Citation: CHEN Rui, WANG Wei, BU Tongle, KU Zhiliang, ZHONG Jie, PENG Yong, XIAO Shengqiang, YOU Wei, HUANG Fuzhi, CHENG Yibing, FU Zhengyi. Low-Cost Fullerene Derivative as an Efficient Electron Transport Layer for Planar Perovskite Solar Cells[J]. Acta Physico-Chimica Sinica, ;2019, 35(4): 401-407. doi: 10.3866/PKU.WHXB201803131 shu

Low-Cost Fullerene Derivative as an Efficient Electron Transport Layer for Planar Perovskite Solar Cells

  • Corresponding author: XIAO Shengqiang, shengqiang@whut.edu.cn HUANG Fuzhi, fuzhi.huang@whut.edu.cn
  • Received Date: 22 February 2018
    Revised Date: 7 March 2018
    Accepted Date: 12 March 2018
    Available Online: 13 April 2018

    Fund Project: the National Natural Science Foundation of China 21673170The project was supported by the National Natural Science Foundation of China (51672202, 21673170), the Technological Innovation Key Project of Hubei Province, China (2016AAA041), and the Fundamental Research Funds for the Central Universities, China (WUT:2016IVA085)the Fundamental Research Funds for the Central Universities, China WUT:2016IVA085the National Natural Science Foundation of China 51672202the Technological Innovation Key Project of Hubei Province, China 2016AAA041

  • Organic-inorganic hybrid perovskite solar cells (PSCs) have attracted significant attention owing to their high absorption coefficient and ambipolar charge transport properties. With only several years of development, the power conversion efficiency (PCE) has increased from 3.8% to 22.7%. In general, PSCs have two types of structural architecture: mesoporous and planar. The latter possesses higher potential for commercialization due to its simpler structure and fabrication process, especially the inverted planar structure, which possesses negligible hysteresis. In an inverted PSC, the electron transport materials (ETM) are deposited on a perovskite film. Only a few ETMs can be used for inverted PSCs as the perovskite film is easily damaged by the solvent used to dissolve the ETM. Furthermore, the energy levels of the ETM should be well aligned with that of the perovskites. Normally it is difficult to use inorganic ETMs as they require high temperatures for the annealing process to improve the electron conductivity; the perovskite film cannot sustain these high temperatures. To date, the fullerene derivative, [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM), is the most commonly used organic ETM for high efficiency inverted planar PSCs. However, the high manufacturing cost due to its complex synthesis retards the industrialization of the PSCs. Here, we introduce a fullerene pyrrolidine derivative, N-methyl-2-pentyl-[60]fullerene pyrrolidine (NMPFP), synthesized via the Prato reaction of C60 directly with cheap hexanal and sarcosine. Then the NMPFP electron transport layer (ETL) was prepared by a simple solution process. The properties of the resulting NMPFP ETLs were characterized using UV-Vis absorption spectroscopy, cyclic voltammetry measurements, atomic force microscopy, and conductivity test. From the results of the UV-Vis absorption spectroscopy and cyclic voltammetry measurements, the LUMO level of NMPFP ETL was calculated to be 0.2 eV higher than that of the PCBM ETL. This contributes to a higher open-circuit photovoltage. In addition, the NMPFP film presented higher conductivity than the PCBM film. Thus, the photo-generated charge carriers in the perovskite films should be transported more efficiently to the NMPFP electron transport layer (ETL) than to the PCBM ETL. This was confirmed by the results of the steady-state photoluminescence spectroscopy. Finally, the NMPFP as an alternative low-cost ETL was employed in an inverted planar PSC to evaluate the device performance. The device made with the NMPFP ETL yielded an efficiency of 13.83% with negligible hysteresis, which is comparable to the PCBM counterpart devices. Moreover, since stability is another important parameter retarding the commercialization of PSCs, the stability of the PCBM and NMPFP base PSCs were investigated and compared. It was found that the NMPFP devices possessed significantly improved stability due to the higher hydrophobicity of the NMPFP. In conclusion, this research demonstrates that NMPFP is a promising ETL to replace PCBM for the industrialization of cheap, efficient and stable inverted planar PSCs.
  • 加载中
    1. [1]

      Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photon. 2014, 8, 506. doi: 10.1038/nphoton.2014.134  doi: 10.1038/nphoton.2014.134

    2. [2]

      Snaith, H. J. J. Phys. Chem. Lett. 2013, 4, 3623. doi: 10.1021/jz4020162  doi: 10.1021/jz4020162

    3. [3]

      Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395. doi: 10.1038/nature12509  doi: 10.1038/nature12509

    4. [4]

      Park, N. G. J. Phys. Chem. Lett. 2013, 4, 2423. doi: 10.1021/jz400892a  doi: 10.1021/jz400892a

    5. [5]

      Gao, P.; Grätzel, M.; Nazeeruddin, M. K. Energy Environ. Sci. 2014, 7, 2448. doi: 10.1039/c4ee00942h  doi: 10.1039/c4ee00942h

    6. [6]

      https://www.nrel.gov/pv/assets/images/efficiency-chart.png

    7. [7]

      Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542. doi: 10.1126/science.1254050  doi: 10.1126/science.1254050

    8. [8]

      Heo, J. H.; Han, H. J.; Lee, M.; Song, M.; Kim, D. H.; Im, S. H. Energy Environ. Sci. 2015, 8, 2922. doi: 10.1039/c5ee01050k  doi: 10.1039/c5ee01050k

    9. [9]

      Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L. Angew. Chem. Int. Ed. 2014, 53, 9898. doi: 10.1002/anie.201405334  doi: 10.1002/anie.201405334

    10. [10]

      Bu, T.; Wen, M.; Zou, H.; Wu, J.; Zhou, P.; Li, W.; Ku, Z.; Peng, Y.; Li, Q.; Huang, F.; Cheng, Y. B.; Zhong, J. Solar Energy 2016, 139, 290. doi: 10.1016/j.solener.2016.10.003  doi: 10.1016/j.solener.2016.10.003

    11. [11]

      Bai, S.; Sakai, N.; Zhang, W.; Wang, Z.; Wang, J. T. W.; Gao, F.; Snaith, H. J. Chem. Mater. 2017, 29, 462. doi: 10.1021/acs.chemmater.6b05159  doi: 10.1021/acs.chemmater.6b05159

    12. [12]

      Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Energy Environ. Sci. 2015, 8, 1602. doi: 10.1039/c5ee00120j  doi: 10.1039/c5ee00120j

    13. [13]

      Chen, K.; Hu, Q.; Liu, T.; Zhao, L.; Luo, D.; Wu, J.; Zhang, Y.; Zhang, W.; Liu, F.; Russell, T. P.; Zhu, R.; Gong, Q. Adv. Mater. 2016, 28, 10718. doi: 10.1002/adma.201604048  doi: 10.1002/adma.201604048

    14. [14]

      Chiang, C. H.; Nazeeruddin, M. K.; Grätzel, M.; Wu, C. G. Energy Environ. Sci. 2017, 10, 808. doi: 10.1039/c6ee03586h  doi: 10.1039/c6ee03586h

    15. [15]

      Yan, W.; Ye, S.; Li, Y.; Sun, W.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C. Adv. Energy Mater. 2016, 6, 1600474. doi: 10.1002/aenm.201600474  doi: 10.1002/aenm.201600474

    16. [16]

      Li, Y.; Sun, W.; Yan, W.; Ye, S.; Rao, H.; Peng, H.; Zhao, Z.; Bian, Z.; Liu, Z.; Zhou, H.; Huang, C. Adv. Energy Mater. 2016, 6, 1601353. doi: 10.1002/aenm.201601353  doi: 10.1002/aenm.201601353

    17. [17]

      Yan, W.; Rao, H.; Wei, C.; Liu, Z.; Bian, Z.; Xin, H.; Huang, W. Nano Energy 2017, 35, 62. doi: 10.1016/j.nanoen.2017.03.001  doi: 10.1016/j.nanoen.2017.03.001

    18. [18]

      Ye, S.; Rao, H.; Zhao, Z.; Zhang, L.; Bao, H.; Sun, W.; Li, Y.; Gu, F.; Wang, J.; Liu, Z.; Bian, Z.; Huang, C. J. Am. Chem. Soc. 2017, 139, 7504. doi: 10.1021/jacs.7b01439  doi: 10.1021/jacs.7b01439

