Highly Accurately Fitted Potential Energy Surfaces for Polyatomic Reactive Systems
- Corresponding author: FU Bina, bina@dicp.ac.cn ZHANG Dong H., zhangdh@dicp.ac.cn
Citation: FU Bina, CHEN Jun, LIU Tianhui, SHAO Kejie, ZHANG Dong H.. Highly Accurately Fitted Potential Energy Surfaces for Polyatomic Reactive Systems[J]. Acta Physico-Chimica Sinica, ;2019, 35(2): 145-157. doi: 10.3866/PKU.WHXB201803281
Bowman, J. M.; Schatz, G. C. Annu. Rev. Phys. Chem. 1995, 46, 169. doi: 10.1146/annurev.pc.46.100195.00112
doi: 10.1146/annurev.pc.46.100195.00112
Zhang, J. Z. H.; Dai, J.; Zhu, W. J. Phys. Chem. A 1997, 101, 2746. doi: 10.1021/jp9620734
doi: 10.1021/jp9620734
Miller, M. H. J. Chem. Soc. Faraday Trans. 1997, 93, 685. doi: 10.1039/A606858H
doi: 10.1039/A606858H
Clary, D. C. Science 1998, 279, 1879. doi: 10.1126/science.279.5358.1879
doi: 10.1126/science.279.5358.1879
Althorpe, S. C.; Clary, D. C. Annu. Rev. Phys. Chem. 2003, 54, 493. doi: 10.1146/annurev.physchem.54.011002.103750
doi: 10.1146/annurev.physchem.54.011002.103750
Balint-Kurti, G. G. Int. Rev. Phys. Chem. 2008, 27, 507. doi: 10.1080/01442350802102379
doi: 10.1080/01442350802102379
Guo, H. Int. Rev. Phys. Chem. 2012, 31, 1. doi: 10.1080/0144235X.2011.649999
doi: 10.1080/0144235X.2011.649999
Yarkony, D. R. Chem. Rev. 2012, 112, 481. doi: 10.1021/cr2001299
doi: 10.1021/cr2001299
Nyman, G.; Yu, H. -G. Int. Rev. Phys. Chem. 2013, 32, 39. doi: 10.1080/0144235X.2012.735863
doi: 10.1080/0144235X.2012.735863
Otto, R.; Ma, J.; Ray, A. W.; Daluz, J. S.; Li, J.; Guo, H.; Continetti, R. E. Science 2014, 343, 396. doi: 10.1126/science.1247424
doi: 10.1126/science.1247424
Liu, K. Annu. Rev. Phys. Chem. 2001, 52, 139. doi: 10.1146/annurev.physchem.52.1.139
doi: 10.1146/annurev.physchem.52.1.139
Fernandez-Alonso, F.; Zare, R. N. Annu. Rev. Phys. Chem. 2002, 53, 67. doi: 10.1146/annurev.physchem.53.091001.094554
doi: 10.1146/annurev.physchem.53.091001.094554
Balucani, N.; Capozza, G.; Leonori, F.; Segoloni, E.; Casavecchia, P. Int. Rev. Phys. Chem. 2006, 25, 109. doi: 10.1080/01442350600641305
doi: 10.1080/01442350600641305
Yang, X. Annu. Rev. Phys. Chem. 2007, 58, 433. doi: 10.1146/annurev.physchem.58.032806.104632
doi: 10.1146/annurev.physchem.58.032806.104632
Crim, F. F. Proc. Natl. Acad. Sci. USA 2008, 105, 12654. doi: 10.1073/pnas.0803010105
doi: 10.1073/pnas.0803010105
Liu, K. Adv. Chem. Phys. 2012, 149, 1. doi: 10.1002/9781118180396.ch1
doi: 10.1002/9781118180396.ch1
Guo, H.; Liu, K. Chem. Sci. 2016, 7, 3992. doi: 10.1039/C6SC01066K
doi: 10.1039/C6SC01066K
Qiu, M.; Ren, Z.; Che, L.; Dai, D.; Harich, S. A.; Wang, X.; Yang, X.; Xu, C.; Xie, D.; Gustafsson, M.; et al. Science 2006, 311, 1440. doi: 10.1126/science.1123452
doi: 10.1126/science.1123452
