Citation: ZHOU Jingyuan, ZHANG Jin, LIU Zhongfan. Advanced Progress in the Synthesis of Graphdiyne[J]. Acta Physico-Chimica Sinica, ;2018, 34(9): 977-991. doi: 10.3866/PKU.WHXB201801243 shu

Advanced Progress in the Synthesis of Graphdiyne

  • Corresponding author: ZHANG Jin, jinzhang@pku.edu.cn LIU Zhongfan, zfliu@pku.edu.cn
  • Received Date: 6 December 2017
    Revised Date: 8 January 2018
    Accepted Date: 9 January 2018
    Available Online: 24 June 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21233001 and 51432002) and the National Key R&D Program of China (2016YFA0200101 and 2016YFA0200104)the National Key R&D Program of Chinac 2016YFA0200101the National Natural Science Foundation of China 51432002the National Natural Science Foundation of China 21233001the National Key R&D Program of China 2016YFA0200104

  • Graphyne is a rapidly rising star material of carbon allotropes containing only sp and sp2 hybridized carbon atoms forming extended two-dimensional layers. In particular, graphdiyne is an important member of graphyne family. With unique nanotopological pores, two-dimensional layered conjugated frameworks, and excellent semiconducting and optical properties, graphdiyne has displayed distinct superiorities in the fields of energy storage, electrocatalysis, photocatalysis, nonlinear optics, electronics, gas separation, etc. Therefore, the synthesis of high-quality graphdiyne is highly required to fulfill its potentially extraordinary applications. Furthermore, the development of a standardized and systematic set of characterization procedures is an urgent need, and would be based on intrinsic samples. However, there are still obvious barriers to synthesizing this new-born carbon allotrope that can be mainly considered as follows. The selection and stability of monomers is essential for synthesis. The synthesis process in solution also suffers from an annoying problem of the relatively free rotation possible about the alkyne-aryl single bonds, which leads to the coexistence and rapid equilibration of coplanar and twisted structures. Furthermore, the limited reaction conversion and side reactions also lead to a confusion of configuration. In this review, we primarily focus on the state-of-the-art progress of the synthetic strategies for graphdiyne. First, we give a brief introduction about the structure of graphyne and graphdiyne. We subsequently discuss in detail the recent developments in synthetic methods that can mainly be divided into three aspects: total organic synthesis, on-surface covalent reaction, and polymerization in a solution phase. In particular, much progress in solution polymerization has been achieved since in-situ polymerization on Cu surface was reported in 2010. Liquid/liquid interface, gas/liquid interface, and surface template were also employed for confined reaction, and contribute significantly to the synthesis of a graphdiyne film. Through such strategies, graphdiyne with a well-defined structure and diverse morphologies could be achieved successfully. Finally, the opportunities and challenges for the synthesis of graphdiyne are prospected. A more rational design is desired in terms of monomer modification and reaction regulation.
  • 加载中
    1. [1]

      Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849  doi: 10.1038/nmat1849

    2. [2]

      Krätschmer, W.; Huffman, D. R. Carbon 1992, 30, 1143. doi: 10.1016/0008-6223(92)90057-4  doi: 10.1016/0008-6223(92)90057-4

    3. [3]

      Lijima, S.; Ichihashi, T. Nature 1993, 364, 737. doi: 10.1038/364737d0  doi: 10.1038/364737d0

    4. [4]

      Baughman, R. H.; Eckhardt, H.; Kertesz, M. J. Chem. Phys. 1987, 87, 6687. doi: 10.1063/1.453405  doi: 10.1063/1.453405

    5. [5]

      Ivanovskii, A. L. Prog. Solid State Chem. 2013, 41, 1. doi: 10.1016/j.progsolidstchem.2012.12.001  doi: 10.1016/j.progsolidstchem.2012.12.001

    6. [6]

      Malko, D.; Neiss, C.; Viñes, F.; Görling, A. Phys. Rev. Lett. 2012, 108, 086804. doi: 10.1016/j.progsolidstchem.2012.12.001  doi: 10.1016/j.progsolidstchem.2012.12.001

