Citation: FU Bina, CHEN Jun, LIU Tianhui, SHAO Kejie, ZHANG Dong H.. Highly Accurately Fitted Potential Energy Surfaces for Polyatomic Reactive Systems[J]. Acta Physico-Chimica Sinica, ;2019, 35(2): 145-157. doi: 10.3866/PKU.WHXB201803281 shu

Highly Accurately Fitted Potential Energy Surfaces for Polyatomic Reactive Systems

  • Corresponding author: FU Bina, bina@dicp.ac.cn ZHANG Dong H., zhangdh@dicp.ac.cn
  • Received Date: 1 March 2018
    Revised Date: 22 March 2018
    Accepted Date: 23 March 2018
    Available Online: 28 January 2018

    Fund Project: the National Natural Science Foundation of China 21590804the National Natural Science Foundation of China 21722307This work was supported by the National Natural Science Foundation of China (21722307, 21673233, 21590804, 21433009, 21688102) and the Strategic Priority Research Program (XDB17000000) of the Chinese Academy of Sciencesthe Strategic Priority Research Program of the Chinese Academy of Sciences XDB17000000the National Natural Science Foundation of China 21673233the National Natural Science Foundation of China 21433009the National Natural Science Foundation of China 21688102

  • Over the past decade, significant progress has been made in theoretical and experimental research in the field of chemical reaction dynamics, moving from triatomic reactions to larger polyatomic reactions. This has challenged the theoretical and computational approaches to polyatomic reaction dynamics in two major areas: the potential energy surface and the dynamics. Highly accurate potential energy surfaces are essential for achieving accurate dynamical information in quantum dynamics calculations. The increased number of degrees of freedom in larger systems poses a significant challenge to the accurate construction of potential energy surfaces. Recently, there has been substantial progress in the development of potential energy surfaces for polyatomic reactive systems. In this article, we review the recent developments made by our group in constructing highly accurately fitted potential energy surfaces for polyatomic reactive systems, based on a neural network approach. A key advantage of the neural network approach is its more faithful representation of the ab initio points. We recently proposed a systematic procedure, based on neural network fitting, for the construction of accurate potential energy surfaces with very small root mean square errors. Based on the neural network approach, we successfully developed potential energy surfaces for polyatomic reactions in the gas phase, including the reactive systems OH3, HOCO, and CH5, and the dissociation of gas-phase molecules on metal surfaces, such as H2O on the Cu(111) surface. These potential energy surfaces were fitted to an unprecedented level of accuracy, representing the most accurate potential energy surfaces calculated for these systems, and were rigorously tested using quantum dynamics calculations. The quantum dynamics calculations based on these potential energy surfaces produce accurate results, which are in good agreement with experiments. We have also proposed a new method for developing permutationally invariant potential energy surfaces, named fundamental-invariant neural networks. Mathematically, fundamental invariants are used to finitely generate the permutation-invariant polynomial ring; thus, fundamental-invariant neural networks can approximate any function to arbitrary accuracy. The use of fundamental invariants minimizes the size of the input permutation-invariant polynomials, which reduces the evaluation time for potential energy calculations, especially for polyatomic systems. Potential energy surfaces for OH3 and CH4 were constructed using fundamental-invariant neural networks, with their accuracies confirmed by full-dimensional quantum dynamics and bound-state calculations. These developments in the construction of highly accurate potential energy surfaces are expected to extend the theoretical study of reaction dynamics to larger and more complex systems.
  • 加载中
    1. [1]

      Bowman, J. M.; Schatz, G. C. Annu. Rev. Phys. Chem. 1995, 46, 169. doi: 10.1146/annurev.pc.46.100195.00112  doi: 10.1146/annurev.pc.46.100195.00112

    2. [2]

      Zhang, J. Z. H.; Dai, J.; Zhu, W. J. Phys. Chem. A 1997, 101, 2746. doi: 10.1021/jp9620734  doi: 10.1021/jp9620734

    3. [3]

      Miller, M. H. J. Chem. Soc. Faraday Trans. 1997, 93, 685. doi: 10.1039/A606858H  doi: 10.1039/A606858H

    4. [4]

      Clary, D. C. Science 1998, 279, 1879. doi: 10.1126/science.279.5358.1879  doi: 10.1126/science.279.5358.1879

