Citation: OUYANG Jianyong. Recent Advances of Intrinsically Conductive Polymers[J]. Acta Physico-Chimica Sinica, ;2018, 34(11): 1211-1220. doi: 10.3866/PKU.WHXB201804095 shu

Recent Advances of Intrinsically Conductive Polymers


  • Author Bio: Prof. Jianyong Ouyang received his PhD, master and bachelor degrees from the Institute for Molecular Science in Japan, the Institute of Chemistry of the Chinese Academy of Science, and the Tsinghua University in Beijing, respectively. He worked as an assistant professor at the Japanese Advanced Institute of Science and Technology and a postdoctoral researcher at the University of California, Los Angeles (UCLA) before joining the National University of Singapore as an assistant professor in 2006. He was promoted to associate professor in 2012. His research interests include flexible electronics and energy materials and devices
  • Corresponding author: OUYANG Jianyong, mseoj@nus.edu.sg
  • Received Date: 22 February 2018
    Revised Date: 24 March 2018
    Accepted Date: 2 April 2018
    Available Online: 9 November 2018

  • Intrinsically conductive polymers are a class of exciting materials since they combine the advantages of both metals and plastics. But their application is limited due to the issues related to their electronic properties, stability and processibility. For example, although polyacetylene can have electrical conductivity comparable to metals, it degrades fast in air. Most of the conductive polymers in the conductive state, such as polypyrrole and polythiophene, cannot be dispersed in any solvent and cannot be turned to a melt. It is thus difficult to process them into thin films with good quality, while thin films with good quality are important for many applications. In terms of the materials processing, polyaniline (PANi) and poly(3, 4-ethylenedioxythiophene) (PEDOT) have gained great attention. PANi doped with some large cations can be dispersed in some toxic organic solvents, and poly(3, 4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) can be dispersed in water and some polar organic solvents. But the PANi and PEDOT:PSS films prepared from their solutions are usually low. Recently, great progress was made in improving the properties of intrinsically conductive polymers. The conductivity of PEDOT:PSS can be enhanced from 10-1 S·cm-1 to > 4000 S·cm-1 through the so-called "secondary doping". The high conductivity together with the solution processibility enables the application of conductive polymers in many areas, such as electrodes and thermoelectric conversion. In addition, due to their electrochemical activity, conductive polymers or their composites with inorganic materials can have high capacity of charge storage. Conductive polymers can also be added into the electrodes of batteries, because they can facilitate the charge transport and alleviate the large volume change problem of silicon electrode of batteries. It has been demonstrated that conductive polymers can have important application in many areas, such as transparent electrode, stretchable electrode, neural interfaces, thermoelectric conversion and energy storage system. This article provides a brief review on the enhancement of the electrical conductivity of intrinsically conductive polymers and their application as electrodes and in thermoelectric conversion, supercapacitors and batteries.
  • 加载中
    1. [1]

      Skotheim, T. A. ; Elsenbaumer, R. L. ; Reynolds, J. R. Handbook of Conducting Polymers. Vol. 1, 2; Marcel Dekker: New York, 1998.

    2. [2]

      Li, Y.; Ouyang, J.; Yang, J. Synth. Met. 1995, 74, 49. doi: 10.1016/0379-6779(95)80035-2  doi: 10.1016/0379-6779(95)80035-2

    3. [3]

      Ouyang, J.; Li, Y. Polymer 1997, 38, 3997. doi: 10.1016/S0032-3861(97)00087-6  doi: 10.1016/S0032-3861(97)00087-6

    4. [4]

      Ouyang, J.; Li, Y. Polymer 1997, 38, 1971. doi: 10.1016/S0032-3861(96)00749-5  doi: 10.1016/S0032-3861(96)00749-5

    5. [5]

      Li, Y.; Qian, R. J. Electroanal. Chem. 1993, 362, 267. doi: 10.1016/0022-0728(93)80029-H  doi: 10.1016/0022-0728(93)80029-H

    6. [6]

      Li, Y.; Qian, R. Synth. Met. 1989, 28, 127. doi: 10.1016/0379-6779(89)90509-2  doi: 10.1016/0379-6779(89)90509-2

