Citation: DENG Dan, ZHOU Erjun, WEI Zhixiang. Fluorination: An Effective Molecular Design Strategy for Efficient Photovoltaic Materials[J]. Acta Physico-Chimica Sinica, ;2018, 34(11): 1239-1249. doi: 10.3866/PKU.WHXB201803272 shu

Fluorination: An Effective Molecular Design Strategy for Efficient Photovoltaic Materials

  • Corresponding author: ZHOU Erjun, zhouej@nanoctr.cn WEI Zhixiang, weizx@nanoctr.cn
  • Received Date: 23 February 2018
    Revised Date: 22 March 2018
    Accepted Date: 23 March 2018
    Available Online: 27 November 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (51603051, 21125420) and the Youth Innovation Promotion Association CASthe National Natural Science Foundation of China 21125420the National Natural Science Foundation of China 21125420

  • Organic solar cells (OSCs) have received widespread attention for their advantages of cheap, light, flexible characteristics and roll-to-roll printing technology. However, the efficiencies of OSCs are still lower than 50% of the theoretical Shockley-Queisser detailed-balance efficiency limit. Consequently, to further improve device performance, it is significant to develop molecular design strategies to lower the energy loss and enhance the utilization of absorbed photons. From the molecular design aspects, down-shifting energy levels is an effective way to lowering the energy loss in order to obtain a high open circuit voltage, and optimizing the morphology is an efficient approach to lowering the fill factor and current density loss. Introduction of fluorine atom in molecules is an effective molecular design strategy to realize both above-mentioned requirements. In this review, starting from the characteristics of fluorine atoms, we summarized the fluorination effects on adjusting molecular levels. Whether the fluorine attached to the donor units, acceptor units or π-bridge units, it could efficiently downshift the energy levels. However, fluorinating the molecular backbone affects the energy levels more significantly than fluorinating the side chains of the two-dimensional structures. The introduction of fluorine is also an effective approach to optimize molecular packing and morphology. Generally, whether the fluorine attached to the donor units, acceptor units or π-bridge units, it can effectively increase molecular coherence length, decrease ππ stacking distance, and enhance domain purity. However, there is a saturation of the fluorine on the backbone, further introduction of the fluorine can accelerate molecular aggregation and induce disorder. In addition, the position of fluorination is important. In this review, we also briefly discuss the fluorination strategy for representative and high-efficiency photovoltaic material designs, including small molecule, polymer, and non-fullerene OSCs, mainly focusing on improving efficiency by reducing the efficiency losses. Fluorination is advantageous only for OSCs with high HOMO energy levels or poor molecular packing; otherwise, it can compromise device performance. OSCs based on narrow band-gap non-fullerene acceptors with low energy loss show promise for highly efficient device performance. Fluorination provides an effective means to fine-tune energy levels and form ideal microstructures to further reduce the efficiency loss and achieve a breakthrough in device performance.
  • 加载中
    1. [1]

      Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Nat. Commun. 2014, 5, 5293. doi: 10.1038/ncomms6293  doi: 10.1038/ncomms6293

    2. [2]

      Li, Y. Acc. Chem. Res. 2012, 45(5), 723. doi: 10.1021/ar2002446  doi: 10.1021/ar2002446

    3. [3]

      Coughlin, J. E.; Henson, Z. B.; Welch, G. C.; Bazan, G. C. Acc. Chem. Res. 2014, 47(1), 257. doi: 10.1021/ar400136b  doi: 10.1021/ar400136b

    4. [4]

      Chen, J.; Cao, Y. Acc. Chem. Res. 2009, 42(11), 1709. doi: 10.1021/ar900061z  doi: 10.1021/ar900061z

    5. [5]

      Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Nat. Mater. 2012, 11(1), 44. doi: 10.1038/nmat3160  doi: 10.1038/nmat3160

    6. [6]

      Roncali, J. Acc. Chem. Res. 2009, 42(11), 1719. doi: 10.1021/ar900041b  doi: 10.1021/ar900041b

    7. [7]

