Citation: LIU Qiang, WANG Xiaoshan, WANG Jialiang, HUANG Xiao. Spatially Controlled Two-dimensional Heterostructures via Solution-phase Growth[J]. Acta Physico-Chimica Sinica, ;2019, 35(10): 1099-1111. doi: 10.3866/PKU.WHXB201811005 shu

Spatially Controlled Two-dimensional Heterostructures via Solution-phase Growth


  • Author Bio:


    Xiao Huang received her bachelor's degree from the School of Materials Science and Engineering at Nanyang Technological University in Singapore in 2006 and completed her PhD in 2011 under the supervision of Prof. Hua Zhang and Prof. Freddy Boey. She is currently a professor at the Institute of Advanced Materials (IAM), Nanjing Tech University. Her research interest includes the synthesis and applications of two-dimensional nanomaterial-based hybrids
  • Corresponding author: HUANG Xiao, iamxhuang@njtech.edu.cn
  • Received Date: 5 November 2018
    Revised Date: 27 November 2018
    Accepted Date: 28 November 2018
    Available Online: 3 October 2018

    Fund Project: the National Natural Science Foundation of China 51322202The project was supported by the National Natural Science Foundation of China (51322202)

  • The research in two-dimensional (2D) materials, such as graphene, transition metal dichalcogenides (TMDs) and black phosphorus, has been further flourished with the recent emergence of heterostructures composed of dissimilar 2D materials. The interfacing/coupling between different constituent components in a heterostructure has given rise to interesting phenomena and useful properties. For example, depending on the type of 2D materials, the distance and the kind of bonding between them, as well as the crystalline property of the hetero-interface, the interface may provide charge traps, exciton recombination centers, or bridges for effective charge/energy transfer. It has also been found that the spatial arrangement in addition to the composition of the constituents is an important factor influencing the overall properties of the heterostructures. Although many methods, such as dry transfer and vapor-phased growth are able to yield heterostructures from pristine or highly crystalline 2D crystals with spatial control, such as vertical heterostructures and lateral heterostructures, these methods are generally not scalable, which has restricted the use of the obtained heterostructures mostly to fundamental studies. The solution-phased synthesis methods, such as solvothermal/hydrothermal synthesis, electrochemical deposition and hot-injection method, may be more suitable for mass production of functional heterostructures despite the relatively low product quality. In the past couple of years, a diverse kinds of hetero/hybrid structures of 2D materials have been prepared successfully in wet-chemical processes. However, precise control over the geometric arrangement of the constituent components has been challenging in solution. Currently, four types of heterostructures including 2D crystals grown on a larger 2D template, vertical heterostructures, lateral heterostructures, and core-shell heterostructures have been prepared in solution. For the first type, flexible 2D nanosheets such as graphene and monolayer TMDs are used as synthesis templates to support the nucleation and growth of other 2D crystals. For vertical heterostructures, relatively rigid nanoplates are used to allow continuous deposition of 2D layers of other materials to form sandwich-like structures. The formation of lateral heterostructures requires edge growth on existing 2D materials without basal deposition, and therefore other methods such as cation exchange can be used as alternative routes. The preparation of core-shell 2D heterostructures generally involves both epitaxial edge growth and basal deposition and has been realized in both metallic and semiconductor structures. In this review, these kinds of heterostructures based on 2D materials will be discussed in terms of their synthesis methods, properties and possible applications. In addition, we will discuss the challenges and possible opportunities in this research direction.
  • 加载中
    1. [1]

      Rao, C. N.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Angew. Chem. Int. Ed. 2009, 48, 7752. doi: 10.1002/anie.200901678  doi: 10.1002/anie.200901678

    2. [2]

      Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Chem. Rev. 2012, 112, 6156. doi: 10.1021/cr3000412  doi: 10.1021/cr3000412

    3. [3]

      Wang, S. L.; Li, J.; Wang, S.; Wu, J. E.; Wong, T. I.; Foo, M. L.; Chen, W.; Wu, K.; Xu, G. Q. ACS Catal. 2017, 7, 6892. doi: 10.1021/acscatal.7b02331  doi: 10.1021/acscatal.7b02331

