Citation: LIU Hengchang, FENG Yujun. CO2-Induced Interaction between a Pentablock Nonionic Copolymer and an Anionic Fluorocarbon Surfactant[J]. Acta Physico-Chimica Sinica, ;2019, 35(4): 408-414. doi: 10.3866/PKU.WHXB201803051 shu

CO2-Induced Interaction between a Pentablock Nonionic Copolymer and an Anionic Fluorocarbon Surfactant

  • Corresponding author: FENG Yujun, yjfeng@scu.edu.cn
  • Received Date: 3 February 2018
    Revised Date: 1 March 2018
    Accepted Date: 1 March 2018
    Available Online: 5 April 2018

    Fund Project: the National Natural Science Foundation of China 21773161The project was supported by the National Natural Science Foundation of China (21773161) and the Key Program of United Foundation (Class A) of Petrochemical Industry and NSFC (U176220036)the Key Program of United Foundation (Class A) of Petrochemical Industry and NSFC U176220036

  • A polymer-surfactant complex is significant in understanding the interactions between amphiphilic molecules and has great potential for use in a vast number of industries. In addition, the stimuli-responsive polymer-surfactant complex represents a hot research topic for the colloid community. However, the use of CO2 gas to tune their interaction and the corresponding morphological change in the polymer-surfactant complex has been less documented. In this work, the commercially available triblock copolymer Pluronic F127 was used as a starting material and the macromolecular initiator Br-F127-Br was synthesized via esterification. Then, the pentablock copolymer poly(2-(diethylamino)ethyl methacrylate))-block-F127-block-poly(2-(diethylamino)ethyl methacrylate)) (PDEAEAM-b-F127-b-PDEAEMA) was prepared via atom transfer radical polymerization (ATRP) of Br-F127-Br and the monomer 2-(diethylamino)ethyl methacrylate. Both Br-F127-Br and PDEAEAM-b-F127-b-PDEAEMA were characterized by FT-IR and 1H NMR spectroscopies as well as gel permeation chromatography (GPC). The results indicated that both Br-F127-Br and PDEAEAM-b-F127-b-PDEAEMA were synthesized successfully. The CO2-responsive behavior of the pentablock copolymer was examined by tracking the changes in pH and electrical conductivity of the polymer solution after alternatingly bubbling CO2 and N2. It was found that cyclic streaming of CO2/N2 could alter the pH of the polymer solution between 7.2 and 5.3, leading to the protonation degree of PDEAEAM-b-F127-b-PDEAEMA varying between 0.26 and 0.96; this in turn varied the electrical conductivity of the polymer solution between 19.4 μS∙cm−1 and 70.6 μS∙cm−1. The reversible changes in pH and electrical conductivity of the polymer solution indicate the good CO2-stimuli responsiveness of PDEAEAM-b-F127-b-PDEAEMA. The interaction of PDEAEAM-b-F127-b-PDEAEMA with an anionic fluorocarbon surfactant potassium nonafluoro-1-butanesulfonate (C4F9SO3K) with and without CO2 was studied by ultraviolet-visible absorption spectrometry (UV-Vis), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The transmittance of the mixed solution of PDEAEAM-b-F127-b-PDEAEMA and C4F9SO3K could be varied between 84% and 52% in the absence and presence of CO2, indicating the formation of aggregates with different sizes. The DLS results showed that the size of aggregates could be modified reversibly between tens of nanometers and several micrometers by bubbling CO2 and replacing CO2 by N2. The TEM image revealed the reversible morphological transition of the aggregates from spherical to wormlike micelles after bubbling CO2. The carbonic acid formed from CO2 and water can protonate the PDEAEMA in the pentablock copolymer to form PDEAEMA·H+, and thus the interaction between the pentablock copolymer and C4F9SO3K becomes strong. When CO2 is replaced by N2, PDEAEMA·H+ reverts to PDEAEMA, and the interaction becomes weak once again. It can therefore be concluded that the protonation/deprotonation process of the pentablock copolymer can be controlled by bubbling CO2/N2. The protonation/deprotonation process can "switch" the electrostatic attraction of PDEAEAM-b-F127-b-PDEAEMA to C4F9SO3K, thereby tuning the hydrophilic-lipophilic balance (HLB) of the polymer-surfactant complex reversibly, leading to the reversible morphological transition of the aggregates. The strategy of CO2-controllable morphological alteration of a polymer–surfactant complex opens a new avenue for preparing gas-sensitive soft materials.
  • 加载中
    1. [1]