      Zhang, J.; Deng, D.; He, C.; He, Y.; Zhang, M.; Zhang, Z. G.; Zhang, Z.; Li, Y. Chem. Mater. 2010, 23(3), 817. doi: 10.1021/cm102077j  doi: 10.1021/cm102077j

    8. [8]

      Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. J. Am. Chem. Soc. 2017, 139(21), 7148. doi: 10.1021/jacs.7b02677  doi: 10.1021/jacs.7b02677

    9. [9]

      Yang, L.; Zhang, S.; He, C.; Zhang, J.; Yao, H.; Yang, Y.; Zhang, Y.; Zhao, W.; Hou, J. J. Am. Chem. Soc. 2017, 139(5), 1958. doi: 10.1021/jacs.6b11612  doi: 10.1021/jacs.6b11612

    10. [10]

      Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27(7), 1170. doi: 10.1002/adma.201404317  doi: 10.1002/adma.201404317

    11. [11]

      Yang, Y.; Zhang, Z. G.; Bin, H.; Chen, S.; Gao, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2016, 138(45), 15011. doi: 10.1021/jacs.6b09110  doi: 10.1021/jacs.6b09110

    12. [12]

      Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. Nat. Mater. 2018, 17, 119. doi: 10.1038/nmat5063  doi: 10.1038/nmat5063

    13. [13]

      Deng, D.; Zhang, Y.; Zhang, J.; Wang, Z.; Zhu, L.; Fang, J.; Xia, B.; Wang, Z.; Lu, K.; Ma, W.; et al. Nat. Commun. 2016, 7, 13740. doi: 10.1038/ncomms13740  doi: 10.1038/ncomms13740

    14. [14]

      Wan, J.; Xu, X.; Zhang, G.; Li, Y.; Feng, K.; Peng, Q. Energy Envirn. Sci. 2017, 10 (8), 1739. doi: 10.1039/C7EE00805H  doi: 10.1039/C7EE00805H

    15. [15]

      Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Science 2016, 352(6283). doi: 10.1126/science.aad4424  doi: 10.1126/science.aad4424

    16. [16]

      Kawashima, K.; Tamai, Y.; Ohkita, H.; Osaka, I.; Takimiya, K. Nat. Commun. 2015, 6, 10085. doi: 10.1038/ncomms10085  doi: 10.1038/ncomms10085

    17. [17]

      Zhang, J.; Zhu, L.; Wei, Z. Small Methods 2017, 1(12), 1700258. doi: 10.1002/smtd.201700258  doi: 10.1002/smtd.201700258

    18. [18]

      Liu, J.; Chen, S.; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.; Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H.; et al. Nat. Energy 2016, 1, 16089. doi: 10.1038/nenergy.2016.89  doi: 10.1038/nenergy.2016.89

    19. [19]

      Li, W.; Roelofs, W. S. C.; Wienk, M. M.; Janssen, R. A. J. J. Am. Chem. Soc. 2012, 134(33), 13787. doi: 10.1021/ja305358z  doi: 10.1021/ja305358z

    20. [20]

      Bin, H.; Zhang, Z. G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2016, 138(13), 4657. doi: 10.1021/jacs.6b01744  doi: 10.1021/jacs.6b01744

    21. [21]

      Zheng, Z.; Awartani, O. M.; Gautam, B.; Liu, D.; Qin, Y.; Li, W.; Bataller, A.; Gundogdu, K.; Ade, H.; Hou, J. Adv. Mater. 2017, 29(5), 1604241. doi: 10.1002/adma.201604241  doi: 10.1002/adma.201604241

    22. [22]

      Xu, X. P.; Li, Y.; Luo, M. M.; Peng, Q. Chin. Chem. Lett. 2016, 27(8), 1241. doi: 10.1016/j.cclet.2016.05.006  doi: 10.1016/j.cclet.2016.05.006

    23. [23]

      Meyer, F. Prog. Polym. Sci. 2015, 47, 70. doi: 10.1016/j.progpolymsci.2015.04.007  doi: 10.1016/j.progpolymsci.2015.04.007

