Citation: LIU Yanfang, HU Bing, YIN Yazhi, LIU Guoliang, HONG Xinlin. One-Pot Surfactant-Free Synthesis of Transition Metal/ZnO Nanocomposites for Catalytic Hydrogenation of CO2 to Methanol[J]. Acta Physico-Chimica Sinica, ;2019, 35(2): 223-229. doi: 10.3866/PKU.WHXB201802263 shu

One-Pot Surfactant-Free Synthesis of Transition Metal/ZnO Nanocomposites for Catalytic Hydrogenation of CO2 to Methanol

  • Corresponding author: LIU Guoliang, liugl@whu.edu.cn HONG Xinlin, hongxl@whu.edu.cn
  • Received Date: 29 December 2017
    Revised Date: 2 February 2018
    Accepted Date: 6 February 2018
    Available Online: 26 February 2018

    Fund Project: the National Natural Science Foundation of China 21373153This work was financially supported by the National Natural Science Foundation of China (21373153)

  • Catalytic hydrogenation of CO2 to methanol is an important chemical process owing to its contribution in alleviating the impacts of the greenhouse effect and in realizing the requirement for renewable energy sources. Owing to their excellent synergic functionalities and unique optoelectronic as well as catalytic properties, transition metal/ZnO (M/ZnO) nanocomposites have been widely used as catalysts for this reaction in recent years. Development of size-controlled synthesis of metal/oxide complexes is highly desirable. Further, because it is extremely difficult to achieve the strong-metal-support-interaction (SMSI) effect when the M/ZnO nanocomposites are prepared via physical methods, the use of chemical methods is more favorable for the fabrication of multi-component catalysts. However, because of the requirement for an extra H2 reduction step to obtain the active metallic phase (M) and surfactants to control the size of nanoparticles, most M/ZnO nanocomposites undergo two- or multi-step synthesis, which is disadvantageous for the stable catalytic performance of the M/ZnO nanocomposites. In this work, we demonstrate facile one-pot synthesis of M/ZnO (M = Pd, Au, Ag, and Cu) nanocomposites in refluxed ethylene glycol as a solvent, without using any surfactants. During the synthesis process, Pd and ZnO species can stabilize each other from further aggregation by reducing their individual surface energies, thereby achieving size control of particles. Besides, NaHCO3 serves as a size-control tool for Pd nanoparticles by adjusting the alkaline conditions. Ethylene glycol serves as a mild reducing agent and solvent owing to its capacity to reduce Pd ions to generate Pd crystals. The nucleation and growth of Pd particles are achieved by thermal reduction, while the ZnO nanocrystals are formed by thermal decomposition of Zn(OAc)2. X-ray diffraction patterns of the M/ZnO and ZnO were analyzed to study the phase of the nanocomposites, and the results show that no impurity phase was detected. Transmission electron microscopy (TEM) was used to study the morphology and structural properties. In addition, X-ray photoelectron spectroscopy analysis was performed to further confirm the formation of M/ZnO hybrid materials, and the results confirm SMSI between Pd and ZnO. Inductively coupled plasma mass spectrometry was used to check the actual elemental compositions, and the results show that the detected atomic ratios of Pd/Zn were consistent with the values in the theoretical recipe. To investigate the effects of the Pd/Zn molar ratios and the added amount of NaHCO3 on Pd size, the average sizes of Pd particles were calculated, and the results were confirmed by TEM observation. The Cu/ZnO/Al2O3 composite is a widely known catalyst for hydrogenation of CO2 to methanol, and other M/ZnO composites are also catalytic for this reaction. Therefore, different M/ZnO hybrids were further studied as catalysts for hydrogenation of CO2 to methanol, among which Pd/ZnO (1 : 9) demonstrated the best performance (30% CO2 conversion, 69% methanol selectivity, and 421.9 gmethanol·(kg catalyst·h)-1 at 240 ℃ and 5 MPa. The outstanding catalytic performance may be explained by the following two factors: first, Pd is a good catalyst for the dissociation of H2 to give active H atoms, and second, SMSI between Pd and ZnO favors the formation of surface oxygen vacancies on ZnO. Moreover, most M/ZnO composites exhibit excellent performance in methanol selectivity, especially the Au/ZnO catalyst, which has the highest methanol selectivity (82%) despite having the lowest CO2 conversion. Hopefully, this work would provide a simple route for synthesis of M/ZnO nanocomposites with clean surfaces for catalysis.
  • 加载中
    1. [1]

      Lewis, S. A.; Wilburn, J. P.; Wellons, M. S.; Cliffel, D. E.; Lukehart, C. M. Phys. Status Solidi A 2015, 212, 2903. doi: 10.1002/pssa.201532256  doi: 10.1002/pssa.201532256