      Goddard, E. D.; Hannan, R. B. J. Am. Oil Chem. Soc. 1977, 54, 561. doi: 10.1007/bf03027636  doi: 10.1007/bf03027636

    2. [2]

      Goddard, E. D. Colloids Surf. 1986, 19, 255. doi: 10.1016/0166-6622(86)80340-7  doi: 10.1016/0166-6622(86)80340-7

    3. [3]

      Goddard, E. D. Colloids Surf. 1986, 19, 301. doi: 10.1016/0166-6622(86)80341-9  doi: 10.1016/0166-6622(86)80341-9

    4. [4]

      Chen, H.; Li, E. X.; Ye, Z. B.; Han, L. J.; Luo, P. Y. Acta Phys. -Chim. Sin. 2011, 27 (3), 671.  doi: 10.3866/PKU.WHXB20110306

    5. [5]

      Zhang, W. L. Interaction of Polymer with Surfactant. Master Dissertation, Henan Normal University, Xinxiang, 2008.

    6. [6]

      Chen, H.; Wu, X. Y.; Ye, Z. B.; Han, L. J.; Luo, P. Y. Acta Phys. -Chim. Sin. 2012, 28(6), 903.  doi: 10.3866/PKU.WHXB201202171

    7. [7]

      Theato, P.; Sumerlin, B. S.; O'Reilly, R. K.; Epps, T. H., Ⅲ. Chem. Soc. Rev. 2013, 42, 7055. doi: 10.1039/c3cs90057f  doi: 10.1039/c3cs90057f

    8. [8]

      Liu, H. B.; Lin, S. J.; Feng, Y. J.; Theato, P. Polym. Chem. 2017, 8, 12. doi: 10.1039/c6py01101b  doi: 10.1039/c6py01101b

    9. [9]

      Jessop, P. G.; Mercer, S. M.; Heldebrant, D. J. Energy Environ. Sci. 2012, 5, 7240. doi: 10.1039/c2ee02912j  doi: 10.1039/c2ee02912j

    10. [10]

      Darabi, A.; Jessop, P. G.; Cunningham, M. F. Chem. Soc. Rev. 2016, 45, 4391. doi: 10.1039/c5cs00873e  doi: 10.1039/c5cs00873e

    11. [11]

      Sha, K.; Li, D. S.; Li, Y. P.; Zhang, B.; Wang, J. Y. Macromolecules2008, 41, 361. doi: 10.1021/ma0707234  doi: 10.1021/ma0707234

    12. [12]

      Xiong, X. Y.; Tam, K. C.; Gan, L. H. Macromolecules 2003, 36, 9979. doi: 10.1021/ma035292d  doi: 10.1021/ma035292d

    13. [13]

      Xiong, X. Y.; Tam, K. C.; Gan, L. H. Macromolecules 2004, 37, 3425. doi: 10.1021/ma049662p  doi: 10.1021/ma049662p

    14. [14]

      Agarwal, A.; Unfer, R.; Mallapragada, S. K. J. Controlled Release 2005, 103, 245. doi: 10.1016/j.jconrel.2004.11.022  doi: 10.1016/j.jconrel.2004.11.022

    15. [15]

      Determan, M. D.; Cox, J. P.; Seifert, S.; Thiyagarajan, P.; Mallapragada, S. K. Polymer 2005, 46, 6933. doi: 10.1016/j.polymer.2005.05.138  doi: 10.1016/j.polymer.2005.05.138

    16. [16]

      Xiong, X. Y.; Tam, K. C.; Gan, L. H. J. Appl. Polym. Sci. 2006, 100, 4163. doi: 10.1002/app.23470  doi: 10.1002/app.23470