    24. [24]

      Zhang, Q.; Kelly, M. A.; Bauer, N.; You, W. Acc. Chem. Res. 2017, 50(9), 2401. doi: 10.1021/acs.accounts.7b00326  doi: 10.1021/acs.accounts.7b00326

    25. [25]

      Kohlhepp, S. V.; Gulder, T. Chem. Soc. Rev. 2016, 45(22), 6270. doi: 10.1039/C6CS00361C  doi: 10.1039/C6CS00361C

    26. [26]

      Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107(4), 1296. doi: 10.1021/cr0501543  doi: 10.1021/cr0501543

    27. [27]

      Delgado, M. C. R.; Pigg, K. R.; da Silva Filho, D. A.; Gruhn, N. E.; Sakamoto, Y.; Suzuki, T.; Osuna, R. M.; Casado, J.; Hernández, V.; Navarrete, J. T. L.; et al. J. Am. Chem. Soc. 2009, 131(4), 1502. doi: 10.1021/ja807528w  doi: 10.1021/ja807528w

    28. [28]

      Tang, M. L.; Reichardt, A. D.; Wei, P.; Bao, Z. J. Am. Chem. Soc. 2009, 131(14), 5264. doi: 10.1021/ja809659b  doi: 10.1021/ja809659b

    29. [29]

      Gao, Y.; Deng, Y.; Tian, H.; Zhang, J.; Yan, D.; Geng, Y.; Wang, F. Adv. Mater. 2017, 29(13), 1606217. doi: 10.1002/adma.201606217  doi: 10.1002/adma.201606217

    30. [30]

      Chen, H. Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. Nat. Photon. 2009, 3, 649. doi: 10.1038/nphoton.2009.192  doi: 10.1038/nphoton.2009.192

    31. [31]

      Rolczynski, B. S.; Szarko, J. M.; Son, H. J.; Liang, Y.; Yu, L.; Chen, L. X. J. Am. Chem. Soc. 2012, 134(9), 4142. doi: 10.1021/ja209003y.  doi: 10.1021/ja209003y

    32. [32]

      Son, H. J.; Wang, W.; Xu, T.; Liang, Y.; Wu, Y.; Li, G.; Yu, L. J. Am. Chem. Soc. 2011, 133(6), 1885. doi: 10.1021/ja108601g  doi: 10.1021/ja108601g

    33. [33]

      Zhang, M.; Guo, X.; Zhang, S.; Hou, J. Adv. Mater. 2014, 26(7), 1118. doi: 10.1002/adma.201304427  doi: 10.1002/adma.201304427

    34. [34]

      Wang, Z.; Xu, X.; Li, Z.; Feng, K.; Li, K.; Li, Y.; Peng, Q. Adv. Electron Mater. 2016, 2 (6), 1600061. doi: 10.1002/aelm.201600061  doi: 10.1002/aelm.201600061

    35. [35]

      Jackson, N. E.; Savoie, B. M.; Kohlstedt, K. L.; Olvera de la Cruz, M.; Schatz, G. C.; Chen, L. X.; Ratner, M. A. J. Am. Chem. Soc. 2013, 135(28), doi: 10475. 10.1021/ja403667s

    36. [36]

      Takacs, C. J.; Sun, Y.; Welch, G. C.; Perez, L. A.; Liu, X.; Wen, W.; Bazan, G. C.; Heeger, A. J. J. Am. Chem. Soc. 2012, 134 (40), 16597. doi: 10.1021/ja3050713  doi: 10.1021/ja3050713

    37. [37]

      van der Poll, T. S.; Love, J. A.; Nguyen, T. Q.; Bazan, G. C. Adv. Mater. 2012, 24(27), 3646. doi: 10.1002/adma.201201127  doi: 10.1002/adma.201201127

    38. [38]

      Ying, L.; Hsu, B. B. Y.; Zhan, H.; Welch, G. C.; Zalar, P.; Perez, L. A.; Kramer, E. J.; Nguyen, T. Q.; Heeger, A. J.; Wong, W. Y.; et al. J. Am. Chem. Soc. 2011, 133(46), 18538. doi: 10.1021/ja207543g  doi: 10.1021/ja207543g

