Citation: WANG Yijun, ZHANG Dexiang, WAN Zhongjun, LI Ping, ZHANG Changhua. A Comparative Study of Ignition Delay of Cracked Kerosene/Air and Kerosene/Air over a Wide Temperature Range[J]. Acta Physico-Chimica Sinica, ;2019, 35(6): 591-597. doi: 10.3866/PKU.WHXB201806042 shu

A Comparative Study of Ignition Delay of Cracked Kerosene/Air and Kerosene/Air over a Wide Temperature Range

  • Corresponding author: LI Ping, lpscun@scu.edu.cn
  • Received Date: 21 June 2018
    Revised Date: 26 July 2018
    Accepted Date: 27 July 2018
    Available Online: 13 June 2018

    Fund Project: The project was supported by the National Key R & D Program of China (2017YFB0202400, 2017YFB0202401)The project was supported by the National Key R & D Program of China 2017YFB0202401The project was supported by the National Key R & D Program of China 2017YFB0202400

  • Kerosene is an ideal endothermic hydrocarbon. Its pyrolysis plays a significant role in the thermal protection for high-speed aircraft. Before it reacts, kerosene experiences thermal decomposition in the heat exchanger and produces cracked products. Thus, to use cracked kerosene instead of pure kerosene, knowledge of their ignition properties is needed. In this study, ignition delay times of cracked kerosene/air and kerosene/air were measured in a heated shock tube at temperatures of 657–1333 K, an equivalence ratio of 1.0, and pressures of 1.01 × 105–10.10 × 105 Pa. Ignition delay time was defined as the time interval between the arrival of the reflected shock and the occurrence of the steepest rise of excited-state CH species (CH*) emission at the sidewall measurement location. Pure helium was used as the driver gas for high-temperature measurements in which test times needed to be shorter than 1.5 ms, and tailored mixtures of He/Ar were used when test times could reach up to 15 ms. Arrhenius-type formulas for the relationship between ignition delay time and ignition conditions (temperature and pressure) were obtained by correlating the measured high-temperature data of both fuels. The results reveal that the ignition delay times of both fuels are close, and an increase in the pressure or temperature causes a decrease in the ignition delay time in the high-temperature region (> 1000 K). Both fuels exhibit similar high-temperature ignition delay properties, because they have close pressure exponents (cracked kerosene: τignP-0.85; kerosene:τignP-0.83) and global activation energies (cracked kerosene: Ea = 143.37 kJ·mol-1; kerosene: Ea = 144.29 kJ·mol-1). However, in the low-temperature region (< 1000 K), ignition delay characteristics are quite different. For cracked kerosene/air, while the decrease in the temperature still results in an increase in the ignition delay time, the negative temperature coefficient (NTC) of ignition delay does not occur, and the low-temperature ignition data still can be correlated by an Arrhenius-type formula with a much smaller global activation energy compared to that at high temperatures. However, for kerosene/air, this NTC phenomenon was observed, and the Arrhenius-type formula fails to correlate its low-temperature ignition data. At temperatures ranging from 830 to 1000 K, the cracked kerosene ignites faster than the kerosene; at temperatures below 830 K, kerosene ignition delay times become much shorter than those of cracked kerosene. Surrogates for cracked kerosene and kerosene are proposed based on the H/C ratio and average molecular weight in order to simulate ignition delay times for cracked kerosene/air and kerosene/air. The simulation results are in fairly good agreement with current experimental data for the two fuels at high temperatures (> 1000 K). However, in the low-temperature NTC region, the results are in very good agreement with kerosene ignition delay data but disagree with cracked kerosene ignition delay data. The comparison between experimental data and model predictions indicates that refinement of the reaction mechanisms for cracked kerosene and kerosene is needed. These test results are helpful to understand ignition properties of cracked kerosene in developing regenerative cooling technology for high-speed aircraft.
  • 加载中
    1. [1]

      Huang, H.; Spadaccini, L. J.; Sobel, D. R. J. Eng. Gas Turbines Power. 2004, 126, 284. doi: 10.1115/1.1689361  doi: 10.1115/1.1689361

    2. [2]

      Zhong, F. Q.; Fan, X. J.; Yu, G., Li, J. G. Sci China, Ser. E. 2009, 52, 2644. doi: 10.1007/s11431-009-0090-8  doi: 10.1007/s11431-009-0090-8

    3. [3]

      Fry, R. S. J. Propul. Power 2004, 20, 27. doi: 10.2514/1.9178  doi: 10.2514/1.9178

    4. [4]

      Liu, S.; Zhang, B. M. Sci. Technol. 2011, 15, 526. doi: 10.1016/j.ast.2010.08.001  doi: 10.1016/j.ast.2010.08.001

    5. [5]

      Ning, H. B.; Li, Z. R.; Li, X. Y. Acta Phys. -Chim. Sin. 2016, 32, 131.  doi: 10.3866/PKU.WHXB201512151

    6. [6]