    7. [7]

      Chen, J.; Xi, J.; Wang, D.; Shuai, Z. J. Phys. Chem. Lett. 2013, 4, 1443. doi: 10.1103/PhysRevLett.108.086804  doi: 10.1103/PhysRevLett.108.086804

    8. [8]

      Yang, N.; Liu, Y.; Wen, H.; Tang, Z.; Zhao, H.; Li, Y.; Wang, D. ACS Nano 2013, 7, 1504. doi: 10.1021/nn305288z  doi: 10.1021/nn305288z

    9. [9]

      Bhaskar, A.; Guda, R.; Haley, M. M.; Theodore Ⅲ J. Am. Chem. Soc. 2006, 128, 13972. doi: 10.1021/ja062709x  doi: 10.1021/ja062709x

    10. [10]

      Qi, H.; Yu, P.; Wang, Y.; Han, G.; Liu, H.; Yi, Y.; Li, Y.; Mao, L. J. Am. Chem. Soc. 2015, 137, 5260. doi: 10.1021/ja5131337  doi: 10.1021/ja5131337

    11. [11]

      Haley, M. M.; Brand, S. C.; Pak, J. J. Angew. Chem. Int. Ed. 1997, 36, 836. doi: 10.1002/anie.199708361  doi: 10.1002/anie.199708361

    12. [12]

      Narita, N.; Nagai, S.; Suzuki, S.; Nakao, K. Phys. Rev. B 1998, 58, 11009. doi: 10.1103/PhysRevB.58.11009  doi: 10.1103/PhysRevB.58.11009

    13. [13]

      Fasolino, A.; Los, J. H.; Katsnelson, M. I. Nat. Mater. 2007, 6, 858. doi: 10.1038/nmat2011  doi: 10.1038/nmat2011

    14. [14]

      Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Obergfell, D.; Roth, S.; Girit, C.; Zettl, A. Solid State Commun. 2007, 143, 101. doi: 10.1016/j.ssc.2007.02.047  doi: 10.1016/j.ssc.2007.02.047

    15. [15]

      Cranford, S. W.; Buehler, M. J. Carbon 2011, 49, 4111. doi: 10.1016/j.carbon.2011.05.024  doi: 10.1016/j.carbon.2011.05.024

    16. [16]

      Zheng, Q.; Luo, G.; Liu, Q.; Quhe, R.; Zheng, J.; Tang, K.; Gao, Z.; Nagase, S.; Lu, J. Nanoscale 2012, 4, 3990. doi: 10.1039/C2NR12026G  doi: 10.1039/C2NR12026G

    17. [17]

      Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. J. Am. Chem. Soc. 2017, 139, 3145. doi: 10.1021/jacs.6b12776  doi: 10.1021/jacs.6b12776

    18. [18]

      Li, C.; Lu, X.; Han, Y.; Tang, S.; Ding, Y.; Liu, R.; Bao, H.; Li, Y.; Luo, J.; Lu, T. Nano Res. 2017, doi: 10.1007/s12274-017-1789-7  doi: 10.1007/s12274-017-1789-7

    19. [19]

      Jiao, Y.; Du, A.; Hankel, M.; Zhu, Z.; Rudolph, V.; Smith, S. C. Chem. Commun. 2011, 47, 11843. doi: 10.1039/C1CC15129K  doi: 10.1039/C1CC15129K

    20. [20]

      Srinivasu, K.; Ghosh, S. K. J. Phys. Chem. C 2012, 116, 5951. doi: 10.1021/jp212181h  doi: 10.1021/jp212181h

    21. [21]

      Luo, G.; Qian X. Liu H.; Qin R.; Zhou J.; Li L.; Gao Z.; Wang E.; Mei W.; Lu J.; Li Y.; Nagase S. Phys. Rev. B 2011, 84, 075439. doi:/10.1103/PhysRevB.84.075439  doi: 10.1103/PhysRevB.84.075439

    22. [22]