    2. [2]

      Chen, Y.; Yang, X. Y.; Zhang, P.; Liu, D. S.; Gui, J. Z.; Peng, H. L.; Liu, D. Acta Phys. -Chim. Sin. 2017, 33, 2082.  doi: 10.3866/PKU.WHXB201705176

    3. [3]

      Xu, B. Q.; Wei, J. M.; Yu, Y. T.; Li, Y.; Li, J. L.; Zhu, Q. M. J. Phys. Chem. B 2003, 107, 5203. doi: 10.1023/A:1021419929938  doi: 10.1023/A:1021419929938

    4. [4]

      Wang, Y. Acta Phys. -Chim. Sin. 2017, 33, 857.  doi: 10.3866/PKU.WHXB201703172

    5. [5]

      Rathi, A. K.; Gawande, M. B.; Ranc, V.; Pechousek, J.; Petr, M.; Cepe, K.; Varmab, R. S.; Zboril, R. Catal. Sci. Technol. 2016, 6, 152. doi: 10.1039/C5CY00956A  doi: 10.1039/C5CY00956A

    6. [6]

      Nadagouda, M. N.; Varma, R. S. Biomacromolecules 2007, 8, 2762. doi: 10.1021/bm700446p  doi: 10.1021/bm700446p

    7. [7]

      Zhang, J.; Yu, J. G.; Jaroniec, M.; Gong, J. R. Nano Lett. 2012, 12, 4584. doi: 10.1021/nl301831h  doi: 10.1021/nl301831h

    8. [8]

      Liu, T. X.; Li, B. X.; Hao, Y. G.; Han, F.; Zhang, L. L.; Hu, L. Y. Appl. Catal. B-Environ. 2015, 165, 378. doi: 10.1016/j.apcatb.2014.10.041  doi: 10.1016/j.apcatb.2014.10.041

    9. [9]

      Wang, D. H.; Kou, R.; Choi, D.; Yang, Z. G.; Nie, Z. M.; Li, J.; Saraf, L. V.; Hu, D. H.; Zhang, J. G.; Graff, G. L.; et al. ACS Nano 2010, 4, 1587. doi: 10.1021/nn901819n  doi: 10.1021/nn901819n

    10. [10]

      Polarz, S.; Neues, F.; van den Berg, M. W. E.; Grunert, W.; Khodeir, L. J. Am. Chem. Soc. 2005, 127, 12028. doi: 10.1021/ja0516514  doi: 10.1021/ja0516514

    11. [11]

      Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; H vecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B.; et al. Science 2012, 336, 893. doi: 10.1126/science.1219831  doi: 10.1126/science.1219831

    12. [12]

      Ma, J.; Sun, N.; Zhang, X.; Zhao, N.; Xiao, F.; Wei, W.; Sun, Y. Catal. Today 2009, 148, 221. doi: 10.1016/j.cattod.2009.08.015  doi: 10.1016/j.cattod.2009.08.015

    13. [13]

      Wang, G. Y.; Zhang, W. X.; Lian, H. L.; Jiang, D. Z.; Wu, T. H. Appl. Catal. A 2003, 239, 1. doi: 10.1016/S0926-860X(02)00098-4  doi: 10.1016/S0926-860X(02)00098-4

    14. [14]

      Da Costa-Serra, J. F.; Guil-López, R.; Chica, A. Int. J. Hydrogen Energy 2010, 35, 6709. doi: 10.1016/j.ijhydene.2010.04.013  doi: 10.1016/j.ijhydene.2010.04.013

    15. [15]

      Huang, L.; Kramer, G. J.; Wieldraaijer, W.; Brands, D. S.; Poels, E. K.; Castricum, H. L.; Bakker, H. Catal. Lett. 1997, 48, 55. doi: 10.1023/A:1019014701674  doi: 10.1023/A:1019014701674

    16. [16]

      Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706. doi: 10.1021/ja00072a025  doi: 10.1021/ja00072a025

    17. [17]

      Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989. doi: 10.1126/science.287.5460.1989  doi: 10.1126/science.287.5460.1989

    18. [18]

      Chen, S. F.; Li, J. P.; Qian, K.; Xu, W. P.; Lu, Y.; Huang, W. X.; Yu, S. H. Nano Res. 2010, 3, 244. doi: 10.1007/s12274-010-1027-z  doi: 10.1007/s12274-010-1027-z

    19. [19]

      Zhang, H. Y.; Xie, Y.; Sun, Z. Y.; Tao, R. T.; Huang, C. L.; Zhao, Y. F.; Liu, Z. M. Langmuir 2011, 27, 1152. doi: 10.1021/la1034728  doi: 10.1021/la1034728

    20. [20]