    7. [7]

      Li, Y.; Qian, R. Synth. Met. 1993, 53, 149. doi: 10.1016/0379-6779(93)90886-2  doi: 10.1016/0379-6779(93)90886-2

    8. [8]

      Naarmann, H.; Theophilou, N. Synth. Met. 1987, 22, 1. doi: 10.1016/0379-6779(87)90564-9  doi: 10.1016/0379-6779(87)90564-9

    9. [9]

      Cao, Y.; Smith, P.; Heeger, A. J. Synth. Met. 1992, 48, 91. doi: 10.1016/0379-6779(92)90053-L  doi: 10.1016/0379-6779(92)90053-L

    10. [10]

      Ho, K. S. Synth. Met. 2002, 126, 151. doi: 10.1016/S0379-6779(01)00499-4  doi: 10.1016/S0379-6779(01)00499-4

    11. [11]

      Chan, H. S. O.; Ho, P. K. H.; Ng, S. C.; Tan, B. T. G.; Tan, K. L. J. Am. Chem. Soc. 1995, 117, 8517. doi: 10.1021/ja00138a004  doi: 10.1021/ja00138a004

    12. [12]

      Yue, J.; Epstein, A. J. J. Am. Chem. Soc. 1990, 112, 2800. doi: 10.1021/ja00163a051  doi: 10.1021/ja00163a051

    13. [13]

      Spiteri, M. N.; Williams, C. E.; Boué, F. Macromolecule 2007, 40, 6679. doi: 10.1021/ma060896d  doi: 10.1021/ma060896d

    14. [14]

      Dobrynin, A. V.; Rubinstein, M. Macromolecules 2001, 34, 1964. doi: 10.1021/ma001619o  doi: 10.1021/ma001619o

    15. [15]

      Kim, T. Y.; Park, C. M.; Kim, J. E.; Suh, K. S. Synth. Met. 2005, 149, 169. doi: 10.1016/j.synthmet.2004.12.011  doi: 10.1016/j.synthmet.2004.12.011

    16. [16]

      Brooke, R.; Cottis, P.; Talemi, P.; Fabretto, M.; Murphy, P.; Evans, D. Prog. Mater. Sci. 2017, 86, 127. doi: 10.1016/j.pmatsci.2017.01.004  doi: 10.1016/j.pmatsci.2017.01.004

    17. [17]

      Seo, K. I.; Chung, I. J. Polymer 2000, 41, 4491. doi: 10.1016/S0032-3861(99)00670-9  doi: 10.1016/S0032-3861(99)00670-9

    18. [18]

      Gueye, M. N.; Carella, A.; Massonnet, N.; Yvenou, E.; Brenet, S.; Faure-Vincent, J.; Pouget, S.; Rieutord, F.; Okuno, H.; Benayad, A.; et al. Chem. Mater. 2016, 28, 3462. doi: 10.1021/acs.chemmater.6b01035  doi: 10.1021/acs.chemmater.6b01035

    19. [19]

      MacDiarmid, A. G.; Epstein, A. J. Synth. Met. 1995, 69, 85. doi: 10.1016/0379-6779(94)02374-8  doi: 10.1016/0379-6779(94)02374-8

    20. [20]

      Kim, J. Y.; Jung, J. H.; Lee, D. E.; J. Joo, J. Synth. Met. 2002, 126, 311. doi: 10.1016/S0379-6779(01)00576-8  doi: 10.1016/S0379-6779(01)00576-8

    21. [21]

      Ouyang, J. Displays 2013, 34, 423. doi: 10.1016/j.displa.2013.08.007  doi: 10.1016/j.displa.2013.08.007

    22. [22]

      Shi, H.; Liu, C.; Jiang, Q.; Xu, J. Adv. Electron. Mater. 2015, 1, 1500017. doi: 10.1002/aelm.201500017  doi: 10.1002/aelm.201500017

    23. [23]