      Long, M.; Tang, L.; Wang, D.; Li, Y.; Shuai, Z. ACS Nano 2011, 5, 2593. doi: 10.1021/nn102472s  doi: 10.1021/nn102472s

    23. [23]

      Pei, Y. Phys. B: Condens. Matter 2012, 407, 4436. doi: 10.1016/j.physb.2012.07.026  doi: 10.1016/j.physb.2012.07.026

    24. [24]

      Yue, Q.; Chang, S.; Kang, J.; Qin, S.; Li, J. J. Phys. Chem. C 2013, 117, 14804. doi: 10.1021/jp4021189  doi: 10.1021/jp4021189

    25. [25]

      Chen, Y.; Liu, H.; Li, Y. Chin. Sci. Bull. 2016, 61, 2901. doi: 10.1306/N972016-00483  doi: 10.1306/N972016-00483

    26. [26]

      Jia, Z.; Li, Y.; Zuo, Z.; Liu, H.; Huang, C.; Li, Y. Acc. Chem. Res. 2017, 50, 2470. doi: 10.1021/acs.accounts.7b00205  doi: 10.1021/acs.accounts.7b00205

    27. [27]

      Sun, C.; Searles, D. J. J. Phys. Chem. C 2012, 116, 26222. doi: 10.1021/jp309638z  doi: 10.1021/jp309638z

    28. [28]

      Huang, C.; Zhang, S.; Liu, H; Li, Y.; Cui, G.; Li, Y. Nano Energy 2015, 11, 481. doi: 10.1016/j.nanoen.2014.11.036  doi: 10.1016/j.nanoen.2014.11.036

    29. [29]

      Du, H.; Yang, H.; Huang, C. He, J.; Liu, H.; Li, Y. Nano Energy, 2016, 22, 615. doi: 10.1016/j.nanoen.2016.02.052  doi: 10.1016/j.nanoen.2016.02.052

    30. [30]

      Ren, H.; Shao, H. Zhang, L.; Guo, D.; Jin, Q.; Yu, R.; Wang, Y.; Zhao, H.; Wang, D. Adv. Energy Mater. 2015, 5, 1500296. doi: 10.1002/aenm.201500296  doi: 10.1002/aenm.201500296

    31. [31]

      Wang, S.; Yi, L.; Halpert, J. E.; Lai, X.; Liu, Y.; Cao, H.; Yu, , R.; Wang, D.; Li, Y. Small 2011, 8, 265. doi: 10.1002/smll.201101686  doi: 10.1002/smll.201101686

    32. [32]

      Parvin, N.; Jin, Q.; Wei, Y.; Yu, R.; Zheng, B.; Huang, L.; Zhang, Y.; Wang, L.; Zhang, H.; Gao, M.; Zhao, H.; Hu, W.; Li, Y.; Wang, D. Adv. Mater. 2017, 29, 1606755. doi: 10.1002/adma.201606755  doi: 10.1002/adma.201606755

    33. [33]

      Li, Y.; Xu, L.; Liu, H.; Li, Y. Chem. Soc. Rev. 2014, 43, 2572. doi: 10.1039/C3CS60388A  doi: 10.1039/C3CS60388A

    34. [34]

      Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Chem. Commun. 2010, 46, 3256. doi: 10.1039/B922733D  doi: 10.1039/B922733D

    35. [35]

      Diederich, F.; Kivala, M. Adv. Mater. 2010, 22, 803. doi: 10.1002/adma.200902623  doi: 10.1002/adma.200902623

    36. [36]

      Bell, M. L.; Chiechi, R. C.; Johnson, C. A.; Kimball, D. B.; Matzger, A. J.; Brad Wan, W.; Weakley, T. J. R.; Haley, M. M. Tetrahedron 2001, 57, 3507. doi: 10.1016/S0040-4020(01)00229-0  doi: 10.1016/S0040-4020(01)00229-0

    37. [37]

      Wan, W. B.; Haley, M. M. J. Org. Chem. 2001, 66, 3893. doi: 10.1021/jo010183n  doi: 10.1021/jo010183n