Che, L.; Ren, Z.; Wang, X.; Dong, W.; Dai, D.; Wang, X.; Zhang, D. H.; Yang, X.; Sheng, L.; Li, G.; et al. Science 2007, 317, 1061. doi: 10.1126/science.1144984
doi: 10.1126/science.1144984
Wang, X.; Dong, W.; Xiao, C.; Che, L.; Ren, Z.; Dai, D.; Wang, X.; Casavecchia, P.; Yang, X.; Jiang, B.; et al. Science 2008, 322, 573. doi: 10.1126/science.1163195
doi: 10.1126/science.1163195
Wang, T.; Chen, J.; Yang, T.; Xiao, C.; Sun, Z.; Huang, L.; Dai, D.; Yang, X.; Zhang, D. H. Science 2013, 342, 1499. doi: 10.1126/science.1246546
doi: 10.1126/science.1246546
Yang, T.; Chen, J.; Huang, L.; Wang, T.; Xiao, C.; Sun, Z.; Dai, D.; Yang, X.; Zhang, D. H. Science 2015, 347, 60. doi: 10.1126/science.1260527
doi: 10.1126/science.1260527
Xiao, C.; Xu, X.; Liu, S.; Wang, T.; Dong, W.; Yang, T.; Sun, Z.; Dai, D.; Xu, X.; Zhang, D. H.; et al. Science 2011, 333, 440. doi: 10.1126/science.1205770
doi: 10.1126/science.1205770
Zhang, W.; Zhou, Y.; Wu, G.; Lu, Y.; Pan, H.; Fu, B.; Shuai, Q.; Liu, L.; Liu, S.; Zhang, L.; et al. Proc. Natl. Acad. Sci. USA 2010, 107, 12782. doi: 10.1073/pnas.1006910107
doi: 10.1073/pnas.1006910107
Zhang, D. H.; Guo, H. Annu. Rev. Phys. Chem. 2016, 67, 135. doi: 10.1146/annurev-physchem-040215-112016
doi: 10.1146/annurev-physchem-040215-112016
Zhang, Z.; Zhou, Y.; Zhang, D. H.; Czakó, G.; Bowman, J. M. J. Phys. Chem. Lett. 2012, 3, 3416. doi: 10.1021/jz301649w
doi: 10.1021/jz301649w
Liu, R.; Yang, M.; Czakó, G.; Bowman, J. M.; Li, J.; Guo, H. J. Phys. Chem. Lett. 2012, 3, 3776. doi: 10.1021/jz301735m
doi: 10.1021/jz301735m
Welsch, R.; Manthe, U. J. Phys. Chem. Lett. 2015, 6, 338. doi: 10.1021/jz502525p
doi: 10.1021/jz502525p
Zhao, Z.; Zhang, Z.; Liu, S.; Zhang, D. H. Nat. Commun. 2017, 8, 14506. doi: 10.1038/ncomms14506
doi: 10.1038/ncomms14506
Fu, B.; Shan, X.; Zhang, D. H.; Clary, D. C. Chem. Soc. Rev. 2017, 46, 7625. doi: 10.1039/C7CS00526A
doi: 10.1039/C7CS00526A
Dawes, R.; Thompson, D. L.; Wagner, A. F.; Minkoff, M. J. Chem. Phys. 2008, 128, 084107. doi: 10.1063/1.2831790
doi: 10.1063/1.2831790
Collins, M. A. Theor. Chem. Acc. 2002, 108, 313. doi: 10.1007/s00214-002-0383-5
doi: 10.1007/s00214-002-0383-5
Braams, B. J.; Bowman, J. M. Int. Rev. Phys. Chem. 2009, 13, 577. doi: 10.1080/01442350903234923
doi: 10.1080/01442350903234923
Bowman, J. M.; Czakó, G.; Fu, B. Phys. Chem. Chem. Phys. 2011, 28, 8094. doi: 10.1039/C0CP02722G
doi: 10.1039/C0CP02722G
Raff, L. M.; Malshe, M.; Hagan, M.; Doughan, D. I.; Rockley, M. G.; Komanduri, R. J. Chem. Phys. 2005, 122, 084104. doi: 10.1063/1.1850458
doi: 10.1063/1.1850458
Chen, J.; Xu, X.; Xu, X.; Zhang, D. H. J. Chem. Phys. 2013, 138, 154301. doi: 10.1063/1.4801658
doi: 10.1063/1.4801658
Chen, J.; Xu, X.; Xu, X.; Zhang, D. H. J. Chem. Phys. 2013, 138, 221104. doi: 10.1063/1.4811109
doi: 10.1063/1.4811109