    4. [4]

      Azam, A.; Kim, J.; Park, J.; Novak, T. G.; Tiwari, A. P.; Song, S. H.; Kim, B.; Jeon, S. Nano Lett. 2018, 18, 5646. doi: 10.1021/acs.nanolett.8b02150  doi: 10.1021/acs.nanolett.8b02150

    5. [5]

      Li, W.; Da, P.; Zhang, Y.; Wang, Y.; Lin, X.; Gong, X.; Zheng, G. ACS Nano 2014, 8, 11770. doi: 10.1021/nn5053684  doi: 10.1021/nn5053684

    6. [6]

      Yu, J. H.; Lee, H. R.; Hong, S. S.; Kong, D.; Lee, H. W.; Wang, H.; Xiong, F.; Wang, S.; Cui, Y. Nano Lett. 2015, 15, 1031. doi: 10.1021/nl503897h  doi: 10.1021/nl503897h

    7. [7]

      Lin, X.; Liu, Y.; Wang, K.; Wei, C.; Zhang, W.; Yan, Y.; Li, Y. J.; Yao, J.; Zhao, Y. S. ACS Nano 2018, 12, 689. doi: 10.1021/acsnano.7b07823  doi: 10.1021/acsnano.7b07823

    8. [8]

      Wang, H.; Zou, D. C. Acta Phys.-Chim. Sin. 2017, 33, 1027.  doi: 10.3866/PKU.WHXB201702081

    9. [9]

      Van Druenen, M.; Davitt, F.; Collins, T.; Glynn, C.; O'Dwyer, C.; Holmes, J. D.; Collins, G. Chem. Mater. 2018, 30, 4667. doi: 10.1021/acs.chemmater.8b01306  doi: 10.1021/acs.chemmater.8b01306

    10. [10]

      Song, L.; Ci, L.; Lu, H.; Sorokin, P. B.; Jin, C.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I.; et al. Nano Lett. 2010, 10, 3209. doi: 10.1021/nl1022139  doi: 10.1021/nl1022139

    11. [11]

      Ling, X.; Fang, W.; Lee, Y. H.; Araujo, P. T.; Zhang, X.; Rodriguez-Nieva, J. F.; Lin, Y.; Zhang, J.; Kong, J.; Dresselhaus, M. S. Nano Lett. 2014, 14, 3033. doi: 10.1021/nl404610c  doi: 10.1021/nl404610c

    12. [12]

      Chen, Z.; Forman, A. J.; Jaramillo, T. F. J. Phys. Chem. C 2013, 117, 9713. doi: 10.1021/jp311375k  doi: 10.1021/jp311375k

    13. [13]

      Henck, H.; Pierucci, D.; Fugallo, G.; Avila, J.; Cassabois, G.; Dappe, Y. J.; Silly, M. G.; Chen, C.; Gil, B.; Gatti, M.; et al. Phys. Rev. B 2017, 95, 085410. doi: 10.1103/PhysRevB.95.085410  doi: 10.1103/PhysRevB.95.085410

    14. [14]

      Banszerus, L.; Schmitz, M.; Engels, S.; Dauber, J.; Oellers, M.; Haupt, F.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stampfer, C. Sci. Adv. 2015, 1, 1. doi: 10.1126/sciadv.1500222  doi: 10.1126/sciadv.1500222

    15. [15]

      Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012, 490, 192. doi: 10.1038/nature11458  doi: 10.1038/nature11458

    16. [16]

      Lv, R.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y.; Mallouk, T. E.; Terrones, M. Acc. Chem. Res. 2015, 48, 56. doi: 10.1021/ar5002846  doi: 10.1021/ar5002846

    17. [17]

      Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. Nat. Chem. 2013, 5, 263. doi: 10.1038/nchem.1589  doi: 10.1038/nchem.1589

    18. [18]

      Oh, G.; Kim, J. S.; Jeon, J. H.; Won, E.; Son, J. W.; Lee, D. H.; Kim, C. K.; Jang, J.; Lee, T.; et al. ACS Nano 2015, 9, 7515. doi: 10.1021/acsnano.5b02616  doi: 10.1021/acsnano.5b02616