    5. [5]

      Althorpe, S. C.; Clary, D. C. Annu. Rev. Phys. Chem. 2003, 54, 493. doi: 10.1146/annurev.physchem.54.011002.103750  doi: 10.1146/annurev.physchem.54.011002.103750

    6. [6]

      Balint-Kurti, G. G. Int. Rev. Phys. Chem. 2008, 27, 507. doi: 10.1080/01442350802102379  doi: 10.1080/01442350802102379

    7. [7]

      Guo, H. Int. Rev. Phys. Chem. 2012, 31, 1. doi: 10.1080/0144235X.2011.649999  doi: 10.1080/0144235X.2011.649999

    8. [8]

      Yarkony, D. R. Chem. Rev. 2012, 112, 481. doi: 10.1021/cr2001299  doi: 10.1021/cr2001299

    9. [9]

      Nyman, G.; Yu, H. -G. Int. Rev. Phys. Chem. 2013, 32, 39. doi: 10.1080/0144235X.2012.735863  doi: 10.1080/0144235X.2012.735863

    10. [10]

      Otto, R.; Ma, J.; Ray, A. W.; Daluz, J. S.; Li, J.; Guo, H.; Continetti, R. E. Science 2014, 343, 396. doi: 10.1126/science.1247424  doi: 10.1126/science.1247424

    11. [11]

      Liu, K. Annu. Rev. Phys. Chem. 2001, 52, 139. doi: 10.1146/annurev.physchem.52.1.139  doi: 10.1146/annurev.physchem.52.1.139

    12. [12]

      Fernandez-Alonso, F.; Zare, R. N. Annu. Rev. Phys. Chem. 2002, 53, 67. doi: 10.1146/annurev.physchem.53.091001.094554  doi: 10.1146/annurev.physchem.53.091001.094554

    13. [13]

      Balucani, N.; Capozza, G.; Leonori, F.; Segoloni, E.; Casavecchia, P. Int. Rev. Phys. Chem. 2006, 25, 109. doi: 10.1080/01442350600641305  doi: 10.1080/01442350600641305

    14. [14]

      Yang, X. Annu. Rev. Phys. Chem. 2007, 58, 433. doi: 10.1146/annurev.physchem.58.032806.104632  doi: 10.1146/annurev.physchem.58.032806.104632

    15. [15]

      Crim, F. F. Proc. Natl. Acad. Sci. USA 2008, 105, 12654. doi: 10.1073/pnas.0803010105  doi: 10.1073/pnas.0803010105

    16. [16]

      Liu, K. Adv. Chem. Phys. 2012, 149, 1. doi: 10.1002/9781118180396.ch1  doi: 10.1002/9781118180396.ch1

    17. [17]

      Guo, H.; Liu, K. Chem. Sci. 2016, 7, 3992. doi: 10.1039/C6SC01066K  doi: 10.1039/C6SC01066K

    18. [18]

      Qiu, M.; Ren, Z.; Che, L.; Dai, D.; Harich, S. A.; Wang, X.; Yang, X.; Xu, C.; Xie, D.; Gustafsson, M.; et al. Science 2006, 311, 1440. doi: 10.1126/science.1123452  doi: 10.1126/science.1123452

    19. [19]

      Che, L.; Ren, Z.; Wang, X.; Dong, W.; Dai, D.; Wang, X.; Zhang, D. H.; Yang, X.; Sheng, L.; Li, G.; et al. Science 2007, 317, 1061. doi: 10.1126/science.1144984  doi: 10.1126/science.1144984

    20. [20]

      Wang, X.; Dong, W.; Xiao, C.; Che, L.; Ren, Z.; Dai, D.; Wang, X.; Casavecchia, P.; Yang, X.; Jiang, B.; et al. Science 2008, 322, 573. doi: 10.1126/science.1163195  doi: 10.1126/science.1163195

    21. [21]

      Wang, T.; Chen, J.; Yang, T.; Xiao, C.; Sun, Z.; Huang, L.; Dai, D.; Yang, X.; Zhang, D. H. Science 2013, 342, 1499. doi: 10.1126/science.1246546  doi: 10.1126/science.1246546

    22. [22]

