Citation: LEE Jordan, LI Yong, TANG Jianing, CUI Xiaoli. Synthesis of Hydrogen Substituted Graphyne through Mechanochemistry and Its Electrocatalytic Properties[J]. Acta Physico-Chimica Sinica, ;2018, 34(9): 1080-1087. doi: 10.3866/PKU.WHXB201802262 shu

Synthesis of Hydrogen Substituted Graphyne through Mechanochemistry and Its Electrocatalytic Properties

  • Corresponding author: CUI Xiaoli, xiaolicui@fudan.edu.cn
  • Received Date: 3 February 2018
    Revised Date: 20 February 2018
    Accepted Date: 22 February 2018
    Available Online: 26 September 2018

    Fund Project: The project was supported by National Natural Science Foundation of China (21273047) and the Aerospace Science and Technology Innovation Fund of SAST, China (YF07050117F4051)the Aerospace Science and Technology Innovation Fund of SAST, China YF07050117F4051National Natural Science Foundation of China 21273047

  • Since the successful synthesis of graphdiyne, graphynes have emerged as an active field in carbon materials research.Hydrogen-substituted graphyne, structurally similar to graphynes, is a kind of two-dimensional (2D) carbon-rich material composed of sp2-hybridized carbon and hydrogen from phenyl groups and sp-hybridized carbon from ethynyl linkages.The large pore size in the molecular structure of hydrogen-substituted graphyne aids the diffusion of ions and molecules.In this work, hydrogen-substituted graphyne was synthesized by a facile mechanochemical route.Calcium carbide (CaC2) was employed as the precursor of sp-hybridized carbon and 1, 3, 5 tribromobenzene (PhBr3) as that of sp2-hybridized carbon and hydrogen.Hydrogen-substituted graphyne was directly obtained via the cross-coupling reaction performed by ball milling under vacuum and the impurities were removed by dilute nitric acid and benzene.Mechanochemistry is a mature technology for the simple and high-yield synthesis of nanostructured materials.The composition of the as-prepared hydrogen-substituted graphyne was confirmed by Raman and 1H solid-state nuclear magnetic spectroscopies.Energy-dispersive X-ray (EDX) spectrum and X-ray diffraction (XRD) patterns indicated that the purity and crystallinity of the prepared samples are high, which was further confirmed by the corresponding selected area electron diffraction (SAED) patterns.Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images illustrated that samples had nanosheet structure with a layer-to-layer distance of 0.35 nm.However, owing to the lack of a substrate, the nanosheets reunite to form irregular microparticles, as shown in the scanning electron microscopy (SEM) images.Twin structure was found in the as-prepared samples, which might be relevant to the mechanochemical process.The samples were used to prepare electrodes for the photoelectrochemical and electrochemical catalytic analysis.The open circuit potential under chopped irradiation of the electrode showed that the as-prepared hydrogen-substituted graphyne was a p-type semiconductor.The band gap was calculated to be 2.30 eV by UV-Vis diffused reflectance (UV-Vis DRS) spectroscopy.The electrocatalytic properties of the sample were determined using a three-electrode cell in a neutral solution (Na2SO4, 0.5 mol·L−1).The onset overpotential for hydrogen evolution was −0.17 V; however, the Tafel slope was too large (1088.4 mV·dec−1), which restricted application in electrocatalytic hydrogen evolution.On the other hand, the overpotential for oxygen evolution reaction was only 0.04 V and the Tafel slope was 70.0 mV·dec−1, making applications in electrocatalytic oxygen evolution and photocatalysis possible.This strategy opens a new avenue for preparing graphyne with good electrochemical properties using readily available precursors under mild conditions.
  • 加载中
    1. [1]

      Baughman, R. H.; Eckhardt, H.; Kertesz, M. J. Chem. Phys. 1987, 87, 6687. doi:10.1063/1.453405  doi: 10.1063/1.453405

    2. [2]

      Malko, D.; Neiss, C.; Vies, F.; Grling, A. Phys. Rev. Lett. 2012, 108, 086804. doi:10.1103/PhysRevLett.108.086804  doi: 10.1103/PhysRevLett.108.086804

    3. [3]

      Jia, Z. Y.; Li, Y. J.; Zuo, Z. C.; Liu, H. B. Huang, C. S. Li, Y. L. Acc. Chem. Res. 2017, 50, 2470. doi:10.1021/acs.accounts.7b00205  doi: 10.1021/acs.accounts.7b00205

    4. [4]

      Li, Y. J.; Xu, L. Liu, H. B. Li, Y. L. Chem. Soc. Rev. 2014, 43, 2572. doi:10.1039/c3cs60388a  doi: 10.1039/c3cs60388a

    5. [5]

      Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J. Zhu, D. B. Chem. Commun. 2010, 46, 3256. doi:10.1039/b922733d  doi: 10.1039/b922733d

