Citation: YU Ze, LI Xiaohong, LI Yunchao, YE Mingfu. K+ Concentration-Dependent Conformational Change of Pb2+-Stabilized G-quadruplex[J]. Acta Physico-Chimica Sinica, ;2018, 34(11): 1293-1298. doi: 10.3866/PKU.WHXB201804111 shu

K+ Concentration-Dependent Conformational Change of Pb2+-Stabilized G-quadruplex

  • Corresponding author: LI Xiaohong, lxhxiao@bnu.edu.cn LI Yunchao, liyc@bnu.edu.cn YE Mingfu, yemingfu@ahut.edu.cn
  • Received Date: 26 February 2018
    Revised Date: 30 March 2018
    Accepted Date: 9 April 2018
    Available Online: 11 November 2018

    Fund Project: the National Natural Science Foundation of China 21673022The project was supported by the National Natural Science Foundation of China (21673022)

  • DNA can adopt a diverse range of structural conformations, including duplexes, triplexes, and quadruplexes. Among these structures, G-quadruplexes have attracted much more attention of researchers. For G-rich DNA sequences, they can fold into multiple G-quadruplex conformations, such as parallel, antiparallel, or hybrid, and the exact conformation is influenced by G-rich DNA sequence, strand concentration, and binding cations. Among the factors influencing the G-quadruplex conformation and stability, cations played a really important role. Numerous studies have reported cation-dependent stability and topological changes of G-quadruplexes; however, most of studies have focused on the effect of individual cation (such as charge, radii, or hydration, etc.), and only few have assessed the effect of competition between cations at different concentrations. Actually, most biological and aqueous systems contained multiple cations and each of the cations had very different concentrations. Thus, investigation of the competitions between different cations (at different concentrations) for binding with G-quadruplexes and their effects on polymorphism of G-quadruplex is critical, which would improve our understanding of the roles of G-quadruplexes and assist us in further exploring their potential applications in biochemical, biomedical, and environmental systems. Under this situation, we focused on K+- and Pb2+-stabilized G-quadruplex, two major cations that are usually used to stabilize G-quadruplex. It has been shown that for a given G-quadruplex forming DNA sequence, Pb2+-stabilized G-quadruplex was more stable than K+-stabilized G-quadruplex, and Pb2+ could substitute K+ in K+-stabilized G-quadruplex. However, the concentrations of K+ that allow such a substitution are not completely studied. Previous studies have used G-quadruplex-based fluorescent, colorimetric, and electrochemical sensors for detecting Pb2+, and these methods show excellent selectivity for Pb2+ over K+. Although G-quadruplex-based Pb2+ sensors were developed, their applications in real samples containing K+ were greatly limited. Thus, how K+ and Pb2+ compete for binding to G-quadruplex and how K+ concentrations affect the stability of Pb2+-stabilized G-quadruplex remain elusive. In this study, eight G-rich DNA sequences were selected to investigate the effect of K+ concentration on Pb2+-stabilized G-quadruplex. Previous studies have established that the presence of K+ cannot alter the stability of Pb2+-stabilized G-quadruplex. In contrast to this, our results indicated that K+ could induce a conformational switch in Pb2+-stabilized T2TT (G-rich DNA sequence, forming G-quadruplex in the presence of Pb2+), and further replace Pb2+ in Pb2+-stabilized T2TT and transform it into 2K+-stabilized T2TT, which is strictly K+ concentration-dependent. Importantly, such a conformational switch could be observed for other seven selected G-rich sequences as well. Therefore, our findings provide a new insight into the exchange and competition of cations in G-quadruplex.
  • 加载中
    1. [1]

      Davis, J. T. Angew. Chem. Int. Ed.2004, 43, 668. doi: 10.1002/anie.200300589  doi: 10.1002/anie.200300589

    2. [2]

      Maizels, N. Nat. Struct. Mol. Biol.2006, 13, 1055. doi: 10.1038/nsmb1171  doi: 10.1038/nsmb1171

    3. [3]

      Sun, H.; Li, X.; Li, Y.; Fan, L.; Kraatz, H. B. Analyst 2013, 138, 856. doi: 10.1039/c2an36564b  doi: 10.1039/c2an36564b

    4. [4]

      Xu, L.; Shen, X.; Hong, S.; Wang, J.; Zhang, Y.; Wang, H.; Zhang, J.; Pei, R. Chem.Commun.2015, 51, 8165. doi: 10.1039/c5cc01590a  doi: 10.1039/c5cc01590a

    5. [5]

      Liu, J.; Lu, Y. J. Am. Chem. Soc.2003, 125, 6642. doi: 10.1021/ja034775u  doi: 10.1021/ja034775u

    6. [6]