    39. [39]

      Price, S. C.; Stuart, A. C.; Yang, L.; Zhou, H.; You, W. J. Am. Chem. Soc. 2011, 133 (12), 4625. doi: 10.1021/ja1112595  doi: 10.1021/ja1112595

    40. [40]

      Li, W.; Albrecht, S.; Yang, L.; Roland, S.; Tumbleston, J. R.; McAfee, T.; Yan, L.; Kelly, M. A.; Ade, H.; Neher, D.; et al. J. Am. Chem. Soc. 2014, 136(44), 15566. doi: 10.1021/ja5067724  doi: 10.1021/ja5067724

    41. [41]

      Stuart, A. C.; Tumbleston, J. R.; Zhou, H.; Li, W.; Liu, S.; Ade, H.; You, W. J. Am. Chem. Soc. 2013, 135(5), 1806. doi: 10.1021/ja309289u  doi: 10.1021/ja309289u

    42. [42]

      Kim, J. H.; Song, C. E.; Kim, H. U.; Grimsdale, A. C.; Moon, S. J.; Shin, W. S.; Choi, S. K.; Hwang, D. H. Chem. Mater. 2013, 25(13), 2722. doi: 10.1021/cm401527b  doi: 10.1021/cm401527b

    43. [43]

      Kawashima, K.; Fukuhara, T.; Suda, Y.; Suzuki, Y.; Koganezawa, T.; Yoshida, H.; Ohkita, H.; Osaka, I.; Takimiya, K. J. Am. Chem. Soc. 2016, 138 (32), 10265. doi: 10.1021/jacs.6b05418  doi: 10.1021/jacs.6b05418

    44. [44]

      Uddin, M. A.; Kim, Y.; Younts, R.; Lee, W.; Gautam, B.; Choi, J.; Wang, C.; Gundogdu, K.; Kim, B. J.; Woo, H. Y. Macromolecules 2016, 49 (17), 6374. doi: 10.1021/acs.macromol.6b01414  doi: 10.1021/acs.macromol.6b01414

    45. [45]

      Zhang, Y.; Deng, D.; Wang, Z.; Wang, Y.; Zhang, J.; Fang, J.; Yang, Y.; Lu, G.; Ma, W.; Wei, Z. Adv. Energy Mater. 2017, 7(22), 1701548. doi: 10.1002/aenm.201701548  doi: 10.1002/aenm.201701548

    46. [46]

      Dai, S.; Zhao, F.; Zhang, Q.; Lau, T. K.; Li, T.; Liu, K.; Ling, Q.; Wang, C.; Lu, X.; You, W.; Zhan, X. J. Am. Chem. Soc. 2017, 139(3), 1336. doi: 10.1021/jacs.6b12755  doi: 10.1021/jacs.6b12755

    47. [47]

      Yao, H.; Cui, Y.; Yu, R.; Gao, B.; Zhang, H.; Hou, J. Angew. Chem. Int. Ed. 2017, 56(11), 3045. doi:10.1002/anie.201610944  doi: 10.1002/anie.201610944

    48. [48]

      Ma, X.; Mi, Y.; Zhang, F.; An, Q.; Zhang, M.; Hu, Z.; Liu, X.; Zhang, J.; Tang, W. Adv. Energy Mater. 2018, 8 (1), 1702854. doi: 10.1002/aenm.201702854  doi: 10.1002/aenm.201702854

  • 加载中
    1. [1]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    2. [2]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    3. [3]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    4. [4]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    5. [5]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    6. [6]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    7. [7]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    8. [8]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    9. [9]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    10. [10]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    11. [11]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    12. [12]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    13. [13]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    14. [14]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    15. [15]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    16. [16]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    17. [17]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    18. [18]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    19. [19]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    20. [20]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

Metrics
  • PDF Downloads(11)
  • Abstract views(875)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return