Citation: CHEN Bihua, ELAGEED Elnazeer H. M., ZHANG Yongya, GAO Guohua. BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones[J]. Acta Physico-Chimica Sinica, ;2018, 34(8): 952-958. doi: 10.3866/PKU.WHXB201803081 shu

BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones

  • Corresponding author: GAO Guohua, ghgao@chem.ecnu.edu.cn
  • Authors contributed equally to this work
  • Received Date: 29 January 2018
    Revised Date: 5 March 2018
    Accepted Date: 5 March 2018
    Available Online: 8 August 2018

    Fund Project: National Natural Science Foundation of China 21773068National Natural Science Foundation of China 21573072The project was supported by the National Key Research and Development Program of China (2017YFA0403102), National Natural Science Foundation of China (21773068, 21573072), and Shanghai Leading Academic Discipline Project, China (B409)The project was supported by the National Key Research and Development Program of China 2017YFA0403102Shanghai Leading Academic Discipline Project, China B409

  • Thiazolidine-2-thiones have attracted much attention because of their unique bioactivity and have been widely used in the fields of medicine and synthetic heterocyclic chemistry. In this work, a simple and convenient route for the synthesis of 3-arylthiazolidine-2-thiones by direct condensation of 2-(arylamino) alcohols with carbon disulfide (CS2) catalyzed by the ionic liquid 1-butyl-2, 3-dimethylimidazolium acetate (BmmimOAc) has been developed. A series of ionic liquids were used as catalysts in the model reaction of 2-(phenylamino) ethanol with CS2. The results showed that only the acetate ionic liquids have catalytic activity, perhaps owing to the basicity of the acetate anion. Among these acetate ionic liquids, BmmimOAc showed the highest catalytic activity and was selected as the best catalyst. The effects of reaction time, reaction temperature, amount of BmmimOAc, and CS2 to 2-(phenylamino) ethanol molar ratio were investigated in detail. The following were found to be the optimal reaction conditions for direct condensation of 2-(phenylamino) ethanol with CS2: reaction time, 6 h; reaction temperature, 130 ℃; 10% molar fraction of BmmimOAc; and CS2 to 2-(phenylamino) ethanol molar ratio of 5 : 1. Under these optimized reaction conditions, the product 3-phenylthiazolidine-2-thione was obtained in 97% yield. The reaction scope was explored by investigating the reactions of various 2-(arylamino) alcohols with CS2. The results showed that the 2-(arylamino) alcohols with electron-donating substituents, electron-withdrawing substituents, or high steric hindrance could be smoothly converted to the corresponding products in excellent isolated yields of 83%–95%. NMR characterizations and mass spectrum indicated that the acetate anion of BmmimOAc could react spontaneously with CS2 to form the thioacetate anion (CH3COS). Ionic liquid 1-butyl-2, 3-dimethylimidazolium thioacetate (BmmimCOS) might be the actual catalyst in the reaction of 2-(arylamino) alcohols with CS2. 1H and 13C NMR spectroscopies were used to study the interactions between BmmimCOS and substrates 2-(phenylamino) ethanol and CS2. The NMR spectra showed the hydrogen bonding interactions between BmmimCOS and 2-(phenylamino) ethanol. The CH3COS anion of BmmimCOS could activate the 2-(phenylamino) ethanol in the catalytic system. Based on the characterization results, a possible reaction mechanism was proposed. Firstly, BmmimOAc reacted spontaneously with CS2 to form BmmimCOS. Then, CH3COS of BmmimCOS activated 2-(phenylamino) ethanol via hydrogen bonding. Subsequently, CS2 reacted with the activated 2-(phenylamino) ethanol to form the intermediate. Finally, the intermediate was subjected to intramolecular cyclization to form the final product 3-phenylthiazolidine-2-thione.
  • 加载中
    1. [1]

      Prabhakar Y. S., Solomon V. R., Gupta M. K., Katti S. B.. QSAR Studies on Thiazolidines: A Biologically Privileged Scaffold[J]. In QSAR and Molecular Modeling Studies in Heterocyclic Drugs Ⅱ; Gupta S. P...Ed.; Springer: Berlin, Germany, 2006:pp. 161-249.

