Citation: GONG Cheng, XIANG Siwan, ZHANG Zeyang, SUN Lan, YE Chenqing, LIN Changjian. Construction and Visible-Light-Driven Photocatalytic Properties of LaCoO3-TiO2 Nanotube Arrays[J]. Acta Physico-Chimica Sinica, ;2019, 35(6): 616-623. doi: 10.3866/PKU.WHXB201805082 shu

Construction and Visible-Light-Driven Photocatalytic Properties of LaCoO3-TiO2 Nanotube Arrays

  • Corresponding author: SUN Lan, sunlan@xmu.edu.cn
  • Received Date: 29 May 2018
    Revised Date: 16 July 2018
    Accepted Date: 17 July 2018
    Available Online: 25 June 2018

    Fund Project: the National Natural Science Foundation of China 21621091The project was supported by the National Natural Science Foundation of China (21621091) and Guangdong Natural Science Foundation, China(2016A030313845)Guangdong Natural Science Foundation, China 2016A030313845

  • TiO2 nanotube arrays (NTAs) have high photocatalytic activity; however, their weak visible light absorption limits their solar energy utilization and environmental application. Perovskite (ABO3)-type oxides with a narrow band gap can absorb visible light in a wide wavelength range and have excellent stability; however, their photocatalytic activity is relatively low. Coupling TiO2 NTAs with ABO3 to form heterojunctions is one of the most promising approaches to extend the optical absorption of TiO2 NTAs into the visible-light range and promote the separation rate of photogenerated electron–hole pairs. However, to date, constructing ABO3-TiO2 NTA heterostructured composites has been extremely challenging owing to the different crystallization temperatures of anatase TiO2 NTAs and ABO3. In this work, LaCoO3 nanoparticles were first synthesized using a sol-gel method. The as-prepared LaCoO3 nanoparticles were then modified on the surface of the TiO2 NTAs using an electrophoretic deposition technique, and a series of LaCoO3-TiO2 NTAs photocatalysts were thus constructed by controlling the deposition time. Results of the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) demonstrated that the nanoparticles prepared through the sol-gel method were LaCoO3 with a uniform size and high crystallization. The average diameter of the LaCoO3 nanoparticles was 100 nm. The binding strength between the LaCoO3 nanoparticles and the TiO2 NTAs was strong. The UV-visible absorption spectra (diffuse reflectance spectroscopy; DRS) demonstrated that the absorption band edge of the LaCoO3-TiO2 NTAs was gradually red-shifted into the visible light region with the increase in electrophoretic time. The LaCoO3-TiO2 NTAs prepared by the electrophoretic deposition technique for 15 min exhibited a strong light absorption in the wide wavelength range from 250 to 700 nm, which was the same as that of the LaCoO3 nanoparticles loaded on a Ti foil. The results of the photocatalytic degradation of methyl orange (MO) under visible light irradiation demonstrated that the photocatalytic degradation rate of MO over LaCoO3-TiO2 NTAs was considerably higher than those of TiO2 NTAs and LaCoO3 nanoparticles loaded on a Ti foil. The LaCoO3-TiO2 NTAs prepared by the electrophoretic deposition technique for 15 min showed the highest photocatalytic degradation rate of MO, which was a four-fold enhancement compared to that of TiO2 NTs under the same conditions. The p-n heterojunctions between the LaCoO3 nanoparticles and the TiO2 nanotubes were responsible for the enhanced visible light photocatalytic activity. The results of the electrochemical impedance spectroscopy (EIS) and photoluminescence spectroscopy (PL) tests demonstrated that the loading of the LaCoO3 nanoparticles effectively promoted the separation and transport of photogenerated charges, thereby enhancing the visible light photocatalytic activity of the TiO2 NTAs.
  • 加载中
    1. [1]

      Wu, L.; Zhang, M.; Li, J.; Cen, C.; Li, X. Res. Chem. Intermed. 2016, 42, 4569. doi: 10.1007/s11164-015-2297-6  doi: 10.1007/s11164-015-2297-6

