Citation: ZHANG Fan, REN Zhe, ZHONG Shenghui, YAO Mingfa, PENG Zhijun. Role of Low-Temperature Fuel Chemistry on Turbulent Flame Propagation[J]. Acta Physico-Chimica Sinica, ;2019, 35(2): 158-166. doi: 10.3866/PKU.WHXB201802272 shu

Role of Low-Temperature Fuel Chemistry on Turbulent Flame Propagation

  • Corresponding author: PENG Zhijun, pengzj@tju.edu.cn
  • Received Date: 21 December 2017
    Revised Date: 1 February 2018
    Accepted Date: 22 February 2018
    Available Online: 27 February 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (51506146, 91541205)the National Natural Science Foundation of China 91541205the National Natural Science Foundation of China 51506146

  • In modern advanced internal combustion engines such as homogeneous compression ignition engine (HCCI) and reactivity controlled compression ignition engine (RCCI), turbulence/chemistry interactions have a dramatic influence on the combustion efficiency. In particular, the low-temperature fuel chemistry and two-stage ignition of large hydrocarbon fuels can significantly affect the turbulent flame regimes and propagation. The turbulent flame propagation and flame structure of a turbulent premixed n-heptane/air flame is simulated in a slot, i.e., reactor-assisted turbulent slot (RATS) burner. In the center, a premixed n-heptane/air gas mixture flows out from the burner, exiting into the surrounding atmosphere. In order to maintain a high Reynolds number for the flame, a pilot flame consisting of stoichiometric methane/air is applied. The GRI3.0 mechanism for methane/air mixture is adopted. A three-dimensional (3D) numerical simulation model is established based on OpenFOAM reactingFoam solver. A reduced kinetic mechanism of n-heptane consisting of 44 species and 112 reactions is employed, which is validated against the detailed mechanism with regard to the ignition delay time over a wide range of the initial temperature, equivalence ratio, and pressure. Then, the effects of the reactant temperature (ranging from 450 to 700 K), inlet velocity (6 m·s−1 and 10 m·s−1), and pre-flame flow residence time (100 ms and 60 ms) on the turbulent flame combustion of the n-heptane/air mixture with an equivalent ratio of 0.6, are investigated by performing 3D simulations. Twelve cases are considered and analyzed based on the flow residence time and ignition delay time. The 2D span-wise temperature contour is used to show that when the ignition Da number and fuel reactivity increase, the flame temperature increases and the flame height decreases, indicating a stronger turbulent burning velocity (ST). The results coincide well with experiment results and indicate that the extent of fuel oxidation is affected by the reactant temperature and inlet velocity during the low-temperature ignition stage, since the ratio between the ignition delay time and flow residence time plays an important role. Moreover, a quantitative analysis is performed on the flame front. The intermediate species CH is used to mark the thin reaction zone, and the turbulent burning velocity is obtained. Two branches of turbulent burning velocities verified the upper and lower limits and are consistent with the fitting correlation of ST/SL from a previous semi-implicit expression by Won et al. (2014), in which SL is laminar burning velocity. In the upper limit, the fuel decomposes and produces a large amount of intermediate species like CH2O in the pre-heat zone, which subsequently increases the turbulent burning velocity. While in the lower limit in which the flow residence time is shorter than the first ignition delay time, it shows a smaller turbulent burning velocity and a thin reaction zone, which is in chemically-frozen-flow regime. A transitional regime between the low- to high-temperature ignition regimes is also identified, where the ignition delay time is comparable with the heated flow residence time before the flame was produced. With an increase in the reactant temperature, the turbulent flame gradually changes from the chemically frozen flow regime to the low-temperature ignition regime. When the temperature is higher than a certain value, the low-temperature ignition will not happen again and the flame will be classified as being in the high-temperature ignition regime.
  • 加载中
    1. [1]

      Bell, J. B.; Cheng, R. K.; Day, M. S.; Shepherd I. G. Proc. Combust. Inst. 2007, 31(1), 1309. doi: 10.1016/j.proci.2006.07.216  doi: 10.1016/j.proci.2006.07.216

    2. [2]

      Bisetti, F.; Chen, J. Y.; Chen, J. H.; Hawkes E. R. Proc. Combust. Inst. 2009, 32(1), 1465. doi: 10.1016/j.proci.2008.09.001  doi: 10.1016/j.proci.2008.09.001

    3. [3]

      Soika, A.; Dinkelacker, F.; Leipertz, A. Combust. Flame 2003, 132(3), 451. doi: 10.1016/S0010-2180(02)00490-X  doi: 10.1016/S0010-2180(02)00490-X

    4. [4]

      Wang, J. H.; Wei, Z. L.; Zhang, M.; Huang, Z. H. Sci. China Technol. Sci. 2014, 57: 445. doi: 10.1007/s11431-014-5471-y  doi: 10.1007/s11431-014-5471-y

    5. [5]

      Ju, Y. Adv. Mech. 2014, 44, 201402.  doi: 10.6052/1000-0992-14-011

    6. [6]

      Dryer, F. L. Proc. Combust. Inst. 2015, 35(1), 117. doi: 10.1016/j.proci.2014.09.008  doi: 10.1016/j.proci.2014.09.008

    7. [7]

      Li, B. Studies of Flame Propagation and Extinction Characteristics of Heavy Hydrocarbon Fuels[D]. Beijing: Tsinghua University, 2014.