    2. [2]

      Chen, N.; Du, H.; Liu, W.; Wang, S.; Li, X.; Xu, J. Phosphorus Sulfur Silicon 2015, 190, 112. doi: 10.1080/10426507.2014.931399  doi: 10.1080/10426507.2014.931399

    3. [3]

      Almeida, A. M.; Oliveira, B. A.; Castro, P. P.; Mendon a, C. C.; Furtado, R. A.; Diniz, H. N.; Silva, V. L.; Diniz, C. G.; Tavares, D. C.; Silva, H.; et al. Biometals 2017, 30, 841. doi: 10.1007/s10534-017-0046-6  doi: 10.1007/s10534-017-0046-6

    4. [4]

      Li, R.; Ning, X.; Zhou, S.; Lin, Z.; Wu, X.; Chen, H.; Bai, X.; Wang, X.; Ge, Z.; Li, R.; et al. Eur. J. Med. Chem. 2018, 143, 48. doi: 10.1016/j.ejmech.2017.11.023  doi: 10.1016/j.ejmech.2017.11.023

    5. [5]

      Corrêa, R. S.; Silva, M. M.; Graminha, A. E.; Meira, C. S.; Santos, J. A. F.; Moreira, D. R. M.; Soares, M. B. P.; Poelhsitz, G. V.; Castellano, E. E.; Bloch, C.; et al. J. Inorg. Biochem. 2016, 156, 153. doi: 10.1016/j.jinorgbio.2015.12.024  doi: 10.1016/j.jinorgbio.2015.12.024

    6. [6]

      Makiabadi, B. J. Sulfur Chem. 2015, 36, 494. doi: 10.1080/17415993.2015.1062097  doi: 10.1080/17415993.2015.1062097

    7. [7]

      Hirata, T.; Kogiso, H.; Morimoto, K.; Miyamoto, S.; Taue, H.; Sano, S.; Muguruma, N.; Ito, S.; Nagao, Y. Bioorg. Med. Chem. 1998, 6, 2179. doi: 10.1016/S0968-0896(98)00156-4  doi: 10.1016/S0968-0896(98)00156-4

    8. [8]

      Yamada, S. Tetrahedron Lett. 1992, 33, 2171. doi: 10.1016/0040-4039(92)88169-6  doi: 10.1016/0040-4039(92)88169-6

    9. [9]

      Nagao, Y.; Hagiwara, Y.; Kumagai, T.; Ochiai, M.; Inoue, T.; Hashimoto, K.; Fujita, E. J. Org. Chem. 1986, 51, 2391. doi: 10.1021/jo00362a047  doi: 10.1021/jo00362a047

    10. [10]

      Lobana, T. S.; Rani, A.; Butt, Y. N.; Jasinski, J. P. J. Sulfur Chem. 2015, 36, 251. doi: 10.1080/17415993.2015.1023802  doi: 10.1080/17415993.2015.1023802

    11. [11]

      Fabretti, A. C.; Ferrari, M.; Franchini, G. C.; Preti, C.; Tassi, L.; Tosi, G. Transit. Met. Chem. 1982, 7, 279. doi: 10.1007/BF00618715  doi: 10.1007/BF00618715

    12. [12]

      Clapp, L. B.; Watjen, J. W. J. Am. Chem. Soc. 1953, 75, 1490. doi: 10.1021/ja01102a516  doi: 10.1021/ja01102a516

    13. [13]

      Sudo, A.; Morioka, Y.; Koizumi, E.; Sanda, F.; Endo, T. Tetrahedron Lett. 2003, 44, 7889. doi: 10.1016/j.tetlet.2003.09.011  doi: 10.1016/j.tetlet.2003.09.011

    14. [14]

      Ziyaei-Halimehjani, A.; Marjani, K.; Ashouri, A. Tetrahedron Lett. 2012, 53, 3490. doi: 10.1016/j.tetlet.2012.04.129  doi: 10.1016/j.tetlet.2012.04.129

    15. [15]

      Shi, M.; Shen, Y. Heteroatom Chem. 2001, 12, 610. doi: 10.1002/hc.1092  doi: 10.1002/hc.1092

    16. [16]

      Shen, Y.; Shi, M. Appl. Organometal. Chem. 2003, 17, 767. doi: 10.1002/aoc.497  doi: 10.1002/aoc.497

    17. [17]

      Taguchi, T.; Kiyoshima, Y.; Komori, O.; Mori, M. Tetrahedron Lett. 1969, 10, 3631. doi: 10.1016/S0040-4039(01)88473-2  doi: 10.1016/S0040-4039(01)88473-2

    18. [18]

      Delaunay, D; Toupet, L.; Corre, M. L. J. Org. Chem. 1995, 60, 6604. doi: 10.1021/jo00125a059  doi: 10.1021/jo00125a059

    19. [19]

      Chen, N.; Jia, W.; Xu, J. X. Eur. J. Org. Chem. 2009, 5841. doi: 10.1002/ejoc.200900759  doi: 10.1002/ejoc.200900759

    20. [20]

      Welton, T. Chem. Rev. 1999, 99, 2071. doi: 10.1021/cr980032t  doi: 10.1021/cr980032t

    21. [21]

      Hallett, J. P.; Welton, T. Chem. Rev. 2011, 111, 3508. doi: 10.1021/cr1003248  doi: 10.1021/cr1003248

    22. [22]

      Zhang, P.; Wu, T.; Han, B. Adv. Mater. 2014, 26, 6810. doi: 10.1002/adma.201305448  doi: 10.1002/adma.201305448