      Yang, T.; Chen, J.; Huang, L.; Wang, T.; Xiao, C.; Sun, Z.; Dai, D.; Yang, X.; Zhang, D. H. Science 2015, 347, 60. doi: 10.1126/science.1260527  doi: 10.1126/science.1260527

    23. [23]

      Xiao, C.; Xu, X.; Liu, S.; Wang, T.; Dong, W.; Yang, T.; Sun, Z.; Dai, D.; Xu, X.; Zhang, D. H.; et al. Science 2011, 333, 440. doi: 10.1126/science.1205770  doi: 10.1126/science.1205770

    24. [24]

      Zhang, W.; Zhou, Y.; Wu, G.; Lu, Y.; Pan, H.; Fu, B.; Shuai, Q.; Liu, L.; Liu, S.; Zhang, L.; et al. Proc. Natl. Acad. Sci. USA 2010, 107, 12782. doi: 10.1073/pnas.1006910107  doi: 10.1073/pnas.1006910107

    25. [25]

      Zhang, D. H.; Guo, H. Annu. Rev. Phys. Chem. 2016, 67, 135. doi: 10.1146/annurev-physchem-040215-112016  doi: 10.1146/annurev-physchem-040215-112016

    26. [26]

      Zhang, Z.; Zhou, Y.; Zhang, D. H.; Czakó, G.; Bowman, J. M. J. Phys. Chem. Lett. 2012, 3, 3416. doi: 10.1021/jz301649w  doi: 10.1021/jz301649w

    27. [27]

      Liu, R.; Yang, M.; Czakó, G.; Bowman, J. M.; Li, J.; Guo, H. J. Phys. Chem. Lett. 2012, 3, 3776. doi: 10.1021/jz301735m  doi: 10.1021/jz301735m

    28. [28]

      Welsch, R.; Manthe, U. J. Phys. Chem. Lett. 2015, 6, 338. doi: 10.1021/jz502525p  doi: 10.1021/jz502525p

    29. [29]

      Zhao, Z.; Zhang, Z.; Liu, S.; Zhang, D. H. Nat. Commun. 2017, 8, 14506. doi: 10.1038/ncomms14506  doi: 10.1038/ncomms14506

    30. [30]

      Fu, B.; Shan, X.; Zhang, D. H.; Clary, D. C. Chem. Soc. Rev. 2017, 46, 7625. doi: 10.1039/C7CS00526A  doi: 10.1039/C7CS00526A

    31. [31]

      Dawes, R.; Thompson, D. L.; Wagner, A. F.; Minkoff, M. J. Chem. Phys. 2008, 128, 084107. doi: 10.1063/1.2831790  doi: 10.1063/1.2831790

    32. [32]

      Collins, M. A. Theor. Chem. Acc. 2002, 108, 313. doi: 10.1007/s00214-002-0383-5  doi: 10.1007/s00214-002-0383-5

    33. [33]

      Braams, B. J.; Bowman, J. M. Int. Rev. Phys. Chem. 2009, 13, 577. doi: 10.1080/01442350903234923  doi: 10.1080/01442350903234923

    34. [34]

      Bowman, J. M.; Czakó, G.; Fu, B. Phys. Chem. Chem. Phys. 2011, 28, 8094. doi: 10.1039/C0CP02722G  doi: 10.1039/C0CP02722G

    35. [35]

      Raff, L. M.; Malshe, M.; Hagan, M.; Doughan, D. I.; Rockley, M. G.; Komanduri, R. J. Chem. Phys. 2005, 122, 084104. doi: 10.1063/1.1850458  doi: 10.1063/1.1850458

    36. [36]

      Chen, J.; Xu, X.; Xu, X.; Zhang, D. H. J. Chem. Phys. 2013, 138, 154301. doi: 10.1063/1.4801658  doi: 10.1063/1.4801658

    37. [37]

      Chen, J.; Xu, X.; Xu, X.; Zhang, D. H. J. Chem. Phys. 2013, 138, 221104. doi: 10.1063/1.4811109  doi: 10.1063/1.4811109

    38. [38]

      Jiang, B.; Guo, H. J. Chem. Phys. 2013, 139, 054112. doi: 10.1063/1.4817187  doi: 10.1063/1.4817187

    39. [39]

      Li, J.; Jiang, B.; Guo, H. J. Chem. Phys. 2013, 139, 204103. doi: 10.1063/1.4832697  doi: 10.1063/1.4832697

