Citation: FEI Huilong, DUAN Xiangfeng. Nitrogen Doped Graphdiyne Enhances Oxygen Reduction Reactions[J]. Acta Physico-Chimica Sinica, ;2019, 35(6): 559-560. doi: 10.3866/PKU.WHXB201809016 shu

Nitrogen Doped Graphdiyne Enhances Oxygen Reduction Reactions

  • .  sp-N掺杂的石墨炔合成图。(b)碱性条件下,氮掺杂的石墨炔及商业Pt/C催化剂的半波电位和 动力学电流密度。(c)酸性和碱性条件下,电流密度随sp-N含量变化图。

    阴极氧还原反应(ORR)是燃料电池和金属-空气电池中的一个关键反应,在能源转化领域起着至关重要的作用1, 2。由于其较高的过电位,当前氧还原反应一般都需要使用贵金属铂(Pt)基催化剂。但其高昂的成本和较差的耐久性极大地限制了燃料电池的规模化与商业化进程3, 4。从长远来看,寻找高效的非金属催化剂代替Pt是降低成本的根本途径。在非金属催化剂中,氮掺杂碳材料的氧还原催化活性较高,是理想的氧还原反应催化剂之一5。目前,常用的氮掺杂碳材料主要基于石墨烯和碳纳米管,但限制于自身的sp2杂化结构,相应的氮构型主要有吡啶氮、吡咯氮和石墨氮等6-8。据前人的研究,在氮掺杂碳材料催化剂中,氮原子的掺杂形式与催化性能的高低密切相关,因此开发新的氮掺杂形式有望进一步提升氮掺杂碳材料的催化活性。石墨炔,作为一种新型碳材料,其独特的sp杂化碳原子有望带来新的氮掺杂构型,为发展新的氮掺杂形式带来可能9

    近日,中国科学院过程工程研究所王丹研究员团队通过周环反应在薄层石墨炔中成功地引入了一种新形式的N原子,即sp杂化的N原子(见图)。值得注意的是,与以往的掺杂往往在缺陷位置和边缘位置进行不同,这种sp-N是通过化学反应在碳碳三键位置引入的,实现了位点可控的掺杂。此外,通过调控反应前驱体的比例,可以实现对sp-N含量的精确控制。作者利用X射线吸收近边结构谱(XANES)和X射线光电子能谱(XPS)验证了sp-N原子存在的位点及含量。电化学测试发现sp-N掺杂的石墨炔材料具有非常优异的ORR性能,其在碱性条件下的催化活性可以媲美Pt/C催化剂;而在酸性条件下,这一材料的催化活性虽略低于Pt/C催化剂,但相比其它非金属催化剂,其活性仍要高出很多。同时,该材料表现出比Pt/C更好的稳定性和耐甲醇中毒的特性。实验表征和理论计算表明,sp-N是提升活性的关键因素,它的存在有利于O2的吸附和活化,使电子更易转移到催化剂表面。该研究与中国科学院化学研究所李玉良院士、北京师范大学朱嘉团队等合作完成。

    该研究工作近期已在Nature Chemistry上在线发表10。该工作通过利用石墨炔独有的分子结构,应用化学反应,将一种新型的N杂化形式,即sp-N,定点定量的引入到碳材料中。这种可控的掺杂合成策略以及对合成机理的深入理解为设计其它催化剂提供了新的思路,将拓宽在其它领域的应用。

    1. [1]

      Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115  doi: 10.1038/nature11115

    2. [2]

      Cheng, F.; Chen, J. Chem. Soc. Rev. 2012, 41, 2172. doi: 10.1039/C1CS15228A  doi: 10.1039/C1CS15228A

    3. [3]

      Chen, A.; Holt-Hindle, P. Chem. Rev. 2010, 110, 3767. doi: 10.1021/cr9003902  doi: 10.1021/cr9003902

    4. [4]

      Wang, Y. J.; Zhao, N.; Fang, B.; Li, H.; Bi, X. T.; Wang, H. Chem. Rev. 2015, 115, 3433. doi: 10.1021/cr500519c  doi: 10.1021/cr500519c