    23. [23]

      Zhang, Z.; Song, J.; Han, B. Chem. Rev. 2017, 117, 6834. doi: 10.1021/acs.chemrev.6b00457  doi: 10.1021/acs.chemrev.6b00457

    24. [24]

      MacFarlane, D. R.; Pringle, J. M.; Johansson, K. M.; Forsyth, S. A.; Forsyth, M. Chem. Commun. 2006, 1905. doi: 10.1039/B516961P  doi: 10.1039/B516961P

    25. [25]

      Zhang, L.; Fu, X.; Gao, G. ChemCatChem 2011, 3, 1359. doi: 10.1002/cctc.201100016  doi: 10.1002/cctc.201100016

    26. [26]

      Wang, B.; Elageed, E. H. M.; Zhang, D.; Yang, S.; Wu, S.; Zhang, G.; Gao, G. ChemCatChem 2014, 6, 278. doi: 10.1002/cctc.201300801  doi: 10.1002/cctc.201300801

    27. [27]

      Wang, B.; Yang, S.; Min, L.; Gu, Y.; Zhang, Y.; Wu, X.; Zhang, L.; Elageed, E. H. M.; Wu, S.; Gao, G. Adv. Synth. Catal. 2014, 356, 3125. doi: 10.1002/adsc.201400026  doi: 10.1002/adsc.201400026

    28. [28]

      Elageed, E. H. M.; Wang, B.; Zhang, Y.; Wu, S.; Gao, G. J. Mol. Catal. A: Chem. 2015, 408, 271. doi: 10.1016/j.molcata.2015.07.034  doi: 10.1016/j.molcata.2015.07.034

    29. [29]

      Zhang, L.; Yang, S.; Gao, G. Chin. J. Catal. 2011, 32, 1875. doi: 10.3724/SP.J.1088.2011.10757  doi: 10.3724/SP.J.1088.2011.10757

    30. [30]

      Elageed, E. H. M.; Chen, B.; Wang, B.; Zhang, Y.; Wu, S.; Liu, X.; Gao, G. Eur. J. Org. Chem. 2016, 3650. doi: 10.1002/ejoc.201600474  doi: 10.1002/ejoc.201600474

    31. [31]

      Zhang, Y.; Wang, B.; Elageed, E. H. M.; Qin, L.; Ni, B.; Liu, X.; Gao, G. ACS Macro. Lett. 2016, 5, 435. doi: 10.1021/acsmacrolett.6b00178  doi: 10.1021/acsmacrolett.6b00178

    32. [32]

      Zhang, Y.; Zhang, Y.; Chen, B.; Qin, L.; Gao, G. ChemistrySelect2017, 2, 9443. doi: 10.1002/slct.201702081  doi: 10.1002/slct.201702081

    33. [33]

      Caba o, M. I.; Besnard, M.; Chavez, F. V.; Pinaud, N.; Sebastiao, P. J.; Coutinho, J. A. P.; Mascetti, J.; Danten, Y. Chem. Commun. 2013, 49, 11083. doi: 10.1039/c3cc46038j  doi: 10.1039/c3cc46038j

    34. [34]

      Caba o, M. I.; Besnard, M.; Chavez, F. V.; Pinaud, N.; Sebastiao, P. J.; Coutinho, J. A. P.; Danten, Y. J. Chem. Phys. 2014, 140, 244307. doi: 10.1063/1.4884820  doi: 10.1063/1.4884820

    35. [35]

      Wang, B.; Qin, L.; Mu, T.; Xue, Z.; Gao, G. Chem. Rev. 2017, 117, 7113. doi: 10.1021/acs.chemrev.6b00594  doi: 10.1021/acs.chemrev.6b00594

    36. [36]

      Chen, X.; Song, H.; Chen, P.; Wang, F.; Qian, Y.; Li, X. Acta Chim. Sin. 2012, 70, 770.  doi: 10.6023/A1108223

    37. [37]

      Ortiz, A.; Sansinenea, E. J. Sulfur Chem. 2007, 28, 109. doi: 10.1080/17415990601139699  doi: 10.1080/17415990601139699

  • 加载中
    1. [1]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    2. [2]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    3. [3]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    4. [4]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    5. [5]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    6. [6]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    7. [7]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    8. [8]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    9. [9]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    10. [10]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    11. [11]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    12. [12]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    13. [13]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    14. [14]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    15. [15]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    16. [16]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    17. [17]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    18. [18]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    19. [19]

      Rui WangYuan TianXuefeng GaoLei Jiang . Design and fabrication of triangle-pattern superwettability hybrid surface with high-efficiency condensation heat transfer performance. Chinese Chemical Letters, 2025, 36(3): 110395-. doi: 10.1016/j.cclet.2024.110395

    20. [20]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

Metrics
  • PDF Downloads(5)
  • Abstract views(248)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return