Jiang, B.; Guo, H. J. Chem. Phys. 2013, 139, 054112. doi: 10.1063/1.4817187
doi: 10.1063/1.4817187
Li, J.; Jiang, B.; Guo, H. J. Chem. Phys. 2013, 139, 204103. doi: 10.1063/1.4832697
doi: 10.1063/1.4832697
Shao, K.; Chen, J.; Zhao, Z.; Zhang, D. H. J. Chem. Phys. 2016, 145, 071101. doi: 10.1063/1.4961454
doi: 10.1063/1.4961454
Bartlett, R. J.; Musiał, M. Rev. Mod. Phys. 2007, 79, 291. doi: 10.1103/RevModPhys.79.291
doi: 10.1103/RevModPhys.79.291
Werner, H. -J. Adv. Chem. Phys. 1987, 69, 1. doi: 10.1002/9780470142943.ch1
doi: 10.1002/9780470142943.ch1
Schatz, G. C. Rev. Mod. Phys. 1989, 61, 669. doi: 10.1103/RevModPhys.61.669
doi: 10.1103/RevModPhys.61.669
Hollebeek, T.; Ho, T. S.; Rabitz, H. Annu. Rev. Phys. Chem. 1999, 50, 537. doi: 10.1146/annurev.physchem.50.1.537
doi: 10.1146/annurev.physchem.50.1.537
Zhou, Y.; Fu, B.; Wang, C.; Collins, M. A.; Zhang, D. H. J. Chem. Phys. 2011, 134, 064323. doi: 10.1063/1.3552088
doi: 10.1063/1.3552088
Fu, B.; Han, Y.; Bowman, J. M.; Angelucci, L.; Balucani, N.; Leonori, F.; Casavecchia, P. Proc. Natl. Acad. Sci. USA 2012, 109, 9733. doi: 10.1073/pnas.1202672109
doi: 10.1073/pnas.1202672109
Yang, J.; Shao, K.; Zhang, D.; Shuai, Q.; Fu, B.; Zhang, D. H.; Yang, X. J. Phys. Chem. Lett. 2014, 5, 3106. doi: 10.1021/jz5016923
doi: 10.1021/jz5016923
Raff, L. M.; Komanduri, R.; Hagan, M.; Bukkapatnam, S. Neural Networks in Chemical Reaction Dynamics; Oxford University Press: New York, NY, USA, 2012.
Blank, T. B.; Brown, S. D.; Calhoun, A. W.; Doren, D. J. J. Chem. Phys. 1995, 103, 4129. doi: 10.1063/1.469597
doi: 10.1063/1.469597
Brown, D. F. R.; Gibbs, M. N.; Clary, D. C. J. Chem. Phys. 1996, 105, 7597. doi: 10.1063/1.472596
doi: 10.1063/1.472596
Manzhos, S.; Wang, X. G.; Dawes, R.; Carrington, T. J. Phys. Chem. A 2006, 110, 5295. doi: 10.1021/jp055253z
doi: 10.1021/jp055253z
Behler, J.; Parrinello, M. Phys. Rev. Lett. 2007, 98, 146401. doi: 10.1103/PhysRevLett.98.146401
doi: 10.1103/PhysRevLett.98.146401
Pukrittayakamee, A.; Malshe, M.; Hagan, M.; Raff, L. M.; Narulkar, R.; Bukkapatnam, S.; Komanduri, R. J. Chem. Phys. 2009, 130, 134101. doi: 10.1063/1.3095491
doi: 10.1063/1.3095491
Handley, C. M.; Popelier, P. L. A. J. Phys. Chem. A 2010, 114, 3371. doi: 10.1021/jp9105585
doi: 10.1021/jp9105585
Behler, J. Phys. Chem. Chem. Phys. 2011, 13, 17930. doi: 10.1039/C1CP21668F
doi: 10.1039/C1CP21668F
Xu, X.; Chen, J.; Zhang, D. H. Chin. J. Chem. Phys. 2014, 27, 373. doi: 10.1063/1674-0068/27/04/373-379
doi: 10.1063/1674-0068/27/04/373-379
Hagan, M.; Menhaj, M. IEEE Trans. Neural Networks 1994, 5, 989. doi: 10.1109/72.329697
doi: 10.1109/72.329697
Clary, D. C. Rate Coefficients in Astrochemistry; Millar, T. J., Williams, D. A., Eds. ; Astrophysics and Space Science Library; Springer: The Netherlands, 1988; Vol. 146; Chapter 1, pp. 1–16.
