Citation: ZHAO Xinfei, CHEN Hao, WU Hao, WANG Rui, CUI Yi, FU Qiang, YANG Fan, BAO Xinhe. Growth of Ordered ZnO Structures on Au(111) and Cu(111)[J]. Acta Physico-Chimica Sinica, ;2018, 34(12): 1373-1380. doi: 10.3866/PKU.WHXB201804131 shu

Growth of Ordered ZnO Structures on Au(111) and Cu(111)

  • Corresponding author: YANG Fan, fyang@dicp.ac.cn
  • Received Date: 15 March 2018
    Revised Date: 9 April 2018
    Accepted Date: 9 April 2018
    Available Online: 13 December 2018

    Fund Project: the National Natural Science Foundation of China 21473191the National Natural Science Foundation of China 91545204The project was supported by the Ministry of Science and Technology of China (2017YFB0602205, 2016YFA0202803), the National Natural Science Foundation of China (21473191, 91545204) and the Thousand Talents Program for Young ScientistsThe project was supported by the Ministry of Science and Technology of China 2016YFA0202803The project was supported by the Ministry of Science and Technology of China 2017YFB0602205

  • The growth and structural properties of ZnO thin films on both Au(111) and Cu(111) surfaces were studied using either NO2 or O2 as oxidizing agent. The results indicate that NO2 promotes the formation of well-ordered ZnO thin films on both Au(111) and Cu(111). The stoichiometric ZnO thin films obtained on these two surfaces exhibit a flattened and non-polar ZnO(0001) structure. It is shown that on Au(111), the growth of bilayer ZnO nanostructures (NSs) is favored during the deposition of Zn in presence of NO2 at 300 K, whereas both monolayer and bilayer ZnO NSs could be observed when Zn is deposited at elevated temperatures under a NO2 atmosphere. The growth of bilayer ZnO NSs is caused by the stronger interaction between two ZnO layers than between ZnO and Au(111) surface. In contrast, the growth of monolayer ZnO NSs involves a kinetically controlled process. ZnO thin films covering the Au(111) surface exhibits a multilayer thickness, which is consistent with the growth kinetics of ZnO NSs. Besides, the use of O2 as oxidizing agent could lead to the formation of sub-stoichiometric ZnOx structures. The growth of full layers of ZnO on Cu(111) has been a difficult task, mainly because of the interdiffusion of Zn promoted by the strong interaction between Cu and Zn and the formation of Cu surface oxides by the oxidation of Cu(111). We overcome this problem by using NO2 as oxidizing agent to form well-ordered ZnO thin films covering the Cu(111) surface. The surface of the well-ordered ZnO thin films on Cu(111) displays mainly a moiré pattern, which suggests a (3 × 3) ZnO superlattice supported on a (4 × 4) supercell of Cu(111). The observation of this superstructure provides a direct experimental evidence for the recently proposed structural model of ZnO on Cu(111), which suggests that this superstructure exhibits the minimal strain. Our studies suggested that the surface structures of ZnO thin films could change depending on the oxidation level or the oxidant used. The oxidation of Cu(111) could also become a key factor for the growth of ZnO. When Cu(111) is pre-oxidized to form copper surface oxides, the growth mode of ZnOx is altered and single-site Zn could be confined into the lattice of copper surface oxides. Our studies show that the growth of ZnO is promoted by inhibiting the diffusion of Zn into metal substrates and preventing the formation of sub-stoichiometric ZnOx. In short, the use of an atomic oxygen source is advantageous to the growth of ZnO thin films on Au(111) and Cu(111) surfaces.
  • 加载中
    1. [1]

      Klier, K. Adv. Catal. 1982, 31, 243. doi: 10.1016/s0360-0564(08)60455-1  doi: 10.1016/s0360-0564(08)60455-1

    2. [2]

      Ratnasamy, C.; Wagner, J. P. Catal. Rev. Sci. Eng. 2009, 51, 325. doi: 10.1080/01614940903048661  doi: 10.1080/01614940903048661

    3. [3]

      Newsome, D. S. Catal. Rev. Sci. Eng. 1980, 21, 275. doi: 10.1080/03602458008067535  doi: 10.1080/03602458008067535

    4. [4]

      Jiao, F.; Li, J.; Pan, X.; Xiao, J.; Li, H.; Ma, H.; Wei, M.; Pan, Y.; Zhou, Z.; Li, M.; et al. Science 2016, 351, 1065. doi: 10.1126/science.aaf1835  doi: 10.1126/science.aaf1835