    38. [38]

      Haley, M. M.; Bell, M. L.; English, J. J.; Johnson, C. A.; Weakley, T. J. R. J. Am. Chem. Soc 1997, 119, 2956. doi: 10.1021/ja964048h  doi: 10.1021/ja964048h

    39. [39]

      Marsden, J. A.; Haley, M. M. J. Org. Chem. 2005, 70, 10213. doi: 10.1021/jo050926v  doi: 10.1021/jo050926v

    40. [40]

      Haley, M. M. Pure Appl. Chem. 2008, 80, 519. doi: 10.1351/pac200880030519  doi: 10.1351/pac200880030519

    41. [41]

      Nishinaga, T.; Miyata, Y.; Nodera, N.; Komatsu, K. Tetrahedron 2004, 60, 3375. doi: 10.1016/j.tet.2004.02.041  doi: 10.1016/j.tet.2004.02.041

    42. [42]

      Sarkar, A.; Pak, J. J.; Rayfield, G. W.; Haley, M. M. J. Mater. Chem. 2001, 11, 2943. doi: 10.1039/B107182N  doi: 10.1039/B107182N

    43. [43]

      Marsden, J. A.; Palmer, G. J.; Haley, M. M. Eur. J. Org. Chem. 2003, 2003, 2355. doi: 10.1002/ejoc.200200630  doi: 10.1002/ejoc.200200630

    44. [44]

      Wan, W. B.; Br, S. C.; Pak, J. J.; Haley, M. M. Chem. Eur. J. 2015, 6, 2044. doi: 10.1002/1521-3765(20000602)6:11 < 2044::AID-CHEM2044 > 3.0.CO; 2-Y  doi: 10.1002/1521-3765(20000602)6:11<2044::AID-CHEM2044>3.0.CO;2-Y

    45. [45]

      Wang, H.; Zhang, H.; Chi, L. Acta Phys. -Chim. Sin. 2016, 32, 154.  doi: 10.3866/PKU.WHXB201512041

    46. [46]

      Klappenberger, F.; Zhang, Y. Q.; Björk, J.; Klyatskaya, S.; Ruben, M.; Barth, J. V. Acc. Chem. Res. 2015, 48, 2140. doi: 10.1021/acs.accounts.5b00174  doi: 10.1021/acs.accounts.5b00174

    47. [47]

      Gao, H. Y.; Wagner, H.; Zhong, D.; Franke, J. H.; Studer, A.; Fuchs, H. Angew. Chem. Int. Ed. 2013, 52, 4024. doi: 10.1002/anie.201208597  doi: 10.1002/anie.201208597

    48. [48]

      Gao, H. Y.; Zhong, D.; Mönig, H.; Wagner, H.; Held, P. A.; Timmer, A.; Studer, A.; Fuchs, H. J. Phys. Chem. C 2014, 118, 6272. doi: 10.1021/jp411889e  doi: 10.1021/jp411889e

    49. [49]

      Zhang, Y. Q.; Kepcija, N.; Kleinschrodt, M.; Diller, K.; Fischer, S.; Papageorgiou, A. C.; Allegretti, F.; Björk, J.; Klyatskaya, S.; Klappenberger, F. Nat. Commun. 2012, 3, 1286. doi: 10.1038/ncomms2291  doi: 10.1038/ncomms2291

    50. [50]

      Cirera, B.; Zhang, Y. Q.; Björk, J.; Klyatskaya, S.; Chen, Z.; Ruben, M.; Barth, J. V.; Klappenberger, F. Nano Lett. 2014, 14, 1891. doi: 10.1021/nl4046747  doi: 10.1021/nl4046747

    51. [51]

      Liu, J.; Ruffieux, P.; Feng, X.; Mullen, K.; Fasel, R. Chem. Commun. 2014, 50, 11200. doi: 10.1039/C4CC02859G  doi: 10.1039/C4CC02859G

    52. [52]

