021/acs.orglett.8b01952

    24. [24]

      Zhou, X.; Pan, Y.; Li, X. Angew. Chem. Int. Edit. 2017, 56, 8163. doi: 10.1002/anie.201704036  doi: 10.1002/anie.201704036

    25. [25]

      Barday, M.; Janot, C.; Halcovitch, N. R.; Muir, J.; Aissa, C. Angew. Chem. Int. Edit. 2017, 56, 13117. doi: 10.1002/anie.201706804  doi: 10.1002/anie.201706804

    26. [26]

      Wang, F.; Yu, X.; Qi, Z.; Li, X. Chem. Eur. J. 2016, 22, 511. doi: 10.1002/chem.201504179  doi: 10.1002/chem.201504179

    27. [27]

      Tian, M.; Liu, B.; Sun, J.; Li, X. Org. Lett. 2018, 20, 4946. doi: 10.1021/acs.orglett.8b02078  doi: 10.1021/acs.orglett.8b02078

    28. [28]

      Li, J.; Zhang, Z.; Tang, M.; Zhang, X.; Jin, J. Org. Lett. 2016, 18, 3898. doi: 10.1021/acs.orglett.6b01916  doi: 10.1021/acs.orglett.6b01916

    29. [29]

      Shen, Y.; Liu, G.; Zhi, Z.; Lu, X. Org. Lett. 2013, 15, 3366. doi: 10.1021/ol4014188  doi: 10.1021/ol4014188

    30. [30]

      Xu, L.; Zhu, Q.; Huang, G.; Cheng, B.; Xia, Y. J. Org. Chem. 2012, 77, 3017. doi: 10.1021/jo202431q  doi: 10.1021/jo202431q

    31. [31]

      Liu, B.; Fan, Y.; Gao, Y.; Sun, C.; Xu, C.; Zhu, J. J. Am. Chem. Soc. 2013, 135, 468. doi: 10.1021/ja3099245  doi: 10.1021/ja3099245

    32. [32]

      Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 5364. doi: 10.1021/ja402274g  doi: 10.1021/ja402274g

    33. [33]

      Duan, P.; Lan, X.; Chen, Y.; Qian, S. S.; Li, J. J.; Lu, L.; Lu, Y.; Chen, B.; Hong, M.; Zhao, J. Chem. Commun. 2014, 50, 12135. doi: 10.1039/C4CC05485G  doi: 10.1039/C4CC05485G

    34. [34]

      Zhang, H.; Wang, K.; Wang, B.; Yi, H.; Hu, F.; Li, C.; Zhang, Y.; Wang, J. Angew. Chem. Int. Edit. 2014, 53, 13234. doi: 10.1002/anie.201408555  doi: 10.1002/anie.201408555

    35. [35]

      Prakash, S.; Muralirajan, K.; Cheng, C. H. Chem. Commun. 2015, 51, 13362. doi: 10.1039/C5CC04211A  doi: 10.1039/C5CC04211A

    36. [36]

      Hu, Z.; Tong, X.; Liu, G. Org. Lett. 2016, 18, 1702. doi: 10.1021/acs.orglett.6b00616  doi: 10.1021/acs.orglett.6b00616

    37. [37]

      García, M. P.; Oro, L. A.; Lahoz, F. J. Angew. Chem. Int. Edit. 1988, 27, 1700. doi: 10.1002/anie.198817001  doi: 10.1002/anie.198817001

    38. [38]

      Haynes, A.; Mann, B. E.; Morris, G. E.; Maitlis, P. M. J. Am. Chem. Soc. 1993, 115, 4093. doi: 10.1021/ja00063a030  doi: 10.1021/ja00063a030

    39. [39]

      Lerchen, A.; Knecht, T.; Daniliuc, C. G.; Glorius, F. Angew. Chem. Int. Edit. 2016, 55, 15166. doi: 10.1002/anie.201608729  doi: 10.1002/anie.201608729

    40. [40]

      Wang, X.; Lerchen, A.; Gensch, T.; Knecht, T.; Daniliuc, C. G.; Glorius, F. Angew. Chem. Int. Edit. 2017, 56. 1381. doi: 10.1002/anie.201610117  doi: 10.1002/anie.201610117

    41. [41]

      Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040. doi: 10.1021/acs.accounts.5b00020  doi: 10.1021/acs.accounts.5b00020

    42. [42]

      Yu, S.; Liu, S.; Lan, Y.; Wan, B.; Li, X. J. Am. Chem. Soc. 2015, 137, 1623. doi: 10.1021/ja511796h  doi: 10.1021/ja511796h

    43. [43]

      Park, Y.; Heo, J.; Baik, M. H.; Chang, S. J. Am. Chem. Soc. 2016, 138, 14020. doi: 10.1021/jacs.6b08211  doi: 10.1021/jacs.6b08211

    44. [44]