    17. [17]

      He, J. L.; Ni, P. H.; Liu, C. C. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 3029. doi: 10.1002/pola.22641  doi: 10.1002/pola.22641

    18. [18]

      Abe, M. Curr. Opin. Colloid Interface Sci. 1999, 4, 354. doi: 10.1016/s1359-0294(99)90017-1  doi: 10.1016/s1359-0294(99)90017-1

    19. [19]

      Esumi, K.; Takehana, K.; Nojima, T.; Meguro, K. Colloids Surf. 1992, 64, 15. doi: 10.1016/0166-6622(92)80157-w  doi: 10.1016/0166-6622(92)80157-w

    20. [20]

      Zhou, F.; Xie, M. X.; Chen, D. Y. Macromolecules 2014, 47, 365. doi: 10.1021/ma401589z  doi: 10.1021/ma401589z

    21. [21]

      Gröschel, A. H.; Walther, A.; Löbling, T. I.; Schmelz, J.; Hanisch, A.; Schmalz, H.; Müller, A. H. E. J. Am. Chem. Soc. 2012, 134, 13850. doi: 10.1021/ja305903u  doi: 10.1021/ja305903u

    22. [22]

      Wei, H. B.; Zhang, J. L.; Shi, N.; Liu, Y.; Zhang, B.; Zhang, J.; Wan, X. H. Chem. Sci. 2015, 6, 7201. doi: 10.1039/c5sc02020d  doi: 10.1039/c5sc02020d

    23. [23]

      Thavanesan, T.; Herbert, C.; Plamper, F. A. Langmuir 2014, 30, 5609. doi: 10.1021/la5007583  doi: 10.1021/la5007583

    24. [24]

      Liu, H. B.; Guo, Z. R.; He, S.; Yin, H. Y.; Fei, C. H.; Feng, Y. J. Polym. Chem. 2014, 5, 4756. doi: 10.1039/c4py00258j  doi: 10.1039/c4py00258j

    25. [25]

      Wang, W.; Liu, H. B.; Mu, M.; Yin, H. Y.; Feng, Y. J. Polym. Chem. 2015, 6, 2900. doi: 10.1039/c5py00053j  doi: 10.1039/c5py00053j

    26. [26]

      Li, S.; He, J. L.; Zhang, M. Z.; Wang, H. R.; Ni, P. H. Polym. Chem. 2016, 7, 1773. doi: 10.1039/c5py02017d  doi: 10.1039/c5py02017d

    27. [27]

      MacKnight, W. J.; Ponomarenko, E. A.; Tirrell, D. A. Acc. Chem. Res. 1998, 31, 781. doi: 10.1021/ar960309g  doi: 10.1021/ar960309g

    28. [28]

      Discher, D. E.; Ahmed, F. Annu. Rev. Biomed. Eng. 2006, 8, 323. doi: 10.1146/annurev.bioeng.8.061505.095838  doi: 10.1146/annurev.bioeng.8.061505.095838

    29. [29]

      Zhang, L.; Qian, J. S.; Miao, J. B.; Xia, R.; Chen, P.; Cheng, G. J. Mater. Rev. 2015, 29(12), 79.  doi: 10.11896/j.issn.1005-023X.2015.12.018

    30. [30]

      Ravey, J. C.; Stébé, M. J. Colloids Surf. A 1994, 84, 11. doi: 10.1016/0927-7757(93)02731-s  doi: 10.1016/0927-7757(93)02731-s

    31. [31]

      Li, L. Y.; Raghupathi, K.; Song, C. F.; Prasad, P.; Thayumanavan, S. Chem. Commun. 2014, 50, 13417. doi: 10.1039/c4cc03688c  doi: 10.1039/c4cc03688c

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    6. [6]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    15. [15]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    16. [16]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    17. [17]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    18. [18]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    19. [19]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    20. [20]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

Metrics
  • PDF Downloads(9)
  • Abstract views(583)
  • HTML views(120)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return