    19. [19]

      Miao, J.; Hu, W.; Guo, N.; Lu, Z.; Liu, X.; Liao, L.; Chen, P.; Jiang, T.; Wu, S.; Ho, J. C.; et al. Small 2014, 11, 936. doi: 10.1002/smll.201402312  doi: 10.1002/smll.201402312

    20. [20]

      Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; et al. Nat. Nanotechnol. 2010, 5, 722. doi: 10.1038/nnano.2010.172  doi: 10.1038/nnano.2010.172

    21. [21]

      Gorbachev, R. V.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Tudorovskiy, T.; Grigorieva, I. V.; MacDonald, A. H.; Morozov, S. V.; Watanabe, K.; Taniguchi, T.; et al. Nat. Phys. 2012, 8, 896. doi: 10.1038/nphys2441  doi: 10.1038/nphys2441

    22. [22]

      Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; et al. Science 2012, 335, 947. doi: 10.1126/science.1218461  doi: 10.1126/science.1218461

    23. [23]

      Suenaga, K.; Ji, H. G.; Lin, Y. C.; Vincent, T.; Maruyama, M.; Aji, A. S.; Shiratsuchi, Y.; Ding, D.; Kawahara, K.; Okada, S.; et al. ACS Nano 2018, 12, 10032. doi: 10.1021/acsnano.8b04612  doi: 10.1021/acsnano.8b04612

    24. [24]

      Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D. S.; Liu, K.; Ji, J.; Li, J.; et al. Nano Lett. 2014, 14, 3185. doi: 10.1021/nl500515q  doi: 10.1021/nl500515q

    25. [25]

      Li, M. Y.; Shi, Y.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H.; et al. Science 2015, 349, 524. doi: 10.1126/science.aab4097  doi: 10.1126/science.aab4097

    26. [26]

      Fu, L.; Sun, Y.; Wu, N.; Mendes, R. G.; Chen, L.; Xu, Z.; Zhang, T.; Rümmeli, M. H.; Rellinghaus, B.; Pohl, D.; et al. ACS Nano 2016, 10, 2063. doi: 10.1021/acsnano.5b06254  doi: 10.1021/acsnano.5b06254

    27. [27]

      Wang, M.; Jang, S. K.; Jang, W. J.; Kim, M.; Park, S. Y.; Kim, S. W.; Kahng, S. J.; Choi, J. Y.; Ruoff, R. S.; Song, Y. J.; et al. Adv. Mater. 2013, 25, 2746. doi: 10.1002/adma.201204904  doi: 10.1002/adma.201204904

    28. [28]

      Han, S.; Yang, X.; Zhu, Y.; Tan, C.; Zhang, X.; Chen, J.; Huang, Y.; Chen, B.; Luo, Z.; Ma, Q.; et al. Angew. Chem. Int. Ed. 2017, 56, 10486. doi: 10.1002/anie.201705617  doi: 10.1002/anie.201705617

    29. [29]

      Chen, X.; Huang, Z.; Ren, X.; Xu, G.; Zhou, J.; Tao, Y.; Qi, X.; Zhong, J. ChemNanoMat 2018, 4, 373. doi: 10.1002/cnma.201700392  doi: 10.1002/cnma.201700392

    30. [30]

      Liu, X.; Wang, P.; Zhang, Q.; Huang, B.; Wang, Z.; Liu, Y.; Zheng, Z.; Dai, Y.; Qin, X.; Zhang, X. Appl. Surf. Sci. 2018, 459, 422. doi: 10.1016/j.apsusc.2018.08.024  doi: 10.1016/j.apsusc.2018.08.024

    31. [31]

      Islam, M. A.; Kim, J. H.; Schropp, A.; Kalita, H.; Choudhary, N.; Weitzman, D.; Khondaker, S. I.; Oh, K. H.; Roy, T.; Chung, H. S.; et al. Nano Lett. 2017, 17, 6157. doi: 10.1021/acs.nanolett.7b02776  doi: 10.1021/acs.nanolett.7b02776