Warnatz, J. Combustion Chemistry; Gardiner, W., Ed. ; Springer-Verlag: New York, NY, USA, 1985; Chapter 5.
Schatz, G. C.; Elgersma, H. Chem. Phys. Lett. 1980, 73, 21. doi: 10.1016/0009-2614(80)85193-1
doi: 10.1016/0009-2614(80)85193-1
Ochoa de Aspuru, G.; Clary, D. C. J. Phys. Chem. A 1998, 102, 9631. doi: 10.1021/jp982433i
doi: 10.1021/jp982433i
Pogrebnya, S. K.; Palma, J.; Clary, D. C.; Echave, J. Phys. Chem. Chem. Phys. 2000, 2, 693. doi: 10.1039/A908080E
doi: 10.1039/A908080E
Wu, G. -S.; Schatz, G. C.; Lendvay, G.; Fang, D. -C.; Harding, L. B. J. Chem. Phys. 2000, 113, 3150. doi: 10.1063/1.1287329
doi: 10.1063/1.1287329
Yang, M. H.; Zhang, D. H.; Collins, M. A.; Lee, S. Y. J. Chem. Phys. 2001, 115, 174. doi: 10.1063/1.1372335
doi: 10.1063/1.1372335
Finlayson-Pitts, B. J. ; Pitts, J. N. Chemistry of the Upper and Lower Atmosphere; Academic Press: San Diego, CA, USA, 2000.
Miller, J. A.; Kee, R. J.; Westbrook, C. K. Annu. Rev. Phys. Chem. 1990, 41, 345. doi: 10.1146/annurev.pc.41.100190.002021
doi: 10.1146/annurev.pc.41.100190.002021
Kudla, K.; Schatz, G. C.; Wagner, A. F. J. Chem. Phys. 1991, 95, 1635. doi: 10.1063/1.461076
doi: 10.1063/1.461076
Bradley, K. S.; Schatz, G. C. J. Chem. Phys. 1997, 106, 8464. doi: 10.1063/1.473923
doi: 10.1063/1.473923
Yu, H. G.; Muckerman, J. T.; Sears, T. J. Chem. Phys. Lett. 2001, 349, 547. doi: 10.1016/S0009-2614(01)01238-6
doi: 10.1016/S0009-2614(01)01238-6
Lakin, M. J.; Troya, D.; Schatz, G. C.; Harding, L. B. J. Chem. Phys. 2003, 119, 5848. doi: 10.1063/1.1602061
doi: 10.1063/1.1602061
Valero, R.; van Hemert, M. C.; Kroes, G. J. Chem. Phys. Lett. 2004, 393, 236. doi: 10.1016/j.cplett.2004.06.036
doi: 10.1016/j.cplett.2004.06.036
Li, J.; Wang, Y.; Jiang, B.; Ma, J.; Dawes, R.; Xie, D.; Bowman, J. M.; Guo, H. J. Chem. Phys. 2012, 136, 041103. doi: 10.1063/1.3680256
doi: 10.1063/1.3680256
Jordan, M. J. T.; Gilbert, R. G. J. Chem. Phys. 1995, 102, 5669. doi: 10.1063/1.469298
doi: 10.1063/1.469298
Espinosa-García, J.; Corchado, J. C. J. Phys. Chem. 1996, 100, 16561. doi: 10.1021/jp961608q
doi: 10.1021/jp961608q
Wu, T.; Werner, H. -J.; Manthe, U. Science 2004, 306, 2227. doi: 10.1126/science.1104085
doi: 10.1126/science.1104085
Zhang, X.; Braams, B. J.; Bowman, J. M. J. Chem. Phys. 2006, 124, 021104. doi: 10.1063/1.2162532
doi: 10.1063/1.2162532
Xie, Z.; Bowman, J. M.; Zhang, X. J. Chem. Phys. 2006, 125, 133120. doi: 10.1063/1.2238871
doi: 10.1063/1.2238871
Agrafiotis, D. K.; Cedeño, W.; Lobanov, V. S. J. Chem. Inform. Comput. Sci. 2002, 42, 903. doi: 10.1021/ci0203702
doi: 10.1021/ci0203702
Chorkendorff, I. ; Niemantsverdriet, J. W. Concepts of Modern Catalysis and Kinetics; Wiley-VCH: Weinheim, Germany, 2003.