    2. [2]

      Xiao, F. X.; Liu, B. Nanoscale 2017, 9, 17118. doi: 10.1039/c7nr06697j  doi: 10.1039/c7nr06697j

    3. [3]

      Leung, D. Y.; Fu, X.; Wang, C.; Ni, M.; Leung, M. K.; Wang, X. ChemSusChem. 2010, 3, 681. doi: 10.1002/cssc.201000014  doi: 10.1002/cssc.201000014

    4. [4]

      Wang, J.; Lin, Z. Chem. Mater. 2010, 22, 579. doi: 10.1021/cm903164k  doi: 10.1021/cm903164k

    5. [5]

      Wang, M.; Ioccozia, J.; Sun, L.; Lin, C.; Lin, Z. Energy Environ. Sci. 2014, 7, 2182. doi: 10.1039/c4ee00147h  doi: 10.1039/c4ee00147h

    6. [6]

      Zhou, H.; Ge, J.; Zhang, M.; Yuan, S. Res. Chem. Intermed. 2016, 42, 1929. doi: 10.1007/s11164-015-2126-y  doi: 10.1007/s11164-015-2126-y

    7. [7]

      Xiao, F. X.; Liu, B. Adv. Mater. Interfaces 2018, 5, 1701098. doi: 10.1002/admi.201701098  doi: 10.1002/admi.201701098

    8. [8]

      Wu, Z; Gong, C; Yu, J; Sun, L; Xiao, W.; Lin, C. J. Mater. Chem. A 2017, 5, 1292. doi: 10.1039/c6ta07420k  doi: 10.1039/c6ta07420k

    9. [9]

      Chen, C.; Ye, M.; Lv, M.; Gong, C.; Guo, W.; Lin, C. Electrochim. Acta 2014, 121, 175. doi: 10.1016/j.electacta.2013.12.106  doi: 10.1016/j.electacta.2013.12.106

    10. [10]

      Chen, H.; Fu, W.; Yang, H.; Sun, P.; Zhang, Y; Wang, L.; Zhao, W.; Zhou, X.; Zhao, H.; Jing, Q.; Qi, X; Li, Y. Electrochim. Acta 2010, 56, 919. doi:10.1016/j.electacta.2010.10.003  doi: 10.1016/j.electacta.2010.10.003

    11. [11]

      Su, Y.; Wu, Z.; Wu, Y.; Yu, Y.; Sun, L.; Lin, C. J. Mater. Chem. A 2015, 3, 8537. doi: 10.1039/c5ta00839e  doi: 10.1039/c5ta00839e

    12. [12]

      Sun, L.; Wu, Z.; Xiang, S.; Yu, Y.; Wang, Y.; Lin, C.; Lin, Z. RSC Adv. 2017, 7, 17551. doi: 10.1039/c6ra27388b  doi: 10.1039/c6ra27388b

    13. [13]

      Britoa, J. F.; Tavella, F.; Genovese, C.; Ampelli, C.; Zanoni, M. V. B.; Centi, G.; Perathoner, S. Appl. Catal. B: Environ. 2018, 224, 136. doi: 10.1016/j.apcatb.2017.09.071  doi: 10.1016/j.apcatb.2017.09.071

    14. [14]

      Xiao, F. X.; Zhang, J. J. Mater. Chem. A 2017, 5, 23681. doi: 10.1039/c7ta08415c  doi: 10.1039/c7ta08415c

    15. [15]

      Xie, K.; Wu, Z.; Wang, M.; Yu, J.; Gong, C.; Sun, L.; Lin, C. Electrochem. Commun. 2016, 63, 56. doi: 10.1016/j.elecom.2015.12.013  doi: 10.1016/j.elecom.2015.12.013

    16. [16]