    6. [6]

      Li, Y. J.; Li, Y. L. Acta Polym. Sin. 2015, No. 2, 147.  doi: 10.11777/j.issn1000-3304.2015.14409

    7. [7]

      Huang, C. S.; Li, Y. L. Acta Phys. -Chim. Sin. 2016, 32, 1314.  doi: 10.3866/PKU.WHXB201605035

    8. [8]

      Chen, Y. H.; Liu, H. B.; Li, Y. L. Chin. Sci. Bull. 2016, 61, 290.  doi: 10.1360/N972016-00483

    9. [9]

      Zhou, J. Y.; Gao, X.; Liu, R.; Xie, Z. Q.; Yang, J.; Zhang, S. Q.; Zhang, G. M.; Liu, H. B. Li, Y. L.; Zhang, J.; et al. J. Am. Chem. Soc. 2015, 137, 7596. doi:10.1021/jacs.5b04057  doi: 10.1021/jacs.5b04057

    10. [10]

      Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. J. Am. Chem. Soc. 2017, 139, 3145. doi:10.1021/jacs.6b12776  doi: 10.1021/jacs.6b12776

    11. [11]

      Li, G. X.; Li, Y. L.; Qian, X. M.; Liu, H. B.; Lin, H. W.; Chen, N.; Li, Y. J. J. Phys. Chem. C 2011, 115, 2611. doi:10.1021/jp107996f  doi: 10.1021/jp107996f

    12. [12]

      Thangavel, S.; Krishnamoorthy, K.; Krishnaswamy, V.; Raju, N.; Kim, S. J.; Venugopal, G. J. Phys. Chem. C 2015, 119, 22057. doi:10.1021/acs.jpcc.5b06138  doi: 10.1021/acs.jpcc.5b06138

    13. [13]

      Zuo, Z. C.; Shang, H.; Chen, Y. H.; Li, J. F.; Liu, H. B.; Li, Y. J.; Li, Y. L. Chem. Commun. 2017, 53, 8074. doi:10.1039/c7cc03200e  doi: 10.1039/c7cc03200e

    14. [14]

      Zhang, S. L.; He, J. J.; Zheng, J.; Huang, C. S.; Lv, Q.; Wang, K.; Wang, N.; Lan, Z. G. J. Mater. Chem. A 2017, 5, 2045. doi:10.1039/C6TA09822C  doi: 10.1039/C6TA09822C

    15. [15]

      Lv, Y. L.; Yang, L.; Cao, D. P. ACS Appl. Mater. Inter. 2017, 9, 32859. doi:10.1021/acsami.7b11371  doi: 10.1021/acsami.7b11371

    16. [16]

      Krishnamoorthy, K.; Thangavel, S.; Veetil, J. C.; Raju, N.; Venugopal, G.; Kim, S. J. Int. J. Hydrogen Energy 2016, 41, 1672. doi:10.1016/j.ijhydene.2015.10.118  doi: 10.1016/j.ijhydene.2015.10.118

    17. [17]

      Li, J.; Gao, X.; Jiang, X.; Li, X. B.; Liu, Z. F.; Zhang, J.; Tung, C. H.; Wu, L. Z. ACS Catal. 2017, 7, 5209. doi:10.1021/acscatal.7b01781  doi: 10.1021/acscatal.7b01781

    18. [18]

      Gao, X.; Li, J.; Du, R. Zhou, J. Y.; Huang, M. Y.; Liu, R.; Li, J.; Xie, Z. Q.; Wu, L. Z.; Liu, Z. F.; et al. Adv. Mater. 2017, 29, 1605308. doi:10.1002/adma.201605308  doi: 10.1002/adma.201605308

    19. [19]

      Zhu, S. E.; Li, F. Wang, G. W. Chem. Soc. Rev. 2013, 42, 7535. doi:10.1039/c3cs35494  doi: 10.1039/c3cs35494

    20. [20]

      Baláž, P.; Achimovi?ová, M.; Baláž, M.; Billik, P.; Cherkezova-Zheleva, Z.; Criado, J. M.; Delogu, F.; Dutková, E.; Gaffet, E.; Gotor, F. J.; et al. Chem. Soc. Rev. 2013, 42, 7571. doi:10.1039/c3cs35468g  doi: 10.1039/c3cs35468g

    21. [21]

      Wang G. W. Chem. Soc. Rev. 2013, 42, 7668. doi:10.1039/c3cs35526h  doi: 10.1039/c3cs35526h

    22. [22]

      Do, J. L.; Friščić, T. ACS Central Sci. 2017, 3, 13. doi:10.1021/acscentsci.6b00277  doi: 10.1021/acscentsci.6b00277

    23. [23]

      Jones, W.; Eddleston, M. D. Faraday Discuss. 2014, 170, 9. doi:10.1039/C4FD00162A  doi: 10.1039/C4FD00162A