      Xie, Y.; Ding, K. L.; Liu, Z. M.; Tao, R. T.; Sun, Z. Y.; Zhang, H. Y.; An, G. M. J. Am. Chem. Soc. 2009, 131, 6648. doi: 10.1021/ja900447d  doi: 10.1021/ja900447d

    21. [21]

      Wang, Y.; Ren, J. W.; Deng, K.; Gui, L. L.; Tang, Y. Q. Chem. Mater. 2000, 12, 1622. doi: 10.1002/chin.200041202  doi: 10.1002/chin.200041202

    22. [22]

      Fu, X. Y.; Wang, Y.; Wu, N. Z.; Gui, L. L.; Tang, Y. Q. J. Mater. Chem. 2003, 13, 1192. doi: 10.1039/B211747A  doi: 10.1039/B211747A

    23. [23]

      Zhang, J. L.; Ji, H.; Wei, Y. G.; Wang, Y.; Wu, N. Z. J. Phys. Chem. C 2008, 112, 10688. doi: 10.1021/jp8003294  doi: 10.1021/jp8003294

    24. [24]

      Chen, X. M.; Wu, G. H.; Chen, J. M.; Chen, X.; Xie, Z. X.; Wang, X. R. J. Am. Chem. Soc. 2011, 133, 3693. doi: 10.1021/ja110313d  doi: 10.1021/ja110313d

    25. [25]

      Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. Nano Lett. 2002, 2, 165. doi: 10.1021/nl010093y  doi: 10.1021/nl010093y

    26. [26]

      Ranjbar, M., Taher, M.A.; Sam, A. J. Clust. Sci. 2014, 25, 1657. doi: 10.1007/s10876-014-0764-7  doi: 10.1007/s10876-014-0764-7

    27. [27]

      Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. J. Phys. Chem. B 2004, 108, 10955. doi: 10.1021/jp0379953  doi: 10.1021/jp0379953

    28. [28]

      Jing, L. Q.; Xu, Z. L.; Sun, X. J.; Shang, J.; Cai, W. M. Appl. Surf. Sci. 2001, 180, 308. doi: 10.1016/S0169-4332(01)00365-8  doi: 10.1016/S0169-4332(01)00365-8

    29. [29]

      Batista, J.; Pintar, A.; Mandrino, D.; Jenko, M.; Martin, V. Appl. Catal. A-Gen. 2001, 206, 113. doi: 10.1016/S0926-860X(00)00589-5  doi: 10.1016/S0926-860X(00)00589-5

    30. [30]

      Matthey, D.; Wang, J. G.; Wendt, S.; Matthiesen, J.; Schaub, R.; Laegsgaard, E.; Hammer, B.; Besenbacher, F. Science 2007, 315, 1692. doi: 10.1126/science.1135752  doi: 10.1126/science.1135752

    31. [31]

      Qiao, B. T.; Wang, A.Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/nchem.1095  doi: 10.1038/nchem.1095

    32. [32]

      Bock, C.; Paquet, C.; Couillard, M.; Botton, G. A.; MacDougall, B. R. J. Am. Chem. Soc. 2004, 126, 8028. doi: 10.1021/ja0495819  doi: 10.1021/ja0495819

    33. [33]

      Chinchen, G. C.; Denny, P. J.; Jennings, J. R.; Spencer, M. S.; Waugh, K. C. Appl. Catal. 1988, 36, 1. doi: 10.1016/S0166-9834(00)80103-7  doi: 10.1016/S0166-9834(00)80103-7

    34. [34]

      Liang, X. L.; Dong, X.; Lin, G. D.; Zhang, H. B. Appl. Catal. B- Environ. 2009, 88, 315. doi: 10.1016/j.apcatb.2008.11.018  doi: 10.1016/j.apcatb.2008.11.018

    35. [35]

      Prüsse, U.; Vorlop, K. D. J. Mol. Catal. A-Chem. 2001, 173, 313. doi: 10.1016/S1381-1169(01)00156-X  doi: 10.1016/S1381-1169(01)00156-X

    36. [36]

      Liao, F. L.; Huang, Y. Q.; Ge, J. W.; Zheng, W. R.; Tedsree, K.; Collier, P.; Hong, X. L.; Tsang, S. C. Angew. Chem. Int. Ed. 2011, 50, 2162. doi: 10.1002/anie.201007108  doi: 10.1002/anie.201007108

  • 加载中
    1. [1]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    2. [2]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    3. [3]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    4. [4]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    5. [5]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    6. [6]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    7. [7]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    8. [8]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    9. [9]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    10. [10]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    11. [11]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    12. [12]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    13. [13]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    14. [14]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    15. [15]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    16. [16]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    17. [17]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    18. [18]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

Metrics
  • PDF Downloads(17)
  • Abstract views(634)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return