      Ouyang, J.; Xu, Q.; Chu, C. W.; Yang, Y.; Li, G.; Shinar, J. Polymer 2004, 45, 8443. doi: 10.1016/j.polymer.2004.10.001  doi: 10.1016/j.polymer.2004.10.001

    24. [24]

      Kee, S.; Kim, N.; Kim, B. S.; Park, S.; Jang, Y. H.; Lee, S. H.; Kim, J.; Kim, J.; Kwon, S.; Lee, K. Adv. Mater. 2016, 28, 8625. doi: 10.1002/adma.201505473  doi: 10.1002/adma.201505473

    25. [25]

      Wu, F.; Li, P.; Sun, K.; Zhou, Y.; Chen, W.; Fu, J.; Li, M.; Lu, S.; Wei, D.; Tang, X.; et al. Adv. Electron. Mater. 2017, 3, 1700047. doi: 10.1002/aelm.201700047  doi: 10.1002/aelm.201700047

    26. [26]

      Fan, B.; Mei, X.; Ouyang, J. Macromolecules 2008, 41, 5971. doi: 10.1021/ma8012459  doi: 10.1021/ma8012459

    27. [27]

      Döbbelin, M.; Marcilla, R.; Salsamendi, M.; Pozo-Gonzalo, C.; Carrasco, P. M.; Pomposo, J. A.; Mecerreyes, D. Chem. Mater. 2007, 19, 2147. doi: 10.1021/cm070398z  doi: 10.1021/cm070398z

    28. [28]

      Lipomi, D. J.; Lee, J. A.; Vosgueritchian, M.; Tee, B. C. K.; Bolander, J. A.; Bao, Z. Chem. Mater. 2012, 24, 373. doi: 10.1021/cm203216m  doi: 10.1021/cm203216m

    29. [29]

      Zhang, S.; Xia, Y.; Ouyang, J. Org. Electron. 2017, 45, 139. doi: 10.1016/j.orgel.2017.03.006  doi: 10.1016/j.orgel.2017.03.006

    30. [30]

      Xia, Y.; Sun, K.; Chang, J.; Ouyang, J. J. Mater. Chem. A 2015, 3, 15897. doi: 10.1039/C5TA03456F  doi: 10.1039/C5TA03456F

    31. [31]

      Ouyang, J. ACS Appl. Mater. Interfaces 2013, 5, 13082. doi: 10.1021/am404113n  doi: 10.1021/am404113n

    32. [32]

      Xia, Y.; Ouyang, J. ACS Appl. Mater. Interfaces 2012, 4, 4131. doi: 10.1021/am300881m  doi: 10.1021/am300881m

    33. [33]

      Xia, Y.; Ouyang, J. Org. Electron. 2012, 13, 1785. doi: 10.1016/j.orgel.2012.05.039  doi: 10.1016/j.orgel.2012.05.039

    34. [34]

      Xia, Y.; Sun, K.; Ouyang, J. Adv. Mater. 2012, 24, 2436. doi: 10.1002/adma.201104795  doi: 10.1002/adma.201104795

    35. [35]

      Xia, Y.; Sun. K.; Ouyang, J. Energy Environ. Sci. 2012, 5, 5325. doi: 10.1039/C1EE02475B  doi: 10.1039/C1EE02475B

    36. [36]

      Mengistie, D. A.; Ibrahem, M. A.; Wang, P. C.; Chu, C. W. ACS Appl. Mater. Interfaces 2014, 6, 2292. doi: 10.1021/am405024d  doi: 10.1021/am405024d

    37. [37]

      Worfolk, B. J.; Andrews, S. C.; Park, S.; Reinspach, J.; Liu, N.; Toney, M. F.; Mannsfeld, S. C. B.; Bao, Z. PNAS 2015, 112, 14138. doi: 10.1073/pnas.1509958112  doi: 10.1073/pnas.1509958112

    38. [38]

      Kim, N.; Kee, S.; Lee, S. H.; Lee, B. H.; Kahng, Y. H.; Jo, Y. R.; Kim, B. J.; Lee, K. Adv. Mater. 2014, 26, 2268. doi: 10.1002/adma.201304611  doi: 10.1002/adma.201304611