      Eichhorn, J.; Heckl, W. M.; Lackinger, M. Chem. Commun. 2013, 49, 2900. doi: 10.1039/C3CC40444G  doi: 10.1039/C3CC40444G

    53. [53]

      Yuan, Q.; Ding, F. Nanoscale 2014, 6, 12727. doi: 10.1039/C4NR03757J  doi: 10.1039/C4NR03757J

    54. [54]

      Kepčija, N.; Zhang, Y. Q.; Kleinschrodt, M.; Björk, J.; Klyatskaya, S.; Klappenberger, F.; Ruben, M.; Barth, J. V. J. Phys. Chem. C 2013, 117, 3987. doi: 10.1021/jp310606r  doi: 10.1021/jp310606r

    55. [55]

      Zhang, Y. Q.; J, Björk, J.; Weber, P.; Hellwig, R.; Diller, K.; Papageorgiou, A. C.; Oh, S. C.; Fischer, S.; Allegretti, F.; Klyatskaya, S.; Ruben, M.; Barth, J. V.; Klappenberger, F. J. Phys. Chem. C 2015, 119, 9669. doi: 10.1021/acs.jpcc.5b02955  doi: 10.1021/acs.jpcc.5b02955

    56. [56]

      Gao, H. Y.; Franke, J. H.; Wagner, H.; Zhong, D.; Held, P. A.; Studer, A.; Fuchs, H. J. Phys. Chem. C 2013, 117, 18595. doi: 10.1021/jp406858p  doi: 10.1021/jp406858p

    57. [57]

      Dong, L.; Liu, P. N.; Lin, N. Acc. Chem. Res. 2015, 48, 2765. doi: 10.1021/acs.accounts.5b00160  doi: 10.1021/acs.accounts.5b00160

    58. [58]

      Eichhorn, J.; Strunskus, T.; Rastgoo-Lahrood, A.; Samanta, D.; Schmittel, M.; Lackinger, M. Chem. Commun. 2014, 50, 7680. doi: 10.1039/C4CC02757D  doi: 10.1039/C4CC02757D

    59. [59]

      Sun, Q.; Cai, L.; Ding, Y.; Xie, L.; Zhang, C.; Tan, Q.; Xu, W. Angew. Chem. Int. Ed. 2015, 54, 4549. doi: 10.1002/anie.201412307  doi: 10.1002/anie.201412307

    60. [60]

      Sun, Q.; Cai, L.; Ma, H.; Yuan, C.; Xu, W. ACS Nano 2016, 10, 7023. doi: 10.1021/acsnano.6b03048  doi: 10.1021/acsnano.6b03048

    61. [61]

      Liu, R.; Gao, X.; Zhou, J.; Xu, H.; Li, Z.; Zhang, S.; Xie, Z.; Zhang, J.; Liu, Z. Adv. Mater. 2017, 29, 1604665. doi: 10.1002/adma.201604665  doi: 10.1002/adma.201604665

    62. [62]

      Huang, C.; Zhang, S.; Liu, H.; Li, Y.; Cui, G.; Li, Y. Nano Energy 2015, 11, 481. doi: 10.1016/j.nanoen.2014.11.036  doi: 10.1016/j.nanoen.2014.11.036

    63. [63]

      Kuang, C.; Tang, G.; Jiu, T.; Yang, H.; Liu, H.; Li, B.; Luo, W.; Li, X.; Zhang, W.; Lu, F.; Fang, J.; Li, Y. Nano Lett. 2015, 15, 2756. doi: 10.1021/acs.nanolett.5b00787  doi: 10.1021/acs.nanolett.5b00787

    64. [64]

      Li, J.; Gao, X.; Jiang, X.; Li, X. B.; Liu, Z.; Zhang, J.; Tung, C. H.; Wu, L. Z. ACS Catal. 2017, 7, 5209. doi: 10.1021/acscatal.7b01781  doi: 10.1021/acscatal.7b01781

    65. [65]