    5. [5]

      Liang, H. W.; Zhuang, X.; Bruller, S.; Feng, X.; Mullen, K. Nat. Commun. 2014, 5, 4973. doi: 10.1038/ncomms5973  doi: 10.1038/ncomms5973

    6. [6]

      Dai, L.; Xue, Y.; Qu, L.; Choi, H. J.; Baek, J. B. Chem. Rev. 2015, 115, 4823. doi: 10.1021/cr5003563  doi: 10.1021/cr5003563

    7. [7]

      Gottfried, J. M.; Flechtner, K.; Kretschmann, A.; Lukasczyk, T.; Steinrück, H. P. J. Am. Chem. Soc. 2006, 128, 5644. doi: 10.1021/ja0610333  doi: 10.1021/ja0610333

    8. [8]

      Zhang, C.; Hao, R.; Liao, H.; Hou, Y. Nano Energy 2013, 2, 88. doi: 10.1016/j.nanoen.2012.07.021  doi: 10.1016/j.nanoen.2012.07.021

    9. [9]

      Guo, D.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Science 2016, 351, 361. doi: 10.1126/science.aad0832  doi: 10.1126/science.aad0832

    10. [10]

      Zhao, Y.; Wan, J.; Yao, H.; Zhang, L.; Lin, K.; Wang, L.; Yang, N.; Liu, D.; Song, L.; Zhu, J.; et al. Nat. Chem. 2018, 10, 924. doi: 10.1038/s41557-018-0100-1  doi: 10.1038/s41557-018-0100-1

    1. [1]

      Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115  doi: 10.1038/nature11115

    2. [2]

      Cheng, F.; Chen, J. Chem. Soc. Rev. 2012, 41, 2172. doi: 10.1039/C1CS15228A  doi: 10.1039/C1CS15228A

    3. [3]

      Chen, A.; Holt-Hindle, P. Chem. Rev. 2010, 110, 3767. doi: 10.1021/cr9003902  doi: 10.1021/cr9003902

    4. [4]

      Wang, Y. J.; Zhao, N.; Fang, B.; Li, H.; Bi, X. T.; Wang, H. Chem. Rev. 2015, 115, 3433. doi: 10.1021/cr500519c  doi: 10.1021/cr500519c

    5. [5]

      Liang, H. W.; Zhuang, X.; Bruller, S.; Feng, X.; Mullen, K. Nat. Commun. 2014, 5, 4973. doi: 10.1038/ncomms5973  doi: 10.1038/ncomms5973

    6. [6]

      Dai, L.; Xue, Y.; Qu, L.; Choi, H. J.; Baek, J. B. Chem. Rev. 2015, 115, 4823. doi: 10.1021/cr5003563  doi: 10.1021/cr5003563

    7. [7]

      Gottfried, J. M.; Flechtner, K.; Kretschmann, A.; Lukasczyk, T.; Steinrück, H. P. J. Am. Chem. Soc. 2006, 128, 5644. doi: 10.1021/ja0610333  doi: 10.1021/ja0610333

    8. [8]

      Zhang, C.; Hao, R.; Liao, H.; Hou, Y. Nano Energy 2013, 2, 88. doi: 10.1016/j.nanoen.2012.07.021  doi: 10.1016/j.nanoen.2012.07.021

    9. [9]

      Guo, D.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Science 2016, 351, 361. doi: 10.1126/science.aad0832  doi: 10.1126/science.aad0832

    10. [10]

      Zhao, Y.; Wan, J.; Yao, H.; Zhang, L.; Lin, K.; Wang, L.; Yang, N.; Liu, D.; Song, L.; Zhu, J.; et al. Nat. Chem. 2018, 10, 924. doi: 10.1038/s41557-018-0100-1  doi: 10.1038/s41557-018-0100-1

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    6. [6]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    11. [11]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    12. [12]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    15. [15]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    16. [16]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    17. [17]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    18. [18]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    19. [19]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(16)
  • Abstract views(884)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return