    5. [5]

      Pan, Q.; Liu, B. H.; McBriarty, M. E.; Martynova, Y.; Groot, I. M. N.; Wang, S.; Bedzyk, M. J.; Shaikhutdinov, S.; Freund, H. J. Catal. Lett. 2014, 144, 648. doi: 10.1007/s10562-014-1191-y  doi: 10.1007/s10562-014-1191-y

    6. [6]

      Martynova, Y.; Liu, B. H.; McBriarty, M. E.; Groot, I. M. N.; Bedzyk, M. J.; Shaikhutdinov, S.; Freund, H. J. J. Catal. 2013, 301, 227. doi: 10.1016/j.jcat.2013.02.018  doi: 10.1016/j.jcat.2013.02.018

    7. [7]

      Ta, H. Q.; Zhao, L.; Pohl, D.; Pang, J. B.; Trzebicka, B.; Rellinghaus, B.; Pribat, D.; Gemming, T.; Liu, Z. F.; Bachmatiuk, A.; et al. Crystals 2016, 6, 100. doi: 10.3390/cryst6080100  doi: 10.3390/cryst6080100

    8. [8]

      Weirum, G.; Barcaro, G.; Fortunelli, A.; Weber, F.; Schennach, R.; Surnev, S.; Netzer, F. P. J. Phys. Chem. C 2010, 114, 15432. doi: 10.1021/jp104620n  doi: 10.1021/jp104620n

    9. [9]

      Liu, B. H.; Boscoboinik, J. A.; Cui, Y.; Shaikhutdinov, S.; Freund, H. J. J. Phys. Chem. C 2015, 119, 7842. doi: 10.1021/acs.jpcc.5b01503  doi: 10.1021/acs.jpcc.5b01503

    10. [10]

      Liu, B. H.; McBriarty, M. E.; Bedzyk, M. J.; Shaikhutdinov, S.; Freund, H. J. J. Phys. Chem. C 2014, 118, 28725. doi: 10.1021/jp510069q  doi: 10.1021/jp510069q

    11. [11]

      Deng, X.; Yao, K.; Sun, K.; Li, W. X.; Lee, J.; Matranga, C. J. Phys. Chem. C 2013, 117, 11211. doi: 10.1021/jp402008w  doi: 10.1021/jp402008w

    12. [12]

      Deng, X.; Sorescu, D. C.; Lee, J. J. Phys. Chem. C 2016, 120, 8157. doi: 10.1021/acs.jpcc.6b00862  doi: 10.1021/acs.jpcc.6b00862

    13. [13]

      Lee, J.; Sorescu, D. C.; Deng, X. J. Phys. Chem. Lett. 2016, 7, 1335. doi: 10.1021/acs.jpclett.6b00432  doi: 10.1021/acs.jpclett.6b00432

    14. [14]

      Shiotari, A.; Liu, B. H.; Jaekel, S.; Grill, L.; Shaikhutdinov, S.; Freund, H. J.; Wolf, M.; Kumagai, T. J. Phys. Chem. C2014, 118, 27428. doi: 10.1021/jp509013p  doi: 10.1021/jp509013p

    15. [15]

      Liu, B. H.; Groot, I. M. N.; Pan, Q. S.; Shailchutdinov, S.; Freund, H. J. Appl. Catal. A 2017, 548, 16. doi: 10.1016/j.apcata.2017.06.043  doi: 10.1016/j.apcata.2017.06.043

    16. [16]

      Schott, V.; Oberhofer, H.; Birkner, A.; Xu, M.; Wang, Y.; Muhler, M.; Reuter, K.; Wöll, C. Angew. Chem. Int. Ed. 2013, 52, 11925. doi: 10.1002/anie.201302315  doi: 10.1002/anie.201302315

    17. [17]

      Nilius, N. Surf. Sci. Rep. 2009, 64, 595. doi: 10.1016/j.surfrep.2009.07.004  doi: 10.1016/j.surfrep.2009.07.004

    18. [18]

      Kuld, S.; Thorhauge, M.; Falsig, H.; Elkjær, C. F.; Helveg, S.; Chorkendorff, I.; Sehested, J. Science 2016, 352, 969. doi: 10.1126/science.aaf0718  doi: 10.1126/science.aaf0718

    19. [19]