      Puri, P.; Ma, F. H.; Choi, J. -Y.; Yong, V. Combust. Flame 2005, 142, 454. doi: 10.1016/j.combustflame.2005.06.001  doi: 10.1016/j.combustflame.2005.06.001

    7. [7]

      Xu, S. L.; Liao, Q. Proc. Eng. 2015, 99, 338. doi: 10.1016/j.proeng.2014.12.544  doi: 10.1016/j.proeng.2014.12.544

    8. [8]

      Castaldi, M.; Leylegian, J. C.; Chinitz, W.; Modroukas, D. Development of an Effective Endothermic Fuel Platform for Regeneratively-Cooled Hypersonic Vehicles. In the American Institute of Aeronautics and Astronautics, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Sacramento, CA, USA, July 9–12, 2006. doi: 10.2514/6.2006-4403

    9. [9]

      Zhang, C. H.; Li, B.; Rao, F.; Li, P.; Li, X. Y. Proc. Combust. Inst. 2015, 35, 3151. doi: 10.1016/j.proci.2014.05.017  doi: 10.1016/j.proci.2014.05.017

    10. [10]

      Rao, F.; Li, B.; Li, P.; Zhang, C. H.; Li, X. Y. Energy Fuel. 2014, 28, 6707. doi: 10.1021/ef500585m  doi: 10.1021/ef500585m

    11. [11]

      Yong, K. L.; He, J. N.; Zhang, W. F.; Xian, L. Y.; Zhang, C. H.; Li, P.; Li, X. Y. Fuel 2017, 188, 567. doi: 10.1016/j.fuel.2016.09.054  doi: 10.1016/j.fuel.2016.09.054

    12. [12]

      He, J. N.; Gou, Y. D.; Lu, P. F.; Zhang, C. H.; Li, P.; Li, X. Y. Combust. Flame 2018, 192, 358. doi: 10.1016/j.combustflame.2018.02.002  doi: 10.1016/j.combustflame.2018.02.002

    13. [13]

      Zhukov, V. P.; Sechenov, V. A.; Starikovskiy, A. Y. Fuel 2014, 126, 169. doi: 10.1016/j.fuel.2014.02.036  doi: 10.1016/j.fuel.2014.02.036

    14. [14]

      Davidson, D. F.; Zhu, Y.; Shao, J.; Hanson, R. K. Fuel 2017, 187, 26. doi: 10.1016/j.fuel.2016.09.047  doi: 10.1016/j.fuel.2016.09.047

    15. [15]

      Akih-Kumgeh, B.; Bergthorson, J. M. Combust. Flame 2011, 158, 1037. doi: 10.1016/j.combustflame.2010.10.021  doi: 10.1016/j.combustflame.2010.10.021

    16. [16]

      Liang, W. K.; Law, C. K. Combust. Flame 2018, 118, 162. doi: 10.1016/j.combustflame.2017.10.003  doi: 10.1016/j.combustflame.2017.10.003

    17. [17]

      Ji, W. Q.; Zhao, P.; He, T. J.; He, X.; Farooq, A.; Law, C. K. Combust. Flame 2016, 164, 294. doi: 10.1016/j.combustflame.2015.11.028  doi: 10.1016/j.combustflame.2015.11.028

    18. [18]

      Kalyan, K.; Andreas, G.; Friedrich, D. Fuel 2018, 222, 859. doi: 10.1016/j.fuel.2018.02.064  doi: 10.1016/j.fuel.2018.02.064

    19. [19]

      Malewicki, T.; Gudiyella, S.; Brezinsky, K. Combust. Flame 2013, 160, 17. doi: 10.1016/j.combustflame.2012.09.013  doi: 10.1016/j.combustflame.2012.09.013

    20. [20]

      Dooley, S.; Won, S. H.; Chaos, M.; Heyne, J.; Ju, Y. G.; Dryer, F. L.; Kumar, K.; Sung, C. -J.; Wang, H. W.; Oehlschlaeger, M. A.; et al. Combust. Flame 2010, 157, 2333. doi: 10.1016/j.combustflame.2010.07.001  doi: 10.1016/j.combustflame.2010.07.001

    21. [21]

      Narayanaswamy, K.; Pitsch, H.; Pepiot, P. Combust. Flame 2016, 165, 288. doi: 10.1016/j.combustflame.2015.12.013  doi: 10.1016/j.combustflame.2015.12.013

    22. [22]

      Egolfopoulos, F. N.; Zhang, H.; Zhang, Z. Combust. Flame 1997, 109, 237. doi: 10.1016/S0010-2180(96)00152-6  doi: 10.1016/S0010-2180(96)00152-6

  • 加载中
    1. [1]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    2. [2]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    3. [3]

      Manman Jin Zhiguo Lv Qingtao Niu . Teaching Reformation and Case Study for “Chemical Process Development and Design” Based on “Just-in-Time” Dynamic and Accurate Matching Industrial Needs. University Chemistry, 2024, 39(11): 108-116. doi: 10.12461/PKU.DXHX202403030

Metrics
  • PDF Downloads(5)
  • Abstract views(386)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return