      Huang, C. S.; Li, Y. L. Acta Phys. -Chim. Sin. 2016, 32, 1314.  doi: 10.3866/PKU.WHXB201605035
       

    66. [66]

      Kambe, T.; Sakamoto, R.; Kusamoto, T.; Pal, T.; Fukui, N.; Hoshiko, K.; Shimojima, T.; Wang, Z.; Hirahara, T.; Ishizaka, K.; Hasegawa, S.; Liu, F.; Nishihara, H. J. Am. Chem. Soc. 2014, 136, 14357. doi: 10.1021/ja507619d  doi: 10.1021/ja507619d

    67. [67]

      Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J. H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M.; Nishihara, H. J. Am. Chem. Soc. 2013, 135, 2462. doi: 10.1021/ja312380b  doi: 10.1021/ja312380b

    68. [68]

      Lahiri, N.; Lotfizadeh, N.; Tsuchikawa, R.; Deshpande, V. V.; Louie, J. J. Am. Chem. Soc. 2017, 139, 19. doi: 110.1021/jacs.6b09889  doi: 10.1021/jacs.6b09889

    69. [69]

      Sakamoto, R.; Hoshiko, K.; Liu, Q.; Yagi, T.; Nagayama, T.; Kusaka, S.; Tsuchiya, M.; Kitagawa, Y.; Wong, W. Y.; Nishihara, H. Nat. Commun. 2015, 6, 6713. doi: 10.1038/ncomms7713  doi: 10.1038/ncomms7713

    70. [70]

      Sakamoto, R.; Yagi, T.; Hoshiko, K.; Kusaka, S.; Matsuoka, R.; Maeda, H.; Liu, Z.; Liu, Q.; Wong, W. Y.; Nishihara, H. Angew. Chem. Int. Ed. 2017, 56, 3526. doi: 10.1002/anie.201611785  doi: 10.1002/anie.201611785

    71. [71]

      Huang, X.; Sheng, P.; Tu, Z.; Zhang, F.; Wang, J.; Geng, H.; Zou, Y.; Di, C. A.; Yi, Y.; Sun, Y.; Xu, W.; Zhu, D. Nat. Commun. 2015, 6, 7408. doi: 10.1038/ncomms8408  doi: 10.1038/ncomms8408

    72. [72]

      Hoshiko, K.; Kambe, T.; Sakamoto, R.; Takada, K.; Nishihara, H. Chem. Lett. 2013, 43, 252. doi: 10.1246/cl.130882  doi: 10.1246/cl.130882

    73. [73]

      Dai, W.; Shao, F.; Szczerbiński, J.; McCaffrey, R.; Zenobi, R.; Jin, Y.; Schlüter, A. D.; Zhang, W. Angew. Chem. Int. Ed. 2016, 55, 213. doi: 10.1002/anie.201508473  doi: 10.1002/anie.201508473

    74. [74]

      Li, G.; Li, Y.; Qian, X.; Liu, H.; Lin, H.; Chen, N.; Li, Y. J. Phys. Chem. C 2011, 115, 2611. doi: 10.1021/jp107996f  doi: 10.1021/jp107996f

    75. [75]

      Qian, X.; Ning, Z.; Li, Y.; Liu, H.; Ouyang, C.; Chen, Q.; Li, Y. Dalton Trans. 2012, 41, 730. doi: 10.1039/C1DT11641J  doi: 10.1039/C1DT11641J

    76. [76]

      Zhou, J.; Gao, X.; Liu, R.; Xie, Z.; Yang, J.; Zhang, S.; Zhang, G.; Liu, H.; Li, Y.; Zhang, J.; Liu, Z. J. Am. Chem. Soc. 2015, 137, 7596. doi: 10.1021/jacs.5b04057  doi: 10.1021/jacs.5b04057

    77. [77]

      Liu, R.; Zhou, J.; Gao, X.; Li, J.; Xie, Z.; Li, Z.; Zhang, S.; Tong, L.; Zhang, J.; Liu, Z. Adv. Electron. Mater. 2017, 1700122. doi: 10.1002/aelm.201700122  doi: 10.1002/aelm.201700122