      Li, C. L.; Liu, K. T.; Lin, Y. W.; Chang, H. T. Anal.Chem.2011, 83, 225. doi: 10.1021/ac1028787  doi: 10.1021/ac1028787

    7. [7]

      Kim, H. N.; Ren, W. X.; Kim, J. S.; Yoon, J. Chem Soc. Rev.2012, 41, 3210. doi: 10.1039/c1cs15245a  doi: 10.1039/c1cs15245a

    8. [8]

      Hwang, K.; Wu, P.; Kim, T.; Lei, L.; Tian, S.; Wang, Y.; Lu, Y. Angew. Chem. Int. Ed.2014, 53, 13798. doi: 10.1002/anie.201408333  doi: 10.1002/anie.201408333

    9. [9]

      Yang, L.; Qing, Z.; Liu, C.; Tang, Q.; Li, J.; Yang, S.; Zheng, J.; Yang, R.; Tan, W. Anal. Chem.2016, 88, 9285. doi: 10.1021/acs.analchem.6b02667  doi: 10.1021/acs.analchem.6b02667

    10. [10]

      Yang, J.; Dou, B.; Yuan, R.; Xiang, Y. Anal. Chem.2016, 88, 8218. doi: 10.1021/acs.analchem.6b02035  doi: 10.1021/acs.analchem.6b02035

    11. [11]

      Liu, Z.; Luo, X.; Li, Z.; Huang, Y.; Nie, Z.; Wang, H. H.; Yao, S. Anal. Chem.2017, 89, 1892. doi: 10.1021/acs.analchem.6b04360  doi: 10.1021/acs.analchem.6b04360

    12. [12]

      Li, X. M.; Zheng, K. W.; Hao, Y. H.; Tan, Z. Angew.Chem. Int. Ed.2016, 55, 13759. doi: 10.1002/anie.201607195  doi: 10.1002/anie.201607195

    13. [13]

      Hansel-Hertsch, R.; Antonio, M. D.; Balasubramanian, S. Nat.Rev. Mol. Cell Biol.2017, 18, 279. doi: 10.1038/nrm.2017.3  doi: 10.1038/nrm.2017.3

    14. [14]

      Ge, L.; Wang, W.; Sun, X.; Hou, T.; Li, F. Anal.Chem.2016, 88, 9691. doi: 10.1021/acs.analchem.6b02584  doi: 10.1021/acs.analchem.6b02584

    15. [15]

      Hud, N. V. Nucleic Acid-Metal Ion Interactions; Royal Society of Chemistry: Cambridge, UK, 2009.

    16. [16]

      Neidle, S.; Balasubramanian, S. Quadruplex Nucleic Acids; Royal Society of Chemistry: Cambridge, UK, 2006; Vol. 7.

    17. [17]

      Liu, W.; Zhu, H.; Zheng, B.; Cheng, S.; Fu, Y.; Li, W.; Lau, T. C.; Liang, H. Nucleic Acids Res.2012, 40, 4229. doi: 10.1093/nar/gkr1310  doi: 10.1093/nar/gkr1310

    18. [18]

      Liu, W.; Zheng, B.; Cheng, S.; Fu, Y.; Li, W.; Lau, T. C.; Liang, H. Soft Matter 2012, 8, 7017. doi: 10.1039/c2sm25839k  doi: 10.1039/c2sm25839k

    19. [19]

      Liu, W.; Fu, Y.; Zheng, B.; Cheng, S.; Li, W.; Lau, T. C.; Liang, H. J. Phys. Chem. B 2011, 115, 13051. doi: 10.1021/jp2074489  doi: 10.1021/jp2074489

    20. [20]

      Ma, L.; Iezzi, M.; Kaucher, M. S.; Lam, Y. F.; Davis, J. T. J. Am. Chem. Soc.2006, 128, 15269. doi: 10.1021/ja064878n  doi: 10.1021/ja064878n

    21. [21]

      Gu, J.; Leszczynski, J. J. Phys.Chem. A 2002, 106, 529. doi: 10.1021/jp012739g  doi: 10.1021/jp012739g

    22. [22]

      Kotch, F. W.; Fettinger, J. C.; Davis, J. T. Org. Lett.2000, 2, 3277. doi: 10.1021/ol0065120  doi: 10.1021/ol0065120

    23. [23]

      Hud, N. V.; Smith, F. W.; Anet, F. A.; Feigon, J. Biochemistry 1996, 35, 15383. doi: 10.1021/bi9620565  doi: 10.1021/bi9620565

    24. [24]

      Gray, R. D.; Chaires, J. B. Biophys. Chem.2011, 159, 205. doi: 10.1016/j.bpc.2011.06.012  doi: 10.1016/j.bpc.2011.06.012

    25. [25]