    24. [24]

      Rowlands, S. A.; Hall, A. K.; Mccormick, P. G.; Street, R.; Hart, R. J.; Ebell, G. F.; Donecker, P. Nature 1994, 367, 223. doi:10.1038/367223a0  doi: 10.1038/367223a0

    25. [25]

      Li, Y.; Liu, Q.; Li, W.; Lu, Y.; Meng, H.; Li, C. Chemosphere 2017, 166, 275. doi:10.1016/j.chemosphere.2016.09.135  doi: 10.1016/j.chemosphere.2016.09.135

    26. [26]

      Yang, C. F.; Cui, X. L. Scalable synthesis of graphyne with enhanced lithium storage performance. The 19th National Conference on Electrochemistry. Shanghai, 2017, 12. L1859
       

    27. [27]

      Tan, D. Z.; Fan, W. J.; Xiong, W. N.; Sun, H. X.; Cheng, Y. Q.; Liu, X. Y.; Meng, C. G.; Li, A.; Deng, W. Q. Macromol. Chem. Phys. 2012, 213, 1435. doi:10.1002/macp.201200084  doi: 10.1002/macp.201200084

    28. [28]

      Wu, B.; Li, M. R.; Xiao, S. N.; Qu, Y. K.; Qiu, X. Y.; Liu T. F; Tian, F. H.; Li, H. X.; Xiao, S. X. Nanoscale 2017, 9, 11939. doi:10.1039/c7nr02247f  doi: 10.1039/c7nr02247f

    29. [29]

      He, J. J.; Wang, N.; Cui, Z. L.; Du, H. P.; Fu, L.; Huang, C. S.; Yang, Z.; Shen, X. Y.; Yi, Y. P.; Tu, Z. Y.; et al. Nature Commun. 2017, 8, 1172. doi:10.1038/s41467-017-01202-2  doi: 10.1038/s41467-017-01202-2

    30. [30]

      Zhang, S.; Wang, J.; Li, Z.; Zhao, R.; Tong, L.; Liu, Z. F.; Zhang, J.; Liu, Z. R. J. Phys. Chem. C 2016, 120, 10605. doi:10.1021/acs.jpcc.5b12388  doi: 10.1021/acs.jpcc.5b12388

    31. [31]

      Li, Y.; Liu, Q.; Li, W.; Meng, H.; Lu, Y. Z.; Li, C. ACS Appl. Mater. Inter. 2017, 9, 3895. doi:10.1021/acsami.6b13610  doi: 10.1021/acsami.6b13610

    32. [32]

      Chen, Y. Ma, X. Q.; Cui, X. L.; Jiang, Z. Y. J. Power Sources 2016, 302, 233. doi:10.1016/j.jpowsour.2015.10.057  doi: 10.1016/j.jpowsour.2015.10.057

    33. [33]

      Qin, H. L.; Yu, D. Q.; Deng, A. J. Handbook of Analytical Chemistry. 7A Nuclear Magnetic Resonance Spectroscopy Analysis, 3rd ed.; Chemical Industry Press:Beijing, 2016; pp. 8–18.

    34. [34]

      Hu, X. B.; Wang. K. C. Chemical Engineer, 2015, 243, 48.  doi: 10.16247/j.cnki.23-1171/tq.20151248

    35. [35]

      Xue, S. Organic Structure Analysis; University of Science and Technology of China Press:Hefei, 2005; pp:84–178.

    36. [36]

      Chang, J. H.; Dong, Q. G. Spectral Principle and Analysis, 3rd ed.; Science Press:Beijing, 2012; pp. 112–165

    37. [37]

      Zha, Q. X. An Introduction to Electrode Processes, 2nd ed.; Science Press:Beijing, 1987; pp. 487–540.

    38. [38]

      Cui, X. L. Chemistry 2017, 80, 1160.  doi: 10.14159/j.cnki.0441-3776.2017.12.014

    39. [39]

      Butler, M. A. J. Appl. Phys. 1977, 48, 1914. doi:10.1063/1.323948  doi: 10.1063/1.323948

    40. [40]

      Lee, J.; Li, Z.; Zhu, L. Z.; Xie, S. H.; Cui, X. L. Appl. Catal. B:Environ. 2018, 224, 715. doi:10.1016/j.apcatb.2017.10.057  doi: 10.1016/j.apcatb.2017.10.057

    41. [41]

      Tu, W. Y.; Su, L.; Liu, W. J.; Wu, B. L. J. Electrochem. 2000, 6, 181.  doi: 10.3969/j.issn.1006-3471.2000.02.008

  • 加载中
    1. [1]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    2. [2]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    6. [6]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    7. [7]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    14. [14]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    15. [15]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    19. [19]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(11)
  • Abstract views(400)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return