    39. [39]

      Massonnet, N.; Carella, A.; de Geyer, A.; Faure-Vincent, J.; Simonato, J. P. Chem. Sci., 2015, 6, 412. doi: 10.1039/C4SC02463J  doi: 10.1039/C4SC02463J

    40. [40]

      Wu, X.; Liu, J.; Wu, D.; Zhao, Y.; Shi, X.; Wang, J.; Huang, S.; He, G. J. Mater. Chem. C 2014, 2, 4044. doi: 10.1039/C4TC00305E  doi: 10.1039/C4TC00305E

    41. [41]

      Wu, X.; Liu, J.; He, G. Org. Electron. 2015, 22, 160. doi: 10.1016/j.orgel.2015.03.048  doi: 10.1016/j.orgel.2015.03.048

    42. [42]

      Wu, X.; Lian, L.; Yang, S.; He, G. J. Mater. Chem. C 2016, 4, 8528. doi: 10.1039/C6TC02424F  doi: 10.1039/C6TC02424F

    43. [43]

      Kee, S.; Kim, N.; Park, B.; Kim, B. S.; Hong, S.; Lee, J. H.; Jeong, S.; Kim, A.; Jang, S. Y.; Lee, K. Adv. Mater. 2018, 30, 1703437. doi: 10.1002/adma.201703437  doi: 10.1002/adma.201703437

    44. [44]

      Hu, A.; Tan, L.; Hu, X.; Hu, L.; Ai, Q.; Meng, X.; Chen, L.; Chen, Y. J. Mater. Chem. C 2017, 5, 382. doi: 10.1039/C6TC04446H  doi: 10.1039/C6TC04446H

    45. [45]

      Xiao, S.; Liu, C.; Chen, L.; Tan, L.; Chen, Y. J. Mater. Chem. A 2015, 3, 22316. doi: 10.1039/C5TA06810J  doi: 10.1039/C5TA06810J

    46. [46]

      McCarthy, J. E.; Hanley, C. A.; Brennan, L. J.; Lambertini, V. G.; Gun'ko, Y. K. J. Mater. Chem. C 2014, 2, 764. doi: 10.1039/C3TC31951B  doi: 10.1039/C3TC31951B

    47. [47]

      Zhang, W.; Zhao, B.; He, Z.; Zhao, X.; Wang, H.; Yang, S.; Wu, H.; Cao, Y. Energy Environ. Sci. 2013, 6, 1956. doi: 10.1039/C3EE41077C  doi: 10.1039/C3EE41077C

    48. [48]

      Sun, K.; Li, P.; Xia, Y.; Chang, J.; Ouyang, J. ACS Appl. Mater. Interfaces 2015, 7, 15314. doi: 10.1021/acsami.5b03171  doi: 10.1021/acsami.5b03171

    49. [49]

      Chen, L.; Xie, X.; Liu, Z.; Lee, E. C. J. Mater. Chem. A 2017, 5, 6974. doi: 10.1039/C6TA10588B  doi: 10.1039/C6TA10588B

    50. [50]

      Vaagensmith, B.; Reza, K. M.; Hasan, M. N.; Elbohy, H.; Adhikari, N.; Dubey, A.; Kantack, N.; Gaml, E.; Qiao, Q. ACS Appl. Mater. Interfaces 2017, 9, 35861. doi: 10.1021/acsami.7b10987  doi: 10.1021/acsami.7b10987

    51. [51]

      Singh, R.; Tharion, J.; Murugan, S.; Kumar, A. ACS Appl. Mater. Interfaces 2017, 9, 19427. doi: 10.1021/acsami.6b09476  doi: 10.1021/acsami.6b09476

    52. [52]

      Kim, D. H.; Ghaffari, R.; Lu, N.; Rogers, J. A. Annu. Rev. Biomed. Eng. 2012, 14, 113. doi: 10.1146/annurev-bioeng-071811-150018  doi: 10.1146/annurev-bioeng-071811-150018

    53. [53]

