Citation: XIN Liang, SUN Huai. On the Simulation of Complex Reactions Using Replica Exchange Molecular Dynamics (REMD)[J]. Acta Physico-Chimica Sinica, ;2018, 34(10): 1179-1188. doi: 10.3866/PKU.WHXB201803161 shu

On the Simulation of Complex Reactions Using Replica Exchange Molecular Dynamics (REMD)

  • Corresponding author: SUN Huai, huaisun@sjtu.edu.cn
  • Received Date: 8 February 2018
    Revised Date: 13 March 2018
    Accepted Date: 13 March 2018
    Available Online: 16 October 2018

    Fund Project: the National Natural Science Foundation of China 21173146the National Natural Science Foundation of China 21073119The project was supported by the National Natural Science Foundation of China (21073119, 21173146, 21473112) and National Basic Research Program of China (973) (2014CB239702)National Basic Research Program of China (973) 2014CB239702the National Natural Science Foundation of China 21473112

  • A complex reaction, such as combustion, polymerization, and zeolite synthesis, involves a large number of elementary reactions and chemical species. Given a set of elementary reactions, the apparent reaction rates, population of chemical species, and energy distribution as functions of time can be derived using deterministic or stochastic kinetic models. However, for many complex reactions, the corresponding elementary reactions are unknown. Molecular dynamics (MD) simulation, which is based on forces calculated by using either quantum mechanical methods or pre-parameterized reactive force fields, offers a possibility to probe the reaction mechanism from the first principles. Unfortunately, most reactions take place on timescales far above that of molecular simulation, which is considered to be a well-known rare event problem. The molecules may undergo numerous collisions and follow many pathways to find a favorable route to react. Often, the simulation trajectory can be trapped in a local minimum separated from others by high free-energy barriers; thus, crossing these barriers requires prohibitively long simulation times. Due to this timescale limitation, simulations are often conducted on very small systems or at unrealistically high temperatures, which might hinder their validity. In order to model complex reactions under conditions comparable with those of the experiments, enhanced sampling techniques are required. The replica exchange molecular dynamics (REMD) is one of the most popular enhance sampling techniques. By running multiple replicas of a simulation system using one or several controlling variables and exchanging the replicas according to the Metropolis acceptance rule, the phase space can be explored more efficiently. However, most published work on the REMD method focuses on the conformational changes of biological molecules or simple reactions that can be described by a reaction coordinate. The optimized parameters of such simulations may not be suitable for simulations of complex reactions, in which the energy changes are much more dramatic than those associated with conformational changes and the hundreds elementary reactions through numerous pathways are unknown prior to the simulations. Therefore, it is necessary to investigate how to use the REMD method efficiently for the simulation of complex reactions. In this work, we examined the REMD method using temperature (T-REMD) and Hamiltonian (H-REMD) as the controlling variable respectively. In order to quantitatively validate the simulation results against direct simulations and analytic solutions, we performed the study based on a simple replacement reaction (A + BC = AB + C) with variable energy barrier heights and reaction energies described using the ReaxFF functional forms. The aim was to optimize the simulation parameters including number, sequence, and swap frequency of the replicas. The T-REMD method was found to be efficient for modeling exothermic reactions of modest reaction energy (< 3 kcal∙mol-1) or activation energy (ca. < 20 kcal∙mol-1). The efficiency was severely impaired for reactions with high activation and reaction energies. The analysis of the simulation trajectory revealed that the problem was intrinsic and could not be solved by adjusting the simulation parameters since the phase space sampled using T-REMD was localized in the region favored by high (artificial for speed-up) temperatures, which is different from the region favored by low (experimental) temperatures. This issue was aggravated in the case of endothermic reactions. On the other hand, the H-REMD run on a series of potential surfaces having different activation energies was demonstrated to be remarkably robust. Since the energy barrier only reduces the reaction rates, while the phase space controlled by the reaction energy differences remains unchanged at a fixed temperature, excellent results were obtained with fewer replicas by using H-REMD. It is evident that H-REMD is a more suitable method for the simulation of complex reactions.
  • 加载中
    1. [1]

      Steinfeld, J. I. ; Francisco, J. S. ; Hase, W. L. Chemical Kinetics and Dynamics; Prentice Hall Englewood Cliffs: Upper Saddle River, NJ, USA, 1989; Vol. 3.

    2. [2]

      Érdi, P. ; Tóth, J. Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models; Manchester University Press: Oxford Road, Manchester M13 9PL, UK, 1989.

    3. [3]

      Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558. doi: 10.1103/PhysRevB.47.558  doi: 10.1103/PhysRevB.47.558

    4. [4]

      Van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A., Ⅲ. J. Phys. Chem. A 2001, 105, 9396. doi: 10.1021/jp004368u  doi: 10.1021/jp004368u

    5. [5]

      Sugita, Y.; Okamoto, Y. Chem. Phys. Lett. 1999, 314, 141. doi: 10.1016/S0009-2614(99)01123-9  doi: 10.1016/S0009-2614(99)01123-9

    6. [6]

      Hukushima, K.; Nemoto, K. J. Phys. Soc. Jpn. 1996, 65, 1604. doi: 10.1143/JPSJ.65.1604  doi: 10.1143/JPSJ.65.1604

    7. [7]

      Fukunishi, H.; Watanabe, O.; Takada, S. J. Chem. Phys. 2002, 116, 9058. doi: 10.1063/1.1472510  doi: 10.1063/1.1472510

    8. [8]

      Itoh, S. G.; Okumura, H. J. Comput. Chem. 2013, 34, 622. doi: 10.1002/jcc.23167  doi: 10.1002/jcc.23167