      Yang, Y. F.; Houk, K. N.; Wu, Y. D. J. Am. Chem. Soc. 2016, 138, 6861. doi: 10.1021/jacs.6b03424  doi: 10.1021/jacs.6b03424

    45. [45]

      Li, Y.; Tang, Y.; He, X.; Shi, D.; Wu, J.; Xu, S. Chem. Eur. J. 2017, 23, 7453. doi: 10.1002/chem.201701703  doi: 10.1002/chem.201701703

    46. [46]

      Wang, Y.; Chen, Y.; Yang, Y.; Zhou, B. Org. Chem. Front. 2018, 5, 1844. doi: 10.1039/C8QO00265G  doi: 10.1039/C8QO00265G

    47. [47]

      Wang, X.; Lerchen, A.; Daniliuc, C. G.; Glorius, F. Angew. Chem. Int. Edit. 2018, 57, 1712. doi: 10.1002/anie.201712019  doi: 10.1002/anie.201712019

    48. [48]

      Wang, X.; Li, Y.; Knecht, T.; Daniliuc, C. G.; Houk, K. N.; Glorius, F. Angew. Chem. Int. Edit. 2018, 57, 5520. doi: 10.1002/anie.201800803  doi: 10.1002/anie.201800803

    49. [49]

      Zhou, Z.; Bian, M.; Zhao, L.; Gao, H.; Huang, J.; Liu, X.; Yu, X.; Li, X.; Yi, W. Org. Lett. 2018, 20, 3892. doi: 10.1021/acs.orglett.8b01477  doi: 10.1021/acs.orglett.8b01477

    50. [50]

      Liu, G.; Shen, Y.; Zhou, Z.; Lu, X. Angew. Chem. Int. Edit. 2013, 52, 6033. doi: 10.1002/anie.201300881  doi: 10.1002/anie.201300881

    51. [51]

      Zhou, Z.; Liu, G.; Shen, Y.; Lu, X. Org. Chem. Front. 2014, 1, 1161. doi: 10.1039/C4QO00196F  doi: 10.1039/C4QO00196F

    52. [52]

      Chen, Y.; Wang, D.; Duan, P.; Ben, R.; Dai, L.; Shao, X.; Hong, M.; Zhao, J.; Huang, Y. Nat. Commun. 2014, 5, 4610. doi: 10.1038/ncomms5610  doi: 10.1038/ncomms5610

    53. [53]

      Zhou, Z.; Liu, G.; Chen, Y.; Lu, X. Org. Lett. 2015, 17, 5874. doi: 10.1021/acs.orglett.5b03060  doi: 10.1021/acs.orglett.5b03060

    54. [54]

      Zhou, J.; Shi, J.; Qi, Z.; Li, X.; Xu, H. E.; Yi, W. ACS Catal. 2015, 5, 6999. doi: 10.1021/acscatal.5b01571  doi: 10.1021/acscatal.5b01571

    55. [55]

      Xie, Y. Chem. Commun. 2016, 52, 12372. doi: 10.1039/c6cc05769a  doi: 10.1039/c6cc05769a

    56. [56]

      Wang, H.; Wang, B.; Li, B. J. Org. Chem. 2017, 82, 9560. doi: 10.1021/acs.joc.7b01566  doi: 10.1021/acs.joc.7b01566

    57. [57]

      Hu, S.; Lu, L.; Zhu, T.; Wu, Q.; Chen, Y.; Li, J. J.; Zhao, J. Org. Biomol. Chem. 2017, 16, 43. doi: 10.1039/C7OB02438J  doi: 10.1039/C7OB02438J

    58. [58]

      Li, Y.; Shi, D.; Tang, Y.; He, X.; Xu, S. J. Org. Chem. 2018, 83, 9464. doi: 10.1021/acs.joc.8b01166  doi: 10.1021/acs.joc.8b01166

    59. [59]

      Chen, W.; Liu, F. -X.; Gong, W.; Zhou, Z.; Gao, H.; Shi, J.; Wu, B.; Yi, W. Adv. Synth. Catal. 2018, 360, 2470. doi: 10.1002/adsc.201800322  doi: 10.1002/adsc.201800322

    60. [60]

      Zhou, W.; Mei, Y. L.; Li, B.; Guan, Z. Y.; Deng, Q. H. Org. Lett. 2018, 20, 5808. doi: 10.1021/acs.orglett.8b02504  doi: 10.1021/acs.orglett.8b02504

    61. [61]

      Yi, W.; Chen, W.; Liu, F.-X.; Zhong, Y.; Wu, D.; Zhou, Z.; Gao, H. ACS Catal. 2018, 9508. doi: 10.1021/acscatal.8b02402  doi: 10.1021/acscatal.8b02402

    62. [62]