      Li, P.; Du, D.; Guo, L.; Guo, Y.; Ouyang, J. J. Mater. Chem. C 2016, 4, 6525. doi: 10.1039/C6TC01619G  doi: 10.1039/C6TC01619G

    54. [54]

      Li, P.; Sun, K.; Ouyang, J. ACS Appl. Mater. Interfaces 2015, 7, 18415. doi: 10.1021/acsami.5b04492  doi: 10.1021/acsami.5b04492

    55. [55]

      Kai, H.; Suda, W.; Ogawa, Y.; Nagamine, K.; Nishizawa, M. ACS Appl. Mater. Interfaces 2017, 9, 19513. doi: 10.1021/acsami.7b03124  doi: 10.1021/acsami.7b03124

    56. [56]

      Baek, P.; Aydemir, N.; An, Y.; Chan, E. W. C.; Sokolova, A.; Nelson, A.; Mata, J. P.; McGillivray, D.; Barker, D.; Travas-Sejdic, J. Chem. Mater. 2017, 29, 8850. doi: 10.1021/acs.chemmater.7b03291  doi: 10.1021/acs.chemmater.7b03291

    57. [57]

      Wang, Y.; Zhu, C.; Pfattner, R.; Yan, H.; Jin, L.; Chen, S.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I.; et al. Sci. Adv. 2017, 3, e1602076. doi: 10.1126/sciadv.1602076  doi: 10.1126/sciadv.1602076

    58. [58]

      Sinha, S. K.; Noh, Y.; Reljin, N.; Treich, G. M.; Hajeb-Mohammadalipour, S.; Guo, Y.; Chon, K. H.; Sotzing, G. A. ACS Appl. Mater. Interfaces 2017, 9, 37524. doi: 10.1021/acsami.7b09954  doi: 10.1021/acsami.7b09954

    59. [59]

      Ding, Y.; Xu, W.; Wang, W.; Fong, H.; Zhu, Z. ACS Appl. Mater. Interfaces 2017, 9, 30014. doi: 10.1021/acsami.7b06726  doi: 10.1021/acsami.7b06726

    60. [60]

      Ryan, J. D.; Mengistie, D. A.; Gabrielsson, R.; Müller, A. L. C. ACS Appl. Mater. Interfaces 2017, 9, 9045. doi: 10.1021/acsami.7b00530  doi: 10.1021/acsami.7b00530

    61. [61]

      Guo, Y.; Otley, M. T.; Li, M.; Zhang, X.; Sinha, S. K.; Treich, G. M.; Sotzing, G. A. ACS Appl. Mater. Interfaces 2016, 8, 26998. doi: 10.1021/acsami.6b08036  doi: 10.1021/acsami.6b08036

    62. [62]

      Jalili, R.; Razal, J. M.; Innis, P. C.; Wallace, G. G. Adv. Funct. Mater. 2011, 21, 3363. doi: 10.1002/adfm.201100785  doi: 10.1002/adfm.201100785

    63. [63]

      Abbasi, A. M. R.; Militky, J. J. Chem. Chem. Eng. 2013, 7, 256. doi: 10.17265/1934-7375/2013.03.011.  doi: 10.17265/1934-7375/2013.03.011

    64. [64]

      Martin, D. C. MRS Commun. 2015, 5, 131. doi: 10.1557/mrc.2015.17  doi: 10.1557/mrc.2015.17

    65. [65]

      Cui, X.; Lee, V. A.; Raphael, Y.; Wiler, J. A.; Hetke, J. F.; Anderson, D. A.; Martin, D. C. J. Biomed. Mater. Res. 2001, 56, 261. doi: 10.1002/1097-4636(200108)56:2<261::AID-JBM1094>3.0.CO;2-I  doi: 10.1002/1097-4636(200108)56:2<261::AID-JBM1094>3.0.CO;2-I

    66. [66]

      Cui, X.; Hetke, J. F.; Wiler, J. A.; Anderson, D. J.; Martin, D. C. Sens. Actuators A: Phys. 2001, 93, 8. doi: 10.1016/S0924-4247(01)00637-9  doi: 10.1016/S0924-4247(01)00637-9

    67. [67]

