Citation: GU Yuxing, YANG Juan, WANG Dihua. Electrochemical Features of Carbon Prepared by Molten Salt Electro-Reduction of CO2[J]. Acta Physico-Chimica Sinica, ;2019, 35(2): 208-214. doi: 10.3866/PKU.WHXB201802121 shu

Electrochemical Features of Carbon Prepared by Molten Salt Electro-Reduction of CO2

  • Corresponding author: WANG Dihua, wangdh@whu.edu.cn
  • Received Date: 15 January 2018
    Revised Date: 7 February 2018
    Accepted Date: 7 February 2018
    Available Online: 12 February 2018

    Fund Project: the International Science & Technology Cooperation Program of China 2015DFA90750the National Natural Science Foundation of China 21673162The project was supported by the National Natural Science Foundation of China (21673162, 51325102) and the International Science & Technology Cooperation Program of China (2015DFA90750)the National Natural Science Foundation of China 51325102

  • The molten salt CO2 capture and electrochemical transformation (MSCC-ET) process is a potentially efficient method for CO2 utilization, which can convert CO2 into value-added carbon and oxygen with a current density of 100–1000 mA cm-2. The electrolytic carbon (EC) prepared through the MSCC-ET process is highly electrically conductive and forms flexible microstructures. These structures show excellent adsorption ability towards environmental pollutants and high energy storage capacity when used in supercapacitors. Although the morphology, structure, and application of EC prepared under different electrolysis conditions have been previously reported, their intrinsic electrochemical properties have not yet been elucidated. Powder microelectrodes (PMEs) are useful for studying the electrochemical kinetics of various powdery materials. In this study, we systematically investigated the electrochemical properties of ECs obtained using molten Li2CO3-Na2CO3-K2CO3 under different temperature and electrolysis voltage conditions by cyclic voltammetry (CV) with a carbon powder microelectrode in 10 mmol L-1 Na2SO4. The electrochemical behavior of the EC obtained at 450 ℃ and a cell voltage of 4.5 V (450 ℃-4.5 V-EC) differs significantly from that of other carbon materials, i.e., multi-walled carbon nanotubes, graphene, graphite, and acetylene black. In addition to a much larger charging-discharging capacity, unusual hysteresis of the charge/discharge current response of ECs in the negative potential region (-0.6 to -0.2 V vs SCE) was observed. This phenomenon was eliminated by annealing the material under Ar at 550 ℃, demonstrating that the unique electrochemical behavior of ECs is closely related to the oxygen-containing groups on its surface. Furthermore, CVs of EC-PME were compared in solutions with different pH, Na2SO4 concentrations, and other ions. The pH of the solution did not affect the CVs, excluding a redox mechanism involving the surface functional groups. Hysteresis was weakened by a certain degree at slower potential sweep speeds (< 10 mV s-1) or in higher concentrations of electrolyte (100 mmol L-1 Na2SO4). The onset potential for discharging was negatively shifted in electrolytes with a larger cation ((NH4)2SO4) and was unaffected by larger anions (Na2S2O8). This indicates that the hysteresis is more likely related to the specific adsorption of cations, caused by the unique surface properties of EC. It should be noted that the specific surface area and oxygen concentration of EC can be adjusted by the electrolysis temperature and cell voltage. Generally, the Brunauer–Emmett–Teller (BET) specific surface area and oxygen content decrease with increasing temperature and the BET-area increases with increasing cell voltage. The CVs of ECs prepared at different cell voltages were similar, but the adsorption capacity decreased for those prepared at higher temperatures (550 and 650 ℃). Interestingly, the specific capacitance of the ECs is much higher at negative potentials (-0.6 to 0 V vs. SCE) than that at positive potentials (0 to 0.6 V vs. SCE). Therefore, it is anticipated that a better capacitance performance can be achieved when the ECs are used as a negative electrode material in supercapacitors.
  • 加载中
    1. [1]