Jiang, B.; Xie, D.; Guo, H. Chem. Sci. 2013, 4, 503. doi: 10.1039/c2sc21393a
doi: 10.1039/c2sc21393a
Jiang, B.; Ren, X.; Xie, D.; Guo, H. Proc. Natl. Acad. Sci. USA 2012, 109, 10224. doi: 10.1073/pnas.1203895109
doi: 10.1073/pnas.1203895109
Ovesen, C. V.; Stoltze, P.; Norskov, J. K.; Campbell, C. T. J. Catal. 1992, 134, 445. doi: 10.1016/0021-9517(92)90334-E
doi: 10.1016/0021-9517(92)90334-E
Liu, T.; Zhang, Z.; Fu, B.; Yang, X.; Zhang, D. H. Chem. Sci. 2016, 7, 1840. doi: 10.1039/c5sc03689e
doi: 10.1039/c5sc03689e
Zhang, Z.; Liu, T.; Fu, B.; Yang, X.; Zhang, D. H. Nat. Commun. 2016, 7, 11953. doi: 10.1038/ncomms11953
doi: 10.1038/ncomms11953
Li, J.; Chen, J.; Zhang, D. H.; Guo, H. J. Chem. Phys. 2014, 140, 044327. doi: 10.1063/1.4863138
doi: 10.1063/1.4863138
Li, J.; Chen, J.; Zhao, Z.; Xie, D.; Zhang, D. H.; Guo, H. J. Chem. Phys. 2015, 142, 204302. doi: 10.1063/1.4921412
doi: 10.1063/1.4921412
Su, N. Q.; Chen, J.; Xu, X.; Zhang, D. H. Acta Phys. -Chim. Sin. 2016, 32, 119.
doi: 10.3866/PKU.WHXB201512011
Su, N. Q.; Chen, J.; Sun, Z.; Zhang, D. H.; Xu, X. J. Chem. Phys. 2015, 142, 084107. doi: 10.1063/1.4913196
doi: 10.1063/1.4913196
Chen, J.; Su, N. Q.; Xu, X.; Zhang, D. H. J. Comput. Chem. 2017, 38, 2326. doi: 10.1002/jcc.24886
doi: 10.1002/jcc.24886
Decker, W. ; Greuel, G. -M. ; Pfister, G. ; Schönemann, H. Singular 4-0-2-A Computer Algebra System for Polynomial Computations. http: //www. singular. uni-kl. de, 2015.
King, S. A. J. Symb. Comput.2013, 48, 101. doi: 10.1016/j.jsc.2012.05.002
doi: 10.1016/j.jsc.2012.05.002
Chen, J.; Zhang, D. H. Sci. China Chem. 2015, 45, 1241.
doi: 10.1360/N032015-00148
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
Zhenyu Feng , Zhaozhen Cao , Jinhua Zhan . Exploration of Online Training System for Large-Scale Instrument in Open Laboratory of Universities. University Chemistry, 2024, 39(4): 1-6. doi: 10.3866/PKU.DXHX202311016
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037