    19. [19]

      Luo, D.; Zhao, L.; Wu, J.; Hu, Q.; Zhang, Y.; Xu, Z.; Liu, Y.; Liu, T.; Chen, K.; Yang, W.; Zhang, W.; Zhu, R.; Gong, Q. Adv. Mater. 2017, 29, 1604758. doi: 10.1002/adma.201604758  doi: 10.1002/adma.201604758

    20. [20]

      Wu, Y.; Yang, X.; Chen, W.; Yue, Y.; Cai, M.; Xie, F.; Bi, E.; Islam, A.; Han, L. Nat. Energy 2016, 1, 16148. doi: 10.1038/nenergy.2016.148  doi: 10.1038/nenergy.2016.148

    21. [21]

      Liu, X.; Yu, H.; Yan, L.; Dong, Q.; Wan, Q.; Zhou, Y.; Song, B.; Li, Y. ACS Appl. Mater. Inter. 2015, 7, 6230. doi: 10.1021/acsami.5b00468  doi: 10.1021/acsami.5b00468

    22. [22]

      Qiu, W.; Buffière, M.; Brammertz, G.; Paetzold, U. W.; Froyen, L.; Heremans, P.; Cheyns, D. Org. Electron. 2015, 26, 30. doi: 10.1016/j.orgel.2015.06.046  doi: 10.1016/j.orgel.2015.06.046

    23. [23]

      You, J.; Meng, L.; Song, T. B.; Guo, T. F.; Yang, Y. M.; Chang, W. H.; Hong, Z.; Chen, H.; Zhou, H.; Chen, Q.; Liu, Y.; De Marco, N.; Yang, Y. Nat. Nanotechnol. 2016, 11, 75. doi: 10.1038/nnano.2015.230  doi: 10.1038/nnano.2015.230

    24. [24]

      Liang, P. W.; Chueh, C. C.; Williams, S. T.; Jen, A. K. Y. Adv. Energy Mater. 2015, 5, 1402321. doi: 10.1002/aenm.201402321  doi: 10.1002/aenm.201402321

    25. [25]

      Meng, X.; Bai, Y.; Xiao, S.; Zhang, T.; Hu, C.; Yang, Y.; Zheng, X.; Yang, S. Nano Energy 2016, 30, 341. doi: 10.1016/j.nanoen.2016.10.026  doi: 10.1016/j.nanoen.2016.10.026

    26. [26]

      Wang, Q.; Shao, Y.; Dong, Q.; Xiao, Z.; Yuan, Y.; Huang, J. Energy Environ. Sci. 2014, 7, 2359. doi: 10.1039/C4EE00233D  doi: 10.1039/C4EE00233D

    27. [27]

      Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Grätzel, M.; Han, L. Science 2015, 350, 944. doi: 10.1126/science.aad1015  doi: 10.1126/science.aad1015

    28. [28]

      Liu, X.; Lin, F.; Chueh, C. C.; Chen, Q.; Zhao, T.; Liang, P. W.; Zhu, Z.; Sun, Y.; Jen, A. K. Y. Nano Energy 2016, 30, 417. doi: 10.1016/j.nanoen.2016.10.036  doi: 10.1016/j.nanoen.2016.10.036

    29. [29]

      Dai, S. M.; Tian, H. R.; Zhang, M. L.; Xing, Z.; Wang, L. Y.; Wang, X.; Wang, T.; Deng, L. L.; Xie, S. Y.; Huang, R. B.; Zheng, L. S. J. Power Sources 2017, 339, 27. doi: 10.1016/j.jpowsour.2016.11.047  doi: 10.1016/j.jpowsour.2016.11.047

    30. [30]

      Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G. J. Mater. Chem. A 2016, 4, 3970. doi: 10.1039/c5ta09011c  doi: 10.1039/c5ta09011c

    31. [31]

      Tian, C.; Kochiss, K.; Castro, E.; Betancourt-Solis, G.; Han, H.; Echegoyen, L. J. Mater. Chem. A 2017, 5, 7326. doi: 10.1039/c7ta00362e  doi: 10.1039/c7ta00362e