      Bai, X. F.; Chen, W.; Wang, B. Y.; Feng, G. H.; Wei, W.; Jiao, Z.; Sun, Y. H. Acta Phys. -Chim. Sin. 2017, 33, 2388.  doi: 10.3866/PKU.WHXB201706131

    2. [2]

      Licht, S. Adv. Mater. 2011, 23, 5592. doi: 10.1002/adma.201103198  doi: 10.1002/adma.201103198

    3. [3]

      Yin, H. Y.; Mao, X. H.; Tang, D. Y.; Xiao, W.; Xing, L. R.; Zhu, H.; Wang, D. H.; Sadoway, D. R. Energy Environ. Sci. 2013, 6, 1538. doi: 10.1039/c3ee24132g  doi: 10.1039/c3ee24132g

    4. [4]

      Tang, D. Y.; Yin, H. Y.; Mao, X. H.; Xiao, W.; Wang, D. H. Electrochim. Acta 2013, 114, 567. doi: 10.1016/j.electacta.2013.10.109  doi: 10.1016/j.electacta.2013.10.109

    5. [5]

      Kaplan, B.; Groult, H.; Barhoun, A.; Lantelme, F.; Nakajima, T.; Gupta, V.; Komaba, S.; Kumagai, N. J. Electrochem. Soc. 2002, 149, D72. doi: 10.1149/1.1464884  doi: 10.1149/1.1464884

    6. [6]

      Ijije, H. V.; Lawrence, R. C.; Chen, G. Z. RSC Adv. 2014, 4, 35808. doi: 10.1039/c4ra04629c  doi: 10.1039/c4ra04629c

    7. [7]

      Ge, J. B.; Wang, S.; Hu, L. W.; Zhu, J.; Jiao, S. Q. Carbon 2016, 98, 649. doi: 10.1016/j.carbon.2015.11.065  doi: 10.1016/j.carbon.2015.11.065

    8. [8]

      Ijije, H. V.; Sun, C.; Chen, G. Z. Carbon 2014, 73, 163. doi: 10.1016/j.carbon.2014.02.052  doi: 10.1016/j.carbon.2014.02.052

    9. [9]

      Tang, J.; Deng, B.; Xu, F.; Xiao, W.; Wang, D. J. Power Sources 2017, 341, 419. doi: 10.1016/j.jpowsour.2016.12.037  doi: 10.1016/j.jpowsour.2016.12.037

    10. [10]

      Ge, J. B.; Hu, L. W.; Wang, W.; Jiao, H. D.; Jiao, S. Q. ChemElectroChem 2015, 2, 224. doi: 10.1002/celc.201402297  doi: 10.1002/celc.201402297

    11. [11]

      Groult, H.; Kaplan, B.; Lantelme, F.; Komaba, S.; Kumagai, N.; Yashiro, H.; Nakajima, T.; Simon, B.; Barhoun, A. Solid State Ionics 2006, 177, 869. doi: 10.1016/j.ssi.2006.01.051  doi: 10.1016/j.ssi.2006.01.051

    12. [12]

      Mao, X. H.; Yan, Z. P.; Sheng, T.; Gao, M. X.; Zhu, H.; Xiao, W.; Wang, D. H. Carbon 2017, 111, 162. doi: 10.1016/j.carbon.2016.09.035  doi: 10.1016/j.carbon.2016.09.035

    13. [13]

      Novoselova, I. A.; Oliinyk, N. F.; Volkov, S. V.; Konchits, A. A.; Yanchuk, I. B.; Yefanov, V. S.; Kolesnik, S. P.; Karpets, M. V. Phys. E: Low-Dimen. Syst. Nanostruct. 2008, 40, 2231. doi: 10.1016/j.physe.2007.10.069  doi: 10.1016/j.physe.2007.10.069

    14. [14]

      Song, Q.; Xu, Q.; Wang, Y.; Shang, X.; Li, Z. Thin Solid Films 2012, 520, 6856. doi: 10.1016/j.tsf.2012.07.056  doi: 10.1016/j.tsf.2012.07.056

    15. [15]