    40. [40]

      Shao, K.; Chen, J.; Zhao, Z.; Zhang, D. H. J. Chem. Phys. 2016, 145, 071101. doi: 10.1063/1.4961454  doi: 10.1063/1.4961454

    41. [41]

      Bartlett, R. J.; Musiał, M. Rev. Mod. Phys. 2007, 79, 291. doi: 10.1103/RevModPhys.79.291  doi: 10.1103/RevModPhys.79.291

    42. [42]

      Werner, H. -J. Adv. Chem. Phys. 1987, 69, 1. doi: 10.1002/9780470142943.ch1  doi: 10.1002/9780470142943.ch1

    43. [43]

      Schatz, G. C. Rev. Mod. Phys. 1989, 61, 669. doi: 10.1103/RevModPhys.61.669  doi: 10.1103/RevModPhys.61.669

    44. [44]

      Hollebeek, T.; Ho, T. S.; Rabitz, H. Annu. Rev. Phys. Chem. 1999, 50, 537. doi: 10.1146/annurev.physchem.50.1.537  doi: 10.1146/annurev.physchem.50.1.537

    45. [45]

      Zhou, Y.; Fu, B.; Wang, C.; Collins, M. A.; Zhang, D. H. J. Chem. Phys. 2011, 134, 064323. doi: 10.1063/1.3552088  doi: 10.1063/1.3552088

    46. [46]

      Fu, B.; Han, Y.; Bowman, J. M.; Angelucci, L.; Balucani, N.; Leonori, F.; Casavecchia, P. Proc. Natl. Acad. Sci. USA 2012, 109, 9733. doi: 10.1073/pnas.1202672109  doi: 10.1073/pnas.1202672109

    47. [47]

      Yang, J.; Shao, K.; Zhang, D.; Shuai, Q.; Fu, B.; Zhang, D. H.; Yang, X. J. Phys. Chem. Lett. 2014, 5, 3106. doi: 10.1021/jz5016923  doi: 10.1021/jz5016923

    48. [48]

      Raff, L. M.; Komanduri, R.; Hagan, M.; Bukkapatnam, S. Neural Networks in Chemical Reaction Dynamics; Oxford University Press: New York, NY, USA, 2012.

    49. [49]

      Blank, T. B.; Brown, S. D.; Calhoun, A. W.; Doren, D. J. J. Chem. Phys. 1995, 103, 4129. doi: 10.1063/1.469597  doi: 10.1063/1.469597

    50. [50]

      Brown, D. F. R.; Gibbs, M. N.; Clary, D. C. J. Chem. Phys. 1996, 105, 7597. doi: 10.1063/1.472596  doi: 10.1063/1.472596

    51. [51]

      Manzhos, S.; Wang, X. G.; Dawes, R.; Carrington, T. J. Phys. Chem. A 2006, 110, 5295. doi: 10.1021/jp055253z  doi: 10.1021/jp055253z

    52. [52]

      Behler, J.; Parrinello, M. Phys. Rev. Lett. 2007, 98, 146401. doi: 10.1103/PhysRevLett.98.146401  doi: 10.1103/PhysRevLett.98.146401

    53. [53]

      Pukrittayakamee, A.; Malshe, M.; Hagan, M.; Raff, L. M.; Narulkar, R.; Bukkapatnam, S.; Komanduri, R. J. Chem. Phys. 2009, 130, 134101. doi: 10.1063/1.3095491  doi: 10.1063/1.3095491

    54. [54]

      Handley, C. M.; Popelier, P. L. A. J. Phys. Chem. A 2010, 114, 3371. doi: 10.1021/jp9105585  doi: 10.1021/jp9105585

    55. [55]

      Behler, J. Phys. Chem. Chem. Phys. 2011, 13, 17930. doi: 10.1039/C1CP21668F  doi: 10.1039/C1CP21668F

    56. [56]

      Xu, X.; Chen, J.; Zhang, D. H. Chin. J. Chem. Phys. 2014, 27, 373. doi: 10.1063/1674-0068/27/04/373-379  doi: 10.1063/1674-0068/27/04/373-379

    57. [57]

      Hagan, M.; Menhaj, M. IEEE Trans. Neural Networks 1994, 5, 989. doi: 10.1109/72.329697  doi: 10.1109/72.329697

    58. [58]

      Clary, D. C. Rate Coefficients in Astrochemistry; Millar, T. J., Williams, D. A., Eds. ; Astrophysics and Space Science Library; Springer: The Netherlands, 1988; Vol. 146; Chapter 1, pp. 1–16.