      Ouyang, L.; Wei, B.; Kuo, C. C.; Pathak, S.; Farrell, B.; Martin, D. C. Sci. Adv. 2017, 3, e1600448. doi: 10.1126/sciadv.1600448  doi: 10.1126/sciadv.1600448

    68. [68]

      Wei, B.; Liu, J.; Ouyang, L.; Kuo, C. C.; Martin, D. C. ACS Appl. Mater. Interfaces 2015, 7, 15388. doi: 10.1021/acsami.5b03350  doi: 10.1021/acsami.5b03350

    69. [69]

      Kleber, C.; Bruns, M.; Lienkamp, K.; Rühe, J.; Asplund, M. Acta Biomater. 2017, 58, 365. doi: 10.1016/j.actbio.2017.05.056  doi: 10.1016/j.actbio.2017.05.056

    70. [70]

      Lim, E.; Peterson, K. A.; Su, G. M.; Chabinyc, M. L. Chem. Mater. 2018, 30, 998. doi: 10.1021/acs.chemmater.7b04849  doi: 10.1021/acs.chemmater.7b04849

    71. [71]

      Zuo, G.; Liu, X.; Fahlman, M.; Kemerink, M. Adv. Funct. Mater. 2017, 28, 1703280. doi: 10.1002/adfm.201703280  doi: 10.1002/adfm.201703280

    72. [72]

      Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X. Nat. Mater. 2011, 10, 429. doi: 10.1038/nmat3012  doi: 10.1038/nmat3012

    73. [73]

      Fan, Z.; Li, P.; Du, D.; Ouyang, J. Adv. Energy Mater. 2017, 7, 1602116. doi: 10.1002/aenm.201602116  doi: 10.1002/aenm.201602116

    74. [74]

      Fan, Z.; Du, D.; Yao, H.; Ouyang, J. ACS Appl. Mater. Interfaces 2017, 9, 11732. doi: 10.1021/acsami.6b15158  doi: 10.1021/acsami.6b15158

    75. [75]

      Sun, Y.; Qiu, L.; Tang, L.; Geng, H.; Wang, H.; Zhang, F.; Huang, D.; Xu, W.; Yue, P.; Guan, Y.; et al. Adv. Mater. 2016, 28, 3351. doi: 10.1002/adma.201505922  doi: 10.1002/adma.201505922

    76. [76]

      Huang, D.; Wang, C.; Zou, Y.; Shen, X.; Zang, Y.; Shen, H.; Gao, X.; Yi, Y.; Xu, W.; Di, C.; et al. Angew. Chem. Int. Ed. 2016, 55, 10672. doi: 10.1002/anie.201604478  doi: 10.1002/anie.201604478

    77. [77]

      Wang, J.; Wang, J.; Kong, Z.; Lv, K.; Teng, C.; Zhu, Y. Adv. Mater. 2017, 29, 1703044. doi: 10.1002/adma.201703044  doi: 10.1002/adma.201703044

    78. [78]

      Higgins, T. M.; Coleman, J. N. ACS Appl. Mater. Interfaces 2015, 7, 16495. doi: 10.1021/acsami.5b03882  doi: 10.1021/acsami.5b03882

    79. [79]

      Yuan, D.; Li, B.; Cheng, J.; Guan, Q.; Wang, Z.; Ni, W.; Li, C.; Liu, H.; Wang, B. J. Mater. Chem. A 2016, 4, 11616. doi: 10.1039/C6TA04081K  doi: 10.1039/C6TA04081K

    80. [80]

      Wang, K.; Zhang, X.; Li, C.; Zhang, H.; Sun, X.; Xu, N.; Ma, Y. J. Mater. Chem. A 2014, 2, 19726. doi: 10.1039/C4TA04924A  doi: 10.1039/C4TA04924A

    81. [81]

      Anothumakkool, B.; Soni, R.; Bhange, S. N.; Kurungot, S. Energy Environ. Sci. 2015, 8, 1339. doi: 10.1039/C5EE00142K  doi: 10.1039/C5EE00142K

    82. [82]