    32. [32]

      Chang, C. Y.; Huang, W. K.; Chang, Y. C.; Lee, K. T.; Chen, C. T. J. Mater. Chem. A 2016, 4, 640. doi: 10.1039/c5ta09080f  doi: 10.1039/c5ta09080f

    33. [33]

      Seo, J.; Park, S.; Chan Kim, Y.; Jeon, N. J.; Noh, J. H.; Yoon, S. C.; Seok, S. I. Energy Environ. Sci. 2014, 7, 2642. doi: 10.1039/c4ee01216j  doi: 10.1039/c4ee01216j

    34. [34]

      Bin, Z.; Li, J.; Wang, L.; Duan, L. Energy Environ. Sci. 2016, 9, 3424. doi: 10.1039/c6ee01987k  doi: 10.1039/c6ee01987k

    35. [35]

      Yin, X.; Xu, Z.; Guo, Y.; Xu, P.; He, M. ACS Appl. Mater. Interface 2016, 8, 29580. doi: 10.1021/acsami.6b09326  doi: 10.1021/acsami.6b09326

    36. [36]

      Yin, X.; Guo, Y.; Xue, Z.; Xu, P.; He, M.; Liu, B. Nano Res. 2015, 8, 1997. doi: 10.1007/s12274-015-0711-4  doi: 10.1007/s12274-015-0711-4

    37. [37]

      Dong, F.; Guo, Y.; Xu, P.; Yin, X.; Li, Y.; He, M. Sci. China Mater. 2017, 60, 295. doi: 10.1007/s40843-017-9009-8  doi: 10.1007/s40843-017-9009-8

    38. [38]

      Liu, D.; Kelly, T. L. Nat. Photon. 2014, 8, 133. doi: 10.1038/nphoton.2013.342  doi: 10.1038/nphoton.2013.342

    39. [39]

      Chen, W.; Wu, Y.; Liu, J.; Qin, C.; Yang, X.; Islam, A.; Cheng, Y. B.; Han, L. Energy Environ. Sci. 2015, 8, 629. doi: 10.1039/c4ee02833c  doi: 10.1039/c4ee02833c

    40. [40]

      Hu, L.; Peng, J.; Wang, W.; Xia, Z.; Yuan, J.; Lu, J.; Huang, X.; Ma, W.; Song, H.; Chen, W.; Cheng, Y. B.; Tang, J. ACS Photonics 2014, 1, 547. doi: 10.1021/ph5000067  doi: 10.1021/ph5000067

    41. [41]

      Sun, Q.; Wang, H.; Yang, C.; Li, Y. J. Mater. Chem. 2003, 13, 800. doi: 10.1039/B209469J  doi: 10.1039/B209469J

    42. [42]

      Sun, C.; Wu, Z.; Yip, H. L.; Zhang, H.; Jiang, X. F.; Xue, Q.; Hu, Z.; Hu, Z.; Shen, Y.; Wang, M.; Huang, F.; Cao, Y. Adv. Energy Mater. 2016, 6, 1501534. doi: 10.1002/aenm.201501534  doi: 10.1002/aenm.201501534

    43. [43]

      Kim, H. S.; Seo, J. Y.; Park, N. G. J. Phys. Chem. C 2016, 120, 27840. doi: 10.1021/acs.jpcc.6b09412  doi: 10.1021/acs.jpcc.6b09412

  • 加载中
    1. [1]

      Haowen ShangYujie YangBingjie XueYikai WangZhiyi SuWenlong LiuYouzhi WuXinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511

    2. [2]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    3. [3]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    4. [4]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    5. [5]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    6. [6]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    7. [7]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    8. [8]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    9. [9]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    10. [10]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    11. [11]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    12. [12]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    13. [13]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    14. [14]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    15. [15]

      Yinglan YuSajid HussainJianping QiLei LuoXuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673

    16. [16]

      Zuyou SongYong JiangQiao GouYini MaoYimin JiangWei ShenMing LiRongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793

    17. [17]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    18. [18]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    19. [19]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    20. [20]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

Metrics
  • PDF Downloads(21)
  • Abstract views(724)
  • HTML views(164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return