      Zeng, Z.; Xiao, F. X.; Phan, H.; Chen, S.; Y, Z.; Wang, R.; Nguyen, T. Q.; Tan, T. T. Y. J. Mater. Chem. A 2018, 6, 1700. doi: 10.1039/c7ta09119b  doi: 10.1039/c7ta09119b

    17. [17]

      Mao, Z.; Lin, H.; Xu, M.; Miao, J.; He, S.; Li, Q. J. Appl. Electrochem. 2018, 48, 147. doi: 10.1007/s10800-017-1138-2  doi: 10.1007/s10800-017-1138-2

    18. [18]

      Zhang, W.; Liu, J.; Guo, Z.; Yao, S.; Wang, H. J. Mater. Sci: Mater. Electron. 2017, 28, 9505. doi: 10.1007/s10854-017-6694-z  doi: 10.1007/s10854-017-6694-z

    19. [19]

      Zhao, Q.; Ren, Y.; Li, X.; Shi, Y. Mater. Res. Bull. 2016, 83, 396. doi: 10.1016/j.materresbull.2016.06.031  doi: 10.1016/j.materresbull.2016.06.031

    20. [20]

      Xiang, S.; Zhang, Z.; Gong, C.; Wu, Z.; Sun, L.; Ye, C.; Lin, C. Mater Lett. 2018, 216, 1. doi: 10.1016/j.matlet.2017.12.101  doi: 10.1016/j.matlet.2017.12.101

    21. [21]

      Grabowska, E. Appl. Catal. B: Environ. 2016, 186, 97. doi: 10.1016/j.apcatb.2015.12.035  doi: 10.1016/j.apcatb.2015.12.035

    22. [22]

      Meziani, D.; Reziga, A.; Rekhila, G.; Bellal, B.; Trari, M. Energy Convers. Manage. 2014, 82, 244. doi: 10.1016/j.enconman.2014.03.028  doi: 10.1016/j.enconman.2014.03.028

    23. [23]

      Guo, J.; Dai, Y.; Chen, X.; Zhou, L.; Liu, T. J. Alloy. Compd. 2017, 696, 226. doi: 10.1016/j.jallcom.2016.11.251  doi: 10.1016/j.jallcom.2016.11.251

    24. [24]

      Ling, F.; Anthony, O. C.; Xiong, Q.; Luo, M.; Pan, X.; Jia, L.; Huang, J.; Sun, D.; Li, Q. Int. J. Hydrogen Energy 2016, 41, 6115. doi: 10.1016/j.ijhydene.2015.10.036  doi: 10.1016/j.ijhydene.2015.10.036

    25. [25]

      Qin, J.; Lin, L.; Wang, X. Chem. Commun. 2018, 54, 2272. doi: 10.1039/c7cc07954k  doi: 10.1039/c7cc07954k

    26. [26]

      Niu, K.; Liang, L.; Li, J.; Zhang, F. Micropor. Mesopor. Mat. 2016, 220, 220. doi: 10.1016/j.micromeso.2015.09.007  doi: 10.1016/j.micromeso.2015.09.007

    27. [27]

      Hu, M.; Zhang, Q.; Gu, L.; Guo, Q.; Cao, Y.; Kareev, M.; Chakhalian, J.; Guo, J. Appl. Phys. Lett. 2018, 112, 031603. doi: 10.1063/1.5006298  doi: 10.1063/1.5006298

    28. [28]

      Xie, K.; Gong, C.; Wang, M.; Sun, L.; Lin, C. J. Appl. Electrochem. 2017, 47, 959. doi: 10.1007/s10800-017-1093-y  doi: 10.1007/s10800-017-1093-y

    29. [29]

      Wu, Z.; Wang, Y.; Sun, L.; Mao, Y.; Wang, M.; Lin. C. J. Mater. Chem. A 2014, 2, 8223. doi: 10.1039/c4ta00850b  doi: 10.1039/c4ta00850b

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    4. [4]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    5. [5]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    6. [6]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    7. [7]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    8. [8]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    16. [16]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

Metrics
  • PDF Downloads(6)
  • Abstract views(434)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return