      Yin, C.; Yang, C.; Jiang, M.; Deng, C.; Yang, L.; Li, J.; Qian, D. ACS Appl. Mater. Interfaces 2016, 8, 2741. doi: 10.1021/acsami.5b11022  doi: 10.1021/acsami.5b11022

    83. [83]

      Zeng, Y.; Han, Y.; Zhao, Y.; Zeng, Y.; Yu, M.; Liu, Y.; Tang, H.; Tong, Y.; Lu, X. Adv. Energy Mater. 2015, 5, 1402176. doi: 10.1002/aenm.201402176  doi: 10.1002/aenm.201402176

    84. [84]

      Xia, C.; Chen, W.; Wang, X.; Hedhili, M. N.; Wei, N.; Alshareef, H. N. Adv. Energy Mater. 2015, 5, 1401805. doi: 10.1002/aenm.201570041  doi: 10.1002/aenm.201570041

    85. [85]

      He, W.; Wang, C.; Zhuge, F.; Deng, X.; Xu, X.; Zha, T. Nano Energy 2017, 35, 242. doi: 10.1016/j.nanoen.2017.03.045  doi: 10.1016/j.nanoen.2017.03.045

    86. [86]

      Cíntora-Juárez, D.; Pérez-Vicente, C.; Kazim, S.; Ahmad, S.; Tirado, J. L. J. Mater. Chem. A 2015, 3, 14254. doi: 10.1039/C5TA03542B  doi: 10.1039/C5TA03542B

    87. [87]

      Chen, Z.; To, J. W. F.; Wang, C.; Lu, Z.; Liu, N.; Chortos, A.; Pan, L.; Wei, F.; Cui, Y.; Bao, Z. Adv. Energy Mater. 2014, 4, 1400207. doi: 10.1002/aenm.201400207  doi: 10.1002/aenm.201400207

    88. [88]

      Yang, Y.; Yu, G.; Cha, J. J.; Wem H.; Vosgueritchian, M.; Yao, Y.; Bao, Z.; Cui, Y. ACS Nano 2011, 5, 9187. doi: 10.1021/nn203436j  doi: 10.1021/nn203436j

    89. [89]

      Li, H.; Sun, M.; Zhang, T.; Fang, Y.; Wang, G. J. Mater. Chem. A 2014, 2, 18345. doi: 10.1039/C4TA03366C  doi: 10.1039/C4TA03366C

    90. [90]

      Higgins, T. M.; Park, S. H.; King, P. J.; Zhang, C.; McEvoy, N.; Berner, N. C.; Daly, D.; Shmeliov, A.; Khan, U.; Duesberg, G.; et al. ACS Nano 2016, 10, 3702. doi: 10.1021/acsnano.6b00218  doi: 10.1021/acsnano.6b00218

    91. [91]

      Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, m. T.; Bao, Z.; Cui, Y. Nat. Commun. 2013, 4, 1943. doi: 10.1038/ncomms2941  doi: 10.1038/ncomms2941

    92. [92]

      Xiao, L.; Cao, Y.; Xiao, J.; Schwenzer, B.; Engelhard, M. H.; Saraf, L. V.; Nie, Z.; Exarhos, G. J.; Liu, J. Adv. Mater. 2012, 24, 1176. doi: 10.1002/adma.201103392  doi: 10.1002/adma.201103392

  • 加载中
    1. [1]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    2. [2]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    3. [3]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    4. [4]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    5. [5]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    6. [6]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    7. [7]

      Hongjie GuoQiang WeiYangyang WuWei QiuHongliang LiChangyong Zhang . Enhanced nitrate removal from groundwater using a conductive spacer in flow-electrode capacitive deionization. Chinese Chemical Letters, 2024, 35(8): 109325-. doi: 10.1016/j.cclet.2023.109325

    8. [8]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    9. [9]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    10. [10]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    11. [11]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    12. [12]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    13. [13]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    14. [14]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    15. [15]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    16. [16]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    17. [17]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    18. [18]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    19. [19]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    20. [20]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

Metrics
  • PDF Downloads(19)
  • Abstract views(835)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return