      Pan, J. L.; Xie, P.; Chen, C.; Hao, Y.; Liu, C.; Bai, H. Y.; Ding, J.; Wang, L. R.; Xia, Y.; Zhang, S. Y. Org. Lett. 2018, 20, 7131. doi: 10.1021/acs.orglett.8b03082  doi: 10.1021/acs.orglett.8b03082

    63. [63]

      Li, M.; Wang, J. H.; Li, W.; Wen, L. R. Org. Lett. 2018, 20, 7694. doi: 10.1021/acs.orglett.8b03427  doi: 10.1021/acs.orglett.8b03427

    64. [64]

      Hu, F.; Xia, Y.; Ye, F.; Liu, Z.; Ma, C.; Zhang, Y.; Wang, J. Angew. Chem. Int. Edit. 2014, 53, 1364. doi: 10.1002/anie.201309650  doi: 10.1002/anie.201309650

    65. [65]

      Zhou, J.; Shi, J.; Liu, X.; Jia, J.; Song, H.; Xu, H. E.; Yi, W. Chem. Commun. 2015, 51, 5868. doi: 10.1039/C5CC00354G  doi: 10.1039/C5CC00354G

    66. [66]

      Hu, Z.; Liu, G. Adv. Synth. Catal. 2017, 359, 1643. doi: 10.1002/adsc.201601296  doi: 10.1002/adsc.201601296

    67. [67]

      Zhang, Y.; He, Y.; Li, L.; Ji, M.; Li, X. Z.; Zhu, G. J. Org. Chem. 2018, 83, 2898. doi: 10.1021/acs.joc.8b00108  doi: 10.1021/acs.joc.8b00108

    68. [68]

      Wu, Y.; Chen, Z.; Yang, Y.; Zhu, W.; Zhou, B. J. Am. Chem. Soc. 2018, 140, 42. doi: 10.1021/jacs.7b10349  doi: 10.1021/jacs.7b10349

    69. [69]

      Duan, P.; Yang, Y.; Ben, R.; Yan, Y.; Dai, L.; Hong, M.; Wu, Y. -D.; Wang, D.; Zhang, X.; Zhao, J. Chem. Sci. 2014, 5, 1574. doi: 10.1039/C3SC53228C  doi: 10.1039/C3SC53228C

    70. [70]

      Li, B.; Lan, J.; Wu, D.; You, J. Angew. Chem. Int. Edit. 2015, 54, 1400. doi: 10.1002/anie.201507272  doi: 10.1002/anie.201507272

    71. [71]

      Li, B.; Tang, G.; Zhou, L.; Wu, D.; Lan, J.; Zhou, L.; Lu, Z.; You, J. Adv. Funct. Mater. 2017, 27, 1605245. doi: 10.1002/adfm.201605245  doi: 10.1002/adfm.201605245

    72. [72]

      Li, B.; Zhou, L.; Cheng, H.; Huang, Q.; Lan, J.; Zhou, L.; You, J. Chem. Sci. 2018, 9, 1213. doi: 10.1039/c7sc04464j  doi: 10.1039/c7sc04464j

    73. [73]

      Wu, Q.; Chen, Y.; Yan, D.; Zhang, M.; Lu, Y.; Sun, W. Y.; Zhao, J. Chem. Sci. 2017, 8, 169. doi: 10.1039/C6SC03169B  doi: 10.1039/C6SC03169B

    74. [74]

      Xiong, F.; Lu, L.; Sun, T. Y.; Wu, Q.; Yan, D.; Chen, Y.; Zhang, X.; Wei, W.; Lu, Y.; Sun, W. Y.; Li, J. J.; Zhao, J. Nat. Commun. 2017, 8, 15912. doi: 10.1038/ncomms15912  doi: 10.1038/ncomms15912

    75. [75]

      Wang, X.; Gensch, T.; Lerchen, A.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2017, 139, 6506. doi: 10.1021/jacs.7b02725  doi: 10.1021/jacs.7b02725

    76. [76]

      Wu, Q.; Yan, D.; Chen, Y.; Wang, T.; Xiong, F.; Wei, W.; Lu, Y.; Sun, W. Y.; Li, J. J.; Zhao, J. Nat. Commun. 2017, 8, 14227. doi: 10.1038/ncomms14227  doi: 10.1038/ncomms14227

    77. [77]

      Yan, D.; Wang, G.; Xiong, F.; Sun, W. Y.; Shi, Z.; Lu, Y.; Li, S.; Zhao, J. Nat. Commun. 2018, 9, 4293. doi: 10.1038/s41467-018-06763-4  doi: 10.1038/s41467-018-06763-4

  • 加载中
    1. [1]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    2. [2]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    3. [3]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    4. [4]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    5. [5]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    6. [6]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    7. [7]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    8. [8]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    9. [9]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    13. [13]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    14. [14]

      Yajun Jian Quanguo Zhai Quan Gu Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    17. [17]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    18. [18]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    19. [19]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    20. [20]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

Metrics
  • PDF Downloads(8)
  • Abstract views(728)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return