    9. [9]

      Itoh, S. G.; Okumura, H.; Okamoto, Y. J. Chem. Phys. 2010, 132, 134105. doi: 10.1063/1.3372767  doi: 10.1063/1.3372767

    10. [10]

      Swails, J. M.; Roitberg, A. E. J. Chem. Theory Comput. 2012, 8, 4393. doi: 10.1021/ct300512h  doi: 10.1021/ct300512h

    11. [11]

      Mori, T.; Jung, J.; Sugita, Y. J. Chem. Theory Comput. 2013, 9, 5629. doi: 10.1021/ct400445k  doi: 10.1021/ct400445k

    12. [12]

      Leahy, C. T.; Kells, A.; Hummer, G.; Buchete, N. V.; Rosta, E. J. Chem. Phys. 2017, 147, 152725. doi: 10.1063/1.5004774  doi: 10.1063/1.5004774

    13. [13]

      Stelzl, L. S.; Hummer, G. J. Chem. Theory Comput. 2017, 13, 3927. doi: 10.1021/acs.jctc.7b00372  doi: 10.1021/acs.jctc.7b00372

    14. [14]

      Wallace, A. F. Replica Exchange Methods in Biomineral Simulations. In Methods in Enzymology, De Yoreo, J. J., Ed. ; Academic Press: New York, NY, USA, 2013; Vol. 532, Chapter 4, pp. 71–93.

    15. [15]

      Zhang, W.; Chen, J. J. Chem. Theory Comput. 2013, 9, 2849. doi: 10.1021/ct400191b  doi: 10.1021/ct400191b

    16. [16]

      Bergonzo, C.; Henriksen, N. M.; Roe, D. R.; Swails, J. M.; Roitberg, A. E.; Cheatham, T. E. J. Chem. Theory Comput. 2014, 10, 492. doi: 10.1021/ct400862k  doi: 10.1021/ct400862k

    17. [17]

      Mori, Y.; Okamoto, Y. Phys. Rev. E 2013, 87, 023301. doi: 10.1103/PhysRevE.87.023301  doi: 10.1103/PhysRevE.87.023301

    18. [18]

      Petraglia, R.; Nicola , A.; Wodrich, M. D.; Ceriotti, M.; Corminboeuf, C. J. Comput. Chem. 2016, 37, 83. doi: 10.1002/jcc.24025  doi: 10.1002/jcc.24025

    19. [19]

      Sato, S. J. Chem. Phys. 1955, 23, 592. doi: 10.1063/1.1742043  doi: 10.1063/1.1742043

    20. [20]

      Plimpton, S. J. Comput. Phys. 1995, 117, 1. doi: 10.1006/jcph.1995.1039  doi: 10.1006/jcph.1995.1039

    21. [21]

      Shinoda, W.; Shiga, M.; Mikami, M. Phys. Rev. B 2004, 69, 134103. doi: 10.1103/PhysRevB.69.134103  doi: 10.1103/PhysRevB.69.134103

    22. [22]

      Denschlag, R.; Lingenheil, M.; Tavan, P. Chem. Phys. Lett. 2009, 473, 193. doi: 10.1016/j.cplett.2009.03.053  doi: 10.1016/j.cplett.2009.03.053

    23. [23]

      Bittner, E.; Nußbaumer, A.; Janke, W. Phys. Rev. Lett. 2008, 101, 130603. doi: 10.1103/PhysRevLett.101.130603  doi: 10.1103/PhysRevLett.101.130603

    24. [24]

      Plattner, N.; Doll, J. D.; Meuwly, M. J. Chem. Theory Comput. 2013, 9, 4215. doi: 10.1021/ct400355g  doi: 10.1021/ct400355g

    25. [25]

      Dupuis, P.; Liu, Y.; Plattner, N.; Doll, J. D. Multiscale Model. Simul. 2012, 10, 986. doi: 10.1137/110853145  doi: 10.1137/110853145

    26. [26]

      Wolff, U. Comput. Phys. Commun. 2004, 156, 143. doi: 10.1016/S0010-4655(03)00467-3  doi: 10.1016/S0010-4655(03)00467-3

    27. [27]

      Flyvbjerg, H.; Petersen, H. G. J. Chem. Phys. 1989, 91, 461. doi: 10.1063/1.457480  doi: 10.1063/1.457480

    28. [28]

      Katzgraber, H. G.; Trebst, S.; Huse, D. A.; Troyer, M. J. Stat. Mech. Theory Exp. 2006, 03, P03018. doi: 10.1088/1742-5468/2006/03/P03018  doi: 10.1088/1742-5468/2006/03/P03018

  • 加载中
    1. [1]

      Yu PengYue WangTian-Jiao ChenJing-Jing ChenJin-Ling YangTing GongPing Zhu . A fungal CYP from Beauveria bassiana with promiscuous steroid hydroxylation capabilities. Chinese Chemical Letters, 2024, 35(5): 108818-. doi: 10.1016/j.cclet.2023.108818

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    5. [5]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    6. [6]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    7. [7]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    8. [8]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    9. [9]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    10. [10]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    11. [11]

      Linjing LiWenlai XuJianyong NingYaping ZhongChuyue ZhangJiane ZuoZhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243

    12. [12]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    13. [13]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

    14. [14]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    15. [15]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335

    16. [16]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    17. [17]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    18. [18]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    19. [19]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    20. [20]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

Metrics
  • PDF Downloads(12)
  • Abstract views(662)
  • HTML views(159)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return