    32. [32]

      Geim, A. K.; Grigorieva, I. V. Nature 2013, 499, 419. doi: 10.1038/nature12385  doi: 10.1038/nature12385

    33. [33]

      Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. Science 2016, 353, 6298. doi: 10.1126/science.aac9439  doi: 10.1126/science.aac9439

    34. [34]

      Lim, H.; Yoon, S. I.; Kim, G.; Jang, A. R.; Shin, H. S. Chem. Mater. 2014, 26, 4891. doi: 10.1021/cm502170q  doi: 10.1021/cm502170q

    35. [35]

      Li, H.; Wu, X.; Liu, H.; Zheng, B.; Zhang, Q.; Zhu, X.; Wei, Z.; Zhuang, X.; Zhou, H.; Tang, W.; et al. ACS Nano 2017, 11, 961. doi: 10.1021/acsnano.6b07580  doi: 10.1021/acsnano.6b07580

    36. [36]

      Wang, X.; Wang, Z.; Zhang, J.; Wang, X.; Zhang, Z.; Wang, J.; Zhu, Z.; Li, Z.; Liu, Y.; Hu, X.; et al. Nat. Commun. 2018, 9, 3611. doi: 10.1038/s41467-018-06053-z  doi: 10.1038/s41467-018-06053-z

    37. [37]

      Gao, T.; Song, X.; Du, H.; Nie, Y.; Chen, Y.; Ji, Q.; Sun, J.; Yang, Y.; Zhang, Y.; Liu, Z. Nat. Commun. 2015, 6, 6835. doi: 10.1038/ncomms7835  doi: 10.1038/ncomms7835

    38. [38]

      Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.; Yakobson, B. I.; et al. Nat. Mater. 2014, 13, 1135. doi: 10.1038/nmat4091  doi: 10.1038/nmat4091

    39. [39]

      Lin, Z.; Yin, A.; Mao, J.; Xia, Y.; Kempf, N.; He, Q.; Wang, Y.; Chen, C. Y.; Zhang, Y.; Ozolins, V.; et al. Sci. Adv. 2016, 2, 9. doi: 10.1126/sciadv.1600993  doi: 10.1126/sciadv.1600993

    40. [40]

      Shi, J.; Liu, M.; Wen, J.; Ren, X.; Zhou, X.; Ji, Q.; Ma, D.; Zhang, Y.; Jin, C.; Chen, H.; et al. Adv. Mater. 2015, 27, 7086. doi: 10.1002/adma.201503342  doi: 10.1002/adma.201503342

    41. [41]

      Wang, S.; Wang, X.; Warner, J. H. ACS Nano 2015, 9, 5246. doi: 10.1021/acsnano.5b00655  doi: 10.1021/acsnano.5b00655

    42. [42]

      Haigh, S. J.; Gholinia, A.; Jalil, R.; Romani, S.; Britnell, L.; Elias, D. C.; Novoselov, K. S.; Ponomarenko, L. A.; Geim, A. K.; Gorbachev, R. Nat. Mater. 2012, 11, 764. doi: 10.1038/nmat3386  doi: 10.1038/nmat3386

    43. [43]

      Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; et al. Science 2013, 340, 1311. doi: 10.1126/science.1235547  doi: 10.1126/science.1235547

    44. [44]

      Nourbakhsh, A.; Zubair, A.; Dresselhaus, M. S.; Palacios, T. Nano Lett. 2016, 16, 1359. doi: 10.1021/acs.nanolett.5b04791  doi: 10.1021/acs.nanolett.5b04791

    45. [45]

      Dean, C.; Young, A. F.; Wang, L.; Meric, I.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Shepard, K.; Kim, P.; Hone, J. Solid State Commun. 2012, 152, 1275. doi: 10.1016/j.ssc.2012.04.021  doi: 10.1016/j.ssc.2012.04.021

    46. [46]

      Tanaka, T.; Ito, A.; Tajima, A.; Rokuta, E.; Oshima, C. Surf. Rev. Lett. 2003, 10, 721. doi: 10.1142/S0218625X03005529  doi: 10.1142/S0218625X03005529