    59. [59]

      Warnatz, J. Combustion Chemistry; Gardiner, W., Ed. ; Springer-Verlag: New York, NY, USA, 1985; Chapter 5.

    60. [60]

      Schatz, G. C.; Elgersma, H. Chem. Phys. Lett. 1980, 73, 21. doi: 10.1016/0009-2614(80)85193-1  doi: 10.1016/0009-2614(80)85193-1

    61. [61]

      Ochoa de Aspuru, G.; Clary, D. C. J. Phys. Chem. A 1998, 102, 9631. doi: 10.1021/jp982433i  doi: 10.1021/jp982433i

    62. [62]

      Pogrebnya, S. K.; Palma, J.; Clary, D. C.; Echave, J. Phys. Chem. Chem. Phys. 2000, 2, 693. doi: 10.1039/A908080E  doi: 10.1039/A908080E

    63. [63]

      Wu, G. -S.; Schatz, G. C.; Lendvay, G.; Fang, D. -C.; Harding, L. B. J. Chem. Phys. 2000, 113, 3150. doi: 10.1063/1.1287329  doi: 10.1063/1.1287329

    64. [64]

      Yang, M. H.; Zhang, D. H.; Collins, M. A.; Lee, S. Y. J. Chem. Phys. 2001, 115, 174. doi: 10.1063/1.1372335  doi: 10.1063/1.1372335

    65. [65]

      Finlayson-Pitts, B. J. ; Pitts, J. N. Chemistry of the Upper and Lower Atmosphere; Academic Press: San Diego, CA, USA, 2000.

    66. [66]

      Miller, J. A.; Kee, R. J.; Westbrook, C. K. Annu. Rev. Phys. Chem. 1990, 41, 345. doi: 10.1146/annurev.pc.41.100190.002021  doi: 10.1146/annurev.pc.41.100190.002021

    67. [67]

      Kudla, K.; Schatz, G. C.; Wagner, A. F. J. Chem. Phys. 1991, 95, 1635. doi: 10.1063/1.461076  doi: 10.1063/1.461076

    68. [68]

      Bradley, K. S.; Schatz, G. C. J. Chem. Phys. 1997, 106, 8464. doi: 10.1063/1.473923  doi: 10.1063/1.473923

    69. [69]

      Yu, H. G.; Muckerman, J. T.; Sears, T. J. Chem. Phys. Lett. 2001, 349, 547. doi: 10.1016/S0009-2614(01)01238-6  doi: 10.1016/S0009-2614(01)01238-6

    70. [70]

      Lakin, M. J.; Troya, D.; Schatz, G. C.; Harding, L. B. J. Chem. Phys. 2003, 119, 5848. doi: 10.1063/1.1602061  doi: 10.1063/1.1602061

    71. [71]

      Valero, R.; van Hemert, M. C.; Kroes, G. J. Chem. Phys. Lett. 2004, 393, 236. doi: 10.1016/j.cplett.2004.06.036  doi: 10.1016/j.cplett.2004.06.036

    72. [72]

      Li, J.; Wang, Y.; Jiang, B.; Ma, J.; Dawes, R.; Xie, D.; Bowman, J. M.; Guo, H. J. Chem. Phys. 2012, 136, 041103. doi: 10.1063/1.3680256  doi: 10.1063/1.3680256

    73. [73]

      Jordan, M. J. T.; Gilbert, R. G. J. Chem. Phys. 1995, 102, 5669. doi: 10.1063/1.469298  doi: 10.1063/1.469298

    74. [74]

      Espinosa-García, J.; Corchado, J. C. J. Phys. Chem. 1996, 100, 16561. doi: 10.1021/jp961608q  doi: 10.1021/jp961608q

    75. [75]

      Wu, T.; Werner, H. -J.; Manthe, U. Science 2004, 306, 2227. doi: 10.1126/science.1104085  doi: 10.1126/science.1104085

    76. [76]

      Zhang, X.; Braams, B. J.; Bowman, J. M. J. Chem. Phys. 2006, 124, 021104. doi: 10.1063/1.2162532  doi: 10.1063/1.2162532