    8. [8]

      Zhang, M.; Wang, J. H.; Jin, W.; Huang, Z. H.; Kobayashi, H.; Ma, L. Combust. Flame 2015, 162, 2087. doi: 10.1016/j.combustflame.2015.01.007  doi: 10.1016/j.combustflame.2015.01.007

    9. [9]

      Sun, W.; Chen, Z.; Gou, X.; Ju, Y. G. Combust. Flame 2010, 157(7), 1298. doi: 10.1016/j.combustflame.2010.03.006  doi: 10.1016/j.combustflame.2010.03.006

    10. [10]

      Guo, J. J.; Li, S. H.; Tan, N. X.; Li, X.Y. J. Eng. Thermophys. 2014, 11, 2298.

    11. [11]

      Dooley, S.; Won, S. H.; Chaos, M.; Heyne, J.; Ju, Y. G.; Dryer, F. L.; Kumar, K.; Sung, C. J.; Wang, H. W.; Oehlschlaeger, M. A.; et al. Combust. Flame 2010, 157(12), 2333. doi: 10.1016/j.combustflame.2010.07.001  doi: 10.1016/j.combustflame.2010.07.001

    12. [12]

      Lawes, M.; Ormsby, M. P.; Sheppard, C. G. W.; Woolley, R. Combust. Flame 2012, 159 (5), 1949. doi: 10.1016/j.combustflame.2011.12.023  doi: 10.1016/j.combustflame.2011.12.023

    13. [13]

      Joannon, M. D.; Cavaliere, A.; Faravelli, T.; Ranzi, E.; Sabia, P.; Tregrossi, A. Prog. Energy Combust. Sci. 2004, 30(4), 329. doi: 10.1016/j.proci.2004.08.190  doi: 10.1016/j.proci.2004.08.190

    14. [14]

      Won, S. H.; Windom, B.; Jiang, B.; Ju, Y. G. Combust. Flame 2014, 161(2), 475. doi: 10.1016/j.combustflame.2013.08.027  doi: 10.1016/j.combustflame.2013.08.027

    15. [15]

      Windom, B.; Sang, H. W.; Reuter, C. B.; Jiang, B.; Ju, Y.G.; Hammack, S.; Ombrello, T.; Carter, C. Combust. Flame 2016, 169, 19. doi: 10.1016/j.combustflame.2016.02.031  doi: 10.1016/j.combustflame.2016.02.031

    16. [16]

      Gou, X.; Sun, W.; Chen, Z.; Ju, Y. Combust. Flame 2010, 157, 1111. doi: 10.1016/j.combustflame.2010.02.020  doi: 10.1016/j.combustflame.2010.02.020

    17. [17]

      Krisman, A.; Hawkes, E. R.; Talei, M.; Bhagatwala, A.; Chen, J. H. Proc. Combust. Inst. 2017, 36(3), 3567. doi: 10.1016/j.proci.2016.08.043  doi: 10.1016/j.proci.2016.08.043

    18. [18]

      Krisman, A.; Hawkes, E. R.; Talei, M.; Bhagatwala, A.; Chen, J. H. Combust. Flame 2016, 172, 326. doi: 10.1016/j.combustflame.2016.06.010  doi: 10.1016/j.combustflame.2016.06.010

    19. [19]

      Zhang, F.; Yu, R.; Bai, X. S. Proc. Combust. Inst. 2015, 35(3), 2975. doi: 10.1016/j.proci.2014.09.004  doi: 10.1016/j.proci.2014.09.004

    20. [20]

      Zhang, F.; Yao, M. Acta Phys. -Chim. Sin. 2016, 32 (8), 1941.  doi: 10.3866/PKU.WHXB201604223

    21. [21]

      Liu, S.; Hewson, J. C.; Chen, J. H.; Pitsch, H. Combust. Flame 2004, 137(3), 320. doi: 10.1016/j.combustflame.2004.01.011  doi: 10.1016/j.combustflame.2004.01.011

    22. [22]

      Curran, H. J.; Gaffuri, P.; Pitz, W. J.; Westbrook, C.K. Combust. Flame 1998, 114, 149. doi: 10.1016/S0010-2180(97)00282-4  doi: 10.1016/S0010-2180(97)00282-4

    23. [23]

      Tang, Q. L.; Geng, C.; Li, M. K.; Liu, H. F.; Yao, M. F. Acta Phys. -Chim. Sin. 2015, 31 (12), 2269.  doi: 10.3866/PKU.WHXB201510082

    24. [24]

      Xiao, J.; Zhang, B.; Zheng, Z. L. Acta Phys. -Chim. Sin. 2017, 33(9), 1752.  doi: 10.3866/PKU.WHXB201704273

    25. [25]

      Zhou, B.; Brackmann, C.; Li, Z. S.; Alden, M. Combust. Flame 2015, 162(7), 2937. doi: 10.1016/j.combustflame.2014.07.020  doi: 10.1016/j.combustflame.2014.07.020

  • 加载中
    1. [1]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    2. [2]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    3. [3]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    4. [4]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    5. [5]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    6. [6]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    7. [7]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    8. [8]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    13. [13]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    14. [14]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    15. [15]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Juan Yang . Construction of General Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 8-13. doi: 10.12461/PKU.DXHX202408026

    18. [18]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    19. [19]

      Yutao Lu Jing Wu . Rebirth from the Flames: Unveiling the “Chemical Secrets” of Fire Smoke. University Chemistry, 2024, 39(9): 208-213. doi: 10.12461/PKU.DXHX202401001

    20. [20]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

Metrics
  • PDF Downloads(10)
  • Abstract views(637)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return