    47. [47]

      Liu, Z.; Song, L.; Zhao, S.; Huang, J.; Ma, L.; Zhang, J.; Lou, J.; Ajayan, P. M. Nano Lett. 2011, 11, 2032. doi: 10.1021/nl200464j  doi: 10.1021/nl200464j

    48. [48]

      Shi, Y.; Zhou, W.; Lu, A. Y.; Fang, W.; Lee, Y. H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L. J.; et al. Nano Lett. 2012, 12, 2784. doi: 10.1021/nl204562j  doi: 10.1021/nl204562j

    49. [49]

      Tan, C.; Chen, J.; Wu, X. J.; Zhang, H. Nat. Rev. Mater. 2018, 3, 17089. doi: 10.1038/natrevmats.2017.89  doi: 10.1038/natrevmats.2017.89

    50. [50]

      Yang, K.; Wang, X.; Li, H.; Chen, B.; Zhang, X.; Li, S.; Wang, N.; Zhang, H.; Huang, X.; Huang, W. Nanoscale 2017, 9, 5102. doi: 10.1039/c7nr01015j  doi: 10.1039/c7nr01015j

    51. [51]

      Kang, J.; Sangwan, V. K.; Wood, J. D.; Hersam, M. C. Acc. Chem. Res. 2017, 50, 943. doi: 10.1021/acs.accounts.6b00643  doi: 10.1021/acs.accounts.6b00643

    52. [52]

      Kim, T. H.; Chung, D. Y.; Ku, J.; Song, I.; Sul, S.; Kim, D. H.; Cho, K. S.; Choi, B. L.; Min Kim, J.; Hwang, S.; et al. Nat. Commun. 2013, 4, 2637. doi: 10.1038/ncomms3637  doi: 10.1038/ncomms3637

    53. [53]

      Hu, G.; Kang, J.; Ng, L. W. T.; Zhu, X.; Howe, R. C. T.; Jones, C. G.; Hersam, M. C.; Hasan, T. Chem. Soc. Rev. 2018, 47, 3265. doi: 10.1039/c8cs00084k  doi: 10.1039/c8cs00084k

    54. [54]

      Huang, X.; Li, S.; Huang, Y.; Wu, S.; Zhou, X.; Li, S.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Nat. Commun. 2011, 2, 292. doi: 10.1038/ncomms1291Zeng, Z.; Tan, C.; Huang, X.; Bao, S.;

    55. [55]

      Jiang, D.; Li, J.; Xing, C.; Zhang, Z.; Meng, S.; Chen, M. ACS Appl. Mater. Interfaces 2015, 7, 19234. doi: 10.1021/acsami.5b05118  doi: 10.1021/acsami.5b05118

    56. [56]

      Tan, C.; Zeng, Z.; Huang, X.; Rui, X.; Wu, X. J.; Li, B.; Luo, Z.; Chen, J.; Chen, B.; Yan, Q.; et al. Angew. Chem. Int. Ed. 2014, 54, 1841. doi: 10.1002/anie.201410890  doi: 10.1002/anie.201410890

    57. [57]

      Sun, D.; Schaak, R. E. Chem. Mater. 2017, 29, 817. doi: 10.1021/acs.chemmater.6b04808  doi: 10.1021/acs.chemmater.6b04808

    58. [58]

      Pedetti, S.; Ithurria, S.; Heuclin, H.; Patriarche, G.; Dubertret, B. J. Am. Chem. Soc. 2014, 136, 16430. doi: 10.1021/ja509307m  doi: 10.1021/ja509307m

    59. [59]

      Park, J.; Park, J.; Lee, J.; Oh, A.; Baik, H.; Lee, K. ACS Nano 2018, 12, 7996. doi: 10.1021/acsnano.8b02752  doi: 10.1021/acsnano.8b02752

    60. [60]

      Yang, N.; Cheng, H.; Liu, X.; Yun, Q.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z.; Chen, X.; Lu, Q.; et al. Adv. Mater. 2018, 30, 1803234. doi: 10.1002/adma.201803234  doi: 10.1002/adma.201803234