    77. [77]

      Xie, Z.; Bowman, J. M.; Zhang, X. J. Chem. Phys. 2006, 125, 133120. doi: 10.1063/1.2238871  doi: 10.1063/1.2238871

    78. [78]

      Agrafiotis, D. K.; Cedeño, W.; Lobanov, V. S. J. Chem. Inform. Comput. Sci. 2002, 42, 903. doi: 10.1021/ci0203702  doi: 10.1021/ci0203702

    79. [79]

      Chorkendorff, I. ; Niemantsverdriet, J. W. Concepts of Modern Catalysis and Kinetics; Wiley-VCH: Weinheim, Germany, 2003.

    80. [80]

      Jiang, B.; Xie, D.; Guo, H. Chem. Sci. 2013, 4, 503. doi: 10.1039/c2sc21393a  doi: 10.1039/c2sc21393a

    81. [81]

      Jiang, B.; Ren, X.; Xie, D.; Guo, H. Proc. Natl. Acad. Sci. USA 2012, 109, 10224. doi: 10.1073/pnas.1203895109  doi: 10.1073/pnas.1203895109

    82. [82]

      Ovesen, C. V.; Stoltze, P.; Norskov, J. K.; Campbell, C. T. J. Catal. 1992, 134, 445. doi: 10.1016/0021-9517(92)90334-E  doi: 10.1016/0021-9517(92)90334-E

    83. [83]

      Liu, T.; Zhang, Z.; Fu, B.; Yang, X.; Zhang, D. H. Chem. Sci. 2016, 7, 1840. doi: 10.1039/c5sc03689e  doi: 10.1039/c5sc03689e

    84. [84]

      Zhang, Z.; Liu, T.; Fu, B.; Yang, X.; Zhang, D. H. Nat. Commun. 2016, 7, 11953. doi: 10.1038/ncomms11953  doi: 10.1038/ncomms11953

    85. [85]

      Li, J.; Chen, J.; Zhang, D. H.; Guo, H. J. Chem. Phys. 2014, 140, 044327. doi: 10.1063/1.4863138  doi: 10.1063/1.4863138

    86. [86]

      Li, J.; Chen, J.; Zhao, Z.; Xie, D.; Zhang, D. H.; Guo, H. J. Chem. Phys. 2015, 142, 204302. doi: 10.1063/1.4921412  doi: 10.1063/1.4921412

    87. [87]

      Su, N. Q.; Chen, J.; Xu, X.; Zhang, D. H. Acta Phys. -Chim. Sin. 2016, 32, 119.  doi: 10.3866/PKU.WHXB201512011

    88. [88]

      Su, N. Q.; Chen, J.; Sun, Z.; Zhang, D. H.; Xu, X. J. Chem. Phys. 2015, 142, 084107. doi: 10.1063/1.4913196  doi: 10.1063/1.4913196

    89. [89]

      Chen, J.; Su, N. Q.; Xu, X.; Zhang, D. H. J. Comput. Chem. 2017, 38, 2326. doi: 10.1002/jcc.24886  doi: 10.1002/jcc.24886

    90. [90]

      Decker, W. ; Greuel, G. -M. ; Pfister, G. ; Schönemann, H. Singular 4-0-2-A Computer Algebra System for Polynomial Computations. http: //www. singular. uni-kl. de, 2015.

    91. [91]

      King, S. A. J. Symb. Comput.2013, 48, 101. doi: 10.1016/j.jsc.2012.05.002  doi: 10.1016/j.jsc.2012.05.002

    92. [92]

      Chen, J.; Zhang, D. H. Sci. China Chem. 2015, 45, 1241.  doi: 10.1360/N032015-00148

  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    3. [3]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    4. [4]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    5. [5]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    13. [13]

      Zhenyu Feng Zhaozhen Cao Jinhua Zhan . Exploration of Online Training System for Large-Scale Instrument in Open Laboratory of Universities. University Chemistry, 2024, 39(4): 1-6. doi: 10.3866/PKU.DXHX202311016

    14. [14]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    15. [15]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    16. [16]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    17. [17]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    18. [18]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

Metrics
  • PDF Downloads(28)
  • Abstract views(1034)
  • HTML views(247)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return