      Largy, E.; Marchand, A.; Amrane, S.; Gabelica, V.; Mergny, J. L. J. Am. Chem. Soc.2016, 138, 2780. doi: 10.1021/jacs.5b13130  doi: 10.1021/jacs.5b13130

    26. [26]

      Sen, D.; Gilbert, W. Nature 1990, 344, 410. doi: 10.1038/344410a0  doi: 10.1038/344410a0

    27. [27]

      Sun, H.; et al. Chem. Commun.2013, 49, 4510. doi: 10.1039/c3cc39020a  doi: 10.1039/c3cc39020a

    28. [28]

      Sket, P.; Crnugelj, M.; Plavec, J. Nucleic Acids Res.2005, 33, 3691. doi: 10.1093/nar/gki690  doi: 10.1093/nar/gki690

    29. [29]

      Liu, Y.; Ren, J.; Qin, Y.; Li, J.; Liu, J.; Wang, E. Chem.Commun.2012, 48, 802. doi: 10.1039/c1cc15979h  doi: 10.1039/c1cc15979h

    30. [30]

      Smirnov, I.; Shafer, R. H. J. Mol.Biol.2000, 296, 1. doi: 10.1006/jmbi.1999.3441  doi: 10.1006/jmbi.1999.3441

    31. [31]

      Zhai, W.; Du, C.; Li, X. Chem.Commun. 2014, 50, 2093. doi: 10.1039/c3cc47763k  doi: 10.1039/c3cc47763k

    32. [32]

      Li, T.; Wang, E.; Dong, S. J. Am. Chem. Soc.2009, 131, 15082. doi: 10.1021/ja9051075  doi: 10.1021/ja9051075

    33. [33]

      Wang, X.; Xi, Q.; Peng, L.; Ge, J.; Kan, Y.; Jiang, J.; Shen, G.; Yu, R. Anal. Methods 2013, 5, 5597. doi: 10.1039/c3ay41097h  doi: 10.1039/c3ay41097h

    34. [34]

      Li, T.; Wang, E.; Dong, S. Anal. Chem.2010, 82, 1515. doi: 10.1021/ac902638v  doi: 10.1021/ac902638v

    35. [35]

      Wang, H.; Wang, D. M.; Huang, C. Z. Analyst 2015, 140, 5742. doi: 10.1039/c5an00884k  doi: 10.1039/c5an00884k

    36. [36]

      Guo, Y.; Zhou, L.; Xu, L.; Zhou, X.; Hu, J.; Pei, R. Sci.Rep.2014, 4, 7315. doi: 10.1038/srep07315  doi: 10.1038/srep07315

    37. [37]

      Zhao, Y.; Zhang, Q.; Wang, W.; Jin, Y. Biosens. Bioelectron.2013, 43, 231. doi: 10.1016/j.bios.2012.12.004  doi: 10.1016/j.bios.2012.12.004

    38. [38]

      Guo, L.; Nie, D.; Qiu, C.; Zheng, Q.; Wu, H.; Ye, P.; Hao, Y.; Fu, F.; Chen, G. Biosens.Bioelectron. 2012, 35, 123. doi: 10.1016/j.bios.2012.02.031  doi: 10.1016/j.bios.2012.02.031

    39. [39]

      Chen, H.; Sun, H.; Zhang, X.; Sun, X.; Shi, Y.; Tang, Y. RSC Adv.2015, 5, 1730. doi: 10.1039/c4ra11395k  doi: 10.1039/c4ra11395k

    40. [40]

      Cheng, S.; Zheng, B.; Wang, M.; Ge, X.; Zhao, Q.; Liu, W.; Lam, M. H. Biosens.Bioelectron.2014, 53, 479. doi: 10.1016/j.bios.2013.10.016  doi: 10.1016/j.bios.2013.10.016

    41. [41]

      Li, T.; Dong, S.; Wang, E. J. Am.Chem. Soc.2010, 132, 13156. doi: 10.1021/ja105849m.  doi: 10.1021/ja105849m

    42. [42]

      Bagheri, Z.; Ranjbar, B.; Latifi, H.; Zibaii, M. I.; Moghadam, T. T.; Azizi, A. Int. J. Biol. Macromol.2015, 72, 806. doi: 10.1016/j.ijbiomac.2014.09.016  doi: 10.1016/j.ijbiomac.2014.09.016

    43. [43]

      Smirnov, I. V.; Kotch, F. W.; Pickering, I. J.; Davis, J. T.; Shafer, R. H. Biochemistry 2002, 41, 12133. doi: 10.1021/bi020310p  doi: 10.1021/bi020310p

  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    5. [5]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    6. [6]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    12. [12]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    13. [13]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    14. [14]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    15. [15]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

Metrics
  • PDF Downloads(6)
  • Abstract views(706)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return