    61. [61]

      Liu, H.; Liu, T.; Zhang, L.; Han, L.; Gao, C.; Yin, Y. Adv. Funct. Mater. 2015, 25, 5435. doi: 10.1002/adfm.201502366  doi: 10.1002/adfm.201502366

    62. [62]

      Fan, Z.; Huang, X.; Han, Y.; Bosman, M.; Wang, Q.; Zhu, Y.; Liu, Q.; Li, B.; Zeng, Z.; Wu, J.; et al. Nat. Commun. 2015, 6, 6571. doi: 10.1038/ncomms7571  doi: 10.1038/ncomms7571

    63. [63]

      Yan, Y.; Shan, H.; Li, G.; Xiao, F.; Jiang, Y.; Yan, Y.; Jin, C.; Zhang, H.; Wu, J.; Yang, D. Nano Lett. 2016, 16, 7999. doi: 10.1021/acs.nanolett.6b04524  doi: 10.1021/acs.nanolett.6b04524

    64. [64]

      Bu, L.; Zhang, N.; Guo, S.; Zhang, X.; Li, J.; Yao, J.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D.; et al. Science 2016, 354, 1410. doi: 10.1126/science.aah6133  doi: 10.1126/science.aah6133

    65. [65]

      Khan, S.; Jiang, Z.; Premathilka, S. M.; Antu, A.; Hu, J.; Voevodin, A. A.; Roland, P. J.; Ellingson, R. J.; Sun, L. Chem. Mater. 2016, 28, 5342. doi: 10.1021/acs.chemmater.6b01232  doi: 10.1021/acs.chemmater.6b01232

    66. [66]

      Min, Y.; Park, G.; Kim, B.; Giri, A.; Zeng, J.; Roh, J. W.; Kim, S. I.; Lee, K. H.; Jeong, U. ACS Nano 2015, 9, 6843. doi: 10.1021/nn507250r  doi: 10.1021/nn507250r

    67. [67]

      Zhang, H. Energy Environ. Sci. 2014, 7, 797. doi: 10.1039/c3ee42620c  doi: 10.1039/c3ee42620c

    68. [68]

      Huang, X.; Zeng, Z.; Bao, S.; Wang, M.; Qi, X.; Fan, Z.; Zhang, H. Nat. Commun. 2013, 4, 1444. doi: 10.1038/ncomms2472  doi: 10.1038/ncomms2472

    69. [69]

      Azizi, A.; Eichfeld, S.; Geschwind, G.; Zhang, K.; Jiang, B.; Mukherjee, D.; Hossain, L.; Piasecki, A. F.; Kabius, B.; Robinson, J. A.; et al. ACS Nano 2015, 9, 4882. doi: 10.1021/acsnano.5b01677  doi: 10.1021/acsnano.5b01677

    70. [70]

      Li, M.; Zhu, Y.; Li, T.; Lin, Y.; Cai, H.; Li, S.; Ding, H.; Pan, N.; Wang, X. Inorg. Chem. Front. 2018, 5, 1828. doi: 10.1039/c8qi00251g  doi: 10.1039/c8qi00251g

    71. [71]

      Song, X.; Sun, J.; Qi, Y.; Gao, T.; Zhang, Y.; Liu, Z. Adv. Energy Mater. 2016, 6, 1600541. doi: 10.1002/aenm.201600541  doi: 10.1002/aenm.201600541

    72. [72]

      Zhang, Z.; Ji, X.; Shi, J.; Zhou, X.; Zhang, S.; Hou, Y.; Qi, Y.; Fang, Q.; Ji, Q.; Zhang, Y.; et al. ACS Nano 2017, 11, 4328. doi: 10.1021/acsnano.7b01537  doi: 10.1021/acsnano.7b01537

    73. [73]

      Li, X.; Basile, L.; Huang, B.; Ma, C.; Lee, J.; Vlassiouk, I. V.; Puretzky, A. A.; Lin, M. W.; Yoon, M.; Chi, M.; et al. ACS Nano 2015, 9, 8078. doi: 10.1021/acsnano.5b01943  doi: 10.1021/acsnano.5b01943