      Ren, J.; Li, F. F.; Lau, J.; Gonzalez-Urbina, L.; Licht, S. Nano Lett. 2015, 15, 6142. doi: 10.1021/acs.nanolett.5b02427  doi: 10.1021/acs.nanolett.5b02427

    16. [16]

      Deng, B. W.; Mao, X. H.; Xiao, W.; Wang, D. H. J. Mater. Chem. A 2017, 5, 12822. doi: 10.1039/c7ta03606j  doi: 10.1039/c7ta03606j

    17. [17]

      Deng, B. W.; Tang, J. J.; Gao, M. X.; Mao, X. H.; Zhu, H.; Xiao, W.; Wang, D. H. Electrochim. Acta 2018, 259, 975. doi: 10.1016/j.electacta.2017.11.025  doi: 10.1016/j.electacta.2017.11.025

    18. [18]

      Cha, C. S.; Li, C. M.; Yang, H. X.; Liu, P. F. J. Electroanal. Chem. 1994, 368, 47. doi: 10.1016/0022-0728(93)03016-I  doi: 10.1016/0022-0728(93)03016-I

    19. [19]

      Zhao, Y. D.; Zhang, W. D.; Chen, H.; Luo, Q. M. Anal. Sci. 2002, 18, 939. doi: 10.2116/analsci.18.939  doi: 10.2116/analsci.18.939

    20. [20]

      Zhao, Y. D.; Zhang, W. D.; Chen, H.; Luo, Q. M. Sens. Actuators B 2003, 92, 279. doi: 10.1016/s0925-4005(03)00312-5  doi: 10.1016/s0925-4005(03)00312-5

    21. [21]

      Luo, J. W.; Zhang, M.; Pang, D. W. Sens. Actuators B 2005, 106, 358. doi: 10.1016/j.snb.2004.08.020  doi: 10.1016/j.snb.2004.08.020

    22. [22]

      Zeng, R. H.; Li, W. S.; Lu, D. S.; Huang, Q. M. J. Power Sources 2007, 174, 592. doi: 10.1016/j.jpowsour.2007.06.120  doi: 10.1016/j.jpowsour.2007.06.120

    23. [23]

      Vivier, V.; Cachet Vivier, C.; Cha, C. S.; Nedelec, J. Y.; Yu, L. T. Electrochem. Commun. 2000, 2, 180. doi: 10.1016/S1388-2481(00)00004-7  doi: 10.1016/S1388-2481(00)00004-7

    24. [24]

      Serghini Idrissi, M.; Bernard, M. C.; Harrif, F. Z.; Joiret, S.; Rahmouni, K.; Srhiri, A.; Takenouti, H.; Vivier, V.; Ziani, M. Electrochim. Acta 2005, 50, 4699. doi: 10.1016/j.electacta.2005.01.050  doi: 10.1016/j.electacta.2005.01.050

    25. [25]

      Rabbow, T. J.; Trampert, M.; Pokorny, P.; Binder, P.; Whitehead, A. H. Electrochim. Acta 2015, 173, 24. doi: 10.1016/j.electacta.2015.05.058  doi: 10.1016/j.electacta.2015.05.058

    26. [26]

      Luo, H.; Shi, Z.; Li, N.; Gu, Z.; Zhuang, Q. Anal. Chem. 2001, 73, 915. doi: 10.1021/ac000967l  doi: 10.1021/ac000967l

    27. [27]

      Rabbow, T. J.; Whitehead, A. H. Carbon 2017, 111, 782. doi: 10.1016/j.carbon.2016.10.064  doi: 10.1016/j.carbon.2016.10.064

    28. [28]

      Jorgensen, T. C.; Weatherley, L. R. Water Res. 2003, 37, 1723. doi: 10.1016/s0043-1354(02)00571-7  doi: 10.1016/s0043-1354(02)00571-7

  • 加载中
    1. [1]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    8. [8]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    9. [9]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    12. [12]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    13. [13]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    14. [14]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    17. [17]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    18. [18]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

Metrics
  • PDF Downloads(30)
  • Abstract views(1716)
  • HTML views(532)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return