      Lunkenbein, T.; Schumann, J.; Behrens, M.; Schlögl, R.; Willinger, M. G. Angew. Chem. Int. Ed. 2015, 54, 4544. doi: 10.1002/anie.201411581  doi: 10.1002/anie.201411581

    20. [20]

      Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L.; et al. Science 2012, 336, 893. doi: 10.1126/science.1219831  doi: 10.1126/science.1219831

    21. [21]

      Kattel, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Science 2017, 355, 1296. doi: 10.1126/science.aal3573  doi: 10.1126/science.aal3573

    22. [22]

      Rodriguez, J. A.; Hrbek, J. J. Vac. Sci. Technol. A 1994, 12, 2140. doi: 10.1116/1.579151  doi: 10.1116/1.579151

    23. [23]

      Campbell, C. T. Surf. Sci. Rep. 1997, 27, 1. doi: 10.1016/S0167-5729(96)00011-8  doi: 10.1016/S0167-5729(96)00011-8

    24. [24]

      Evans, J. W.; Thiel, P. A.; Bartelt, M. C. Surf. Sci. Rep. 2006, 61, 1. doi: 10.1016/j.surfrep.2005.08.004  doi: 10.1016/j.surfrep.2005.08.004

    25. [25]

      Yang, F.; Chen, M. S.; Goodman, D. W. J. Phys. Chem. C 2009, 113, 254. doi: 10.1021/Jp807865w  doi: 10.1021/Jp807865w

    26. [26]

      Campbell, C. T.; Parker, S. C.; Starr, D. E.Science 2002, 298, 811. doi: 10.1126/science.1075094  doi: 10.1126/science.1075094

    27. [27]

      Okamoto, H.; Massalski, T. B. Bull. Alloy Phase Diagrams 1989, 10, 59. doi: 10.1007/bf02882177  doi: 10.1007/bf02882177

    28. [28]

      Sano, M.; Adaniya, T.; Fujitani, T.; Nakamura, J. Surf. Sci. 2002, 514, 261. doi: 10.1016/S0039-6028(02)01639-4  doi: 10.1016/S0039-6028(02)01639-4

    29. [29]

      Yang, F.; Choi, Y.; Liu, P.; Hrbek, J.; Rodriguez, J. A. J. Phys. Chem. C 2010, 114, 17042. doi: 10.1021/jp1029079  doi: 10.1021/jp1029079

    30. [30]

      Jensen, F.; Besenbacher, F.; Stensgaard, I. Surf. Sci. 1992, 269, 400. doi: 10.1016/0039-6028(92)91282-g  doi: 10.1016/0039-6028(92)91282-g

    31. [31]

      Bieniek, B.; Hofmann, O. T.; Rinke, P. Appl. Phys. Lett. 2015, 106, 131602. doi: 10.1063/1.4917015  doi: 10.1063/1.4917015

    32. [32]

      Tosoni, S.; Li, C.; Schlexer, P.; Pacchioni, G. J. Phys. Chem. C 2017, 121, 27453. doi: 10.1021/acs.jpcc.7b08781  doi: 10.1021/acs.jpcc.7b08781

  • 加载中
    1. [1]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    2. [2]

      Yanjie LiChaoqun QuSiqi MengJiaqi HuZe GaoHongji XuRui GaoMing Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872

    3. [3]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    4. [4]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    5. [5]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

    6. [6]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    7. [7]

      Bin FengTao LongRuotong LiYuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273

    8. [8]

      Pengyu ChenBeibei ChenMan HeYuxi ZhouLei LeiJian HanBingsheng ZhouLigang HuBin Hu . Nanoplastics and nano-ZnO facilitate Cd accumulation in zebrafish larvae via a distinct pathway: Revelation by LA-ICP-MS imaging. Chinese Chemical Letters, 2025, 36(2): 109908-. doi: 10.1016/j.cclet.2024.109908

    9. [9]

      Jianing HeXiao WangZijian WangRuize JiangKe WangRui ZhangHuilin WangBaokang GengHongyi GaoShuyan SongHongjie Zhang . Investigation on Cu promotion effect on Ce-based solid solution-anchored Rh single atoms for three-way catalysis. Chinese Chemical Letters, 2025, 36(2): 109640-. doi: 10.1016/j.cclet.2024.109640

    10. [10]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    14. [14]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    15. [15]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    16. [16]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    17. [17]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    18. [18]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    19. [19]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    20. [20]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

Metrics
  • PDF Downloads(20)
  • Abstract views(583)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return