    74. [74]

      Chen, K.; Wan, X.; Xie, W.; Wen, J.; Kang, Z.; Zeng, X.; Chen, H.; Xu, J. Adv. Mater. 2015, 27, 6431. doi: 10.1002/adma.201502375  doi: 10.1002/adma.201502375

    75. [75]

      Tao, C.; Guolin, H.; Liangzhi, K.; Chen, W.; Jianxin, Z. Nanotechnology 2018, 29, 484003. doi: 10.1088/1361-6528/aae0cf  doi: 10.1088/1361-6528/aae0cf

    76. [76]

      Naylor, C. H.; Parkin, W. M.; Gao, Z.; Berry, J.; Zhou, S.; Zhang, Q.; McClimon, J. B.; Tan, L. Z.; Kehayias, C. E.; Zhao, M. Q.; et al. ACS Nano 2017, 11, 8619. doi: 10.1021/acsnano.7b03828  doi: 10.1021/acsnano.7b03828

    77. [77]

      Pandya, R.; Chen, R. Y. S.; Cheminal, A.; Dufour, M.; Richter, J. M.; Thomas, T. H.; Ahmed, S.; Sadhanala, A.; Booker, E. P.; Divitini, G.; et al. J. Am. Chem. Soc. 2018, 140, 14097. doi: 10.1021/jacs.8b05842  doi: 10.1021/jacs.8b05842

    78. [78]

      Acerce, M.; Voiry, D.; Chhowalla, M. Nat. Nanotechnol. 2015, 10, 313. doi: 10.1038/nnano.2015.40  doi: 10.1038/nnano.2015.40

    79. [79]

      Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K.; et al. Science 2015, 349, 625. doi: 10.1126/science.aab3175  doi: 10.1126/science.aab3175

    80. [80]

      Song, S.; Keum, D. H.; Cho, S.; Perello, D.; Kim, Y.; Lee, Y. H. Nano Lett. 2016, 16, 188. doi: 10.1021/acs.nanolett.5b03481  doi: 10.1021/acs.nanolett.5b03481

    81. [81]

      Rhodes, D.; Chenet, D. A.; Janicek, B. E.; Nyby, C.; Lin, Y.; Jin, W.; Edelberg, D.; Mannebach, E.; Finney, N.; Antony, A.; et al. Nano Lett. 2017, 17, 1616. doi: 10.1021/acs.nanolett.6b04814  doi: 10.1021/acs.nanolett.6b04814

    82. [82]

      Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M.; Chhowalla, M. ACS Nano 2012, 6, 7311. doi: 10.1021/nn302422x  doi: 10.1021/nn302422x

    83. [83]

      Tessier, M. D.; Mahler, B.; Nadal, B.; Heuclin, H.; Pedetti, S.; Dubertret, B. Nano Lett. 2013, 13, 3321. doi: 10.1021/nl401538n  doi: 10.1021/nl401538n

    84. [84]

      Mahler, B.; Nadal, B.; Bouet, C.; Patriarche, G.; Dubertret, B. J. Am. Chem. Soc. 2012, 134, 18591. doi: 10.1021/ja307944d  doi: 10.1021/ja307944d

    85. [85]

      Lu, C. L.; Prasad, K. S.; Wu, H. L.; Ho, J. A. A.; Huang, M. H. J. Am. Chem. Soc. 2010, 132, 14546. doi: 10.1021/ja105401p  doi: 10.1021/ja105401p

    86. [86]

      Reiss, P.; Bleuse, J.; Pron, A. Nano Lett. 2002, 2, 781. doi: 10.1021/nl025596y  doi: 10.1021/nl025596y

    87. [87]

      Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Nat. Mater. 2007, 6, 692. doi: 10.1038/nmat1957  doi: 10.1038/nmat1957

    88. [88]

      Niu, Z.; Cui, F.; Yu, Y.; Becknell, N.; Sun, Y.; Khanarian, G.; Kim, D.; Dou, L.; Dehestani, A.; Schierle-Arndt, K.; et al. J. Am. Chem. Soc. 2017, 139, 7348. doi: 10.1021/jacs.7b02884  doi: 10.1021/jacs.7b02884

    89. [89]

      Talapin, D. V.; Koeppe, R.; Götzinger, S.; Kornowski, A.; Lupton, J. M.; Rogach, A. L.; Benson, O.; Feldmann, J.; Weller, H. Nano Lett. 2003, 3, 1677. doi: 10.1021/nl034815s  doi: 10.1021/nl034815s

    90. [90]

      Fan, Z.; Zhu, Y.; Huang, X.; Han, Y.; Wang, Q.; Liu, Q.; Huang, Y.; Gan, C. L.; Zhang, H. Angew. Chem. Int. Ed. 2015, 127, 5764. doi: 10.1002/ange.201500993  doi: 10.1002/ange.201500993

    91. [91]

      Xia, X.; Wang, Y.; Ruditskiy, A.; Xia, Y. Adv. Mater. 2013, 25, 6313. doi: 10.1002/adma.201302820  doi: 10.1002/adma.201302820

    92. [92]

      Sun, Y.; Mayers, B. T.; Xia, Y. Nano Lett. 2002, 2, 481. doi: 10.1021/nl025531v  doi: 10.1021/nl025531v

    93. [93]

      Métraux, G. S.; Cao, Y. C.; Jin, R.; Mirkin, C. A. Nano Lett. 2003, 3, 519. doi: 10.1021/nl034097+  doi: 10.1021/nl034097+

    94. [94]

      Li, Y.; Wang, J.; Zhou, B.; Wang, F.; Miao, Y.; Wei, J.; Zhang, B.; Zhang, K. Phys. Chem. Chem. Phys. 2018, 20, 24109. doi: 10.1039/c8cp04337j  doi: 10.1039/c8cp04337j

    95. [95]

      Dong, L.; Lou, J.; Shenoy, V. B. ACS Nano 2017, 11, 8242. doi: 10.1021/acsnano.7b03313  doi: 10.1021/acsnano.7b03313

    96. [96]

      Li, F.; Wei, W.; Zhao, P.; Huang, B.; Dai, Y. J. Phys. Chem. Lett. 2017, 8, 5959. doi: 10.1021/acs.jpclett.7b02841  doi: 10.1021/acs.jpclett.7b02841

    97. [97]

      Wong, J.; Jariwala, D.; Tagliabue, G.; Tat, K.; Davoyan, A. R.; Sherrott, M. C.; Atwater, H. A. ACS Nano 2017, 11, 7230. doi: 10.1021/acsnano.7b03148  doi: 10.1021/acsnano.7b03148

    98. [98]

      Patel, M.; Kim, H. S.; Kim, J. Nanoscale 2017, 9, 15804. doi: 10.1039/c7nr03370b  doi: 10.1039/c7nr03370b

    99. [99]

      Zhang, X, Shaoqing, X.; Haiyan, N.; Haoxin, M.; Xi, W.; Xiaofeng, G.; Kostya, O. Nanotechnology 2018, 29, 455707. doi: 10.1088/1361-6528/aaddc5  doi: 10.1088/1361-6528/aaddc5

    100. [100]

      Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F.; et al. ACS Nano 2013, 7, 2898. doi: 10.1021/nn400280c  doi: 10.1021/nn400280c

    101. [101]

      Wang, L.; Yang, P.; Liu, Y.; Fang, X.; Shi, X.; Wu, S.; Huang, L.; Li, H.; Huang, X.; Huang, W. Nanoscale 2017, 9, 9997. doi: 10.1039/c7nr03072j  doi: 10.1039/c7nr03072j

  • 加载中
    1. [1]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    2. [2]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    3. [3]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    4. [4]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    5. [5]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    6. [6]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    7. [7]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    8. [8]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    9. [9]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    10. [10]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    11. [11]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    12. [12]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    13. [13]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    14. [14]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    15. [15]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    16. [16]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    17. [17]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    18. [18]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    19. [19]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    20. [20]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

Metrics
  • PDF Downloads(15)
  • Abstract views(688)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return