    78. [78]

      Gao, X.; Ren, H.; Zhou, J.; Du, R.; Yin, C.; Liu, R.; Peng, H.; Tong, L.; Liu, Z.; Zhang, J. Chem. Mater. 2017, 29, 5777. doi: 10.1021/acs.chemmater.7b01838  doi: 10.1021/acs.chemmater.7b01838

    79. [79]

      Gao, X.; Zhou, J.; Du, R.; Xie, Z.; Deng, S.; Liu, R.; Liu, Z.; Zhang, J. Adv. Mater. 2016, 28, 168. doi: 10.1002/adma.201504407  doi: 10.1002/adma.201504407

    80. [80]

      Kim, K.; Santos, E. J. G.; Lee, T. H.; Nishi, Y.; Bao, Z. Small 2015, 11, 2037. doi: 10.1002/smll.201403006  doi: 10.1002/smll.201403006

    81. [81]

      Kim, K.; Lee, T. H.; Santos, E. J. G.; Jo, P. S.; Salleo, A.; Nishi, Y.; Bao, Z. ACS Nano 2015, 9, 5922. doi: 10.1021/acsnano.5b00581  doi: 10.1021/acsnano.5b00581

    82. [82]

      Kang, S. J.; Lee, G. H.; Yu, Y. J.; Zhao, Y.; Kim, B.; Watanabe, K.; Taniguchi, T.; Hone, J.; Kim, P.; Nuckolls, C. Adv. Funct. Mater. 2014, 24, 5157. doi: 10.1002/adfm.201400348  doi: 10.1002/adfm.201400348

    83. [83]

      Liu, X. H.; Guan, C. Z.; Wang, D.; Wan, L. J. Adv. Mater. 2014, 26, 6912. doi: 10.1002/adma.201305317  doi: 10.1002/adma.201305317

    84. [84]

      Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R. Science 2011, 332, 228. doi: 10.1126/science.1202747  doi: 10.1126/science.1202747

    85. [85]

      Arnold, M. S.; Stupp, S. I.; Hersam, M. C. Nano Lett. 2005, 5, 713. doi: 10.1021/nl050133o  doi: 10.1021/nl050133o

    86. [86]

      Green, A. A.; Hersam, M. C. Nano Lett. 2009, 9, 4031. doi: 10.1021/nl902200b  doi: 10.1021/nl902200b

    87. [87]

      Liu, H.; Nishide, D.; Tanaka, T.; Kataura, H. Nat. Commun. 2011, 2, 309. doi: 10.1038/ncomms1313  doi: 10.1038/ncomms1313

    88. [88]

      Jin, Y.; Yu, C.; Denman, R. J.; Zhang, W. Chem. Soc. Rev. 2013, 42, 6634. doi: 10.1039/C3CS60044K  doi: 10.1039/C3CS60044K

    89. [89]

      Liu, X. H.; Guan, C. Z.; Ding, S. Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. J. Am. Chem. Soc. 2013, 135, 10470. doi: 10.1021/ja403464h  doi: 10.1021/ja403464h

    90. [90]

      Wu, B.; Li, M.; Xiao, S.; Qu, Y.; Qiu, X.; Liu, T.; Tian, F. Li, H.; Xiao, S. Nanoscale 2017, 9, 11939. doi: 10.1039/C7NR02247F  doi: 10.1039/C7NR02247F

    91. [91]

      Kabalka, G. W.; Wang, L.; Pagni, R. M. Synlett 2001, 2001, 0108. doi: 10.1055/s-2001-9726  doi: 10.1055/s-2001-9726

    92. [92]

      Schmidt, R.; Thorwirth, R.; Szuppa, T.; Stolle, A.; Ondruschka, B.; Hopf, H. Chem. Eur. J. 2011, 17, 8129. doi: 10.1002/chem.201100604  doi: 10.1002/chem.201100604

    93. [93]

      Zuo, Z.; Shang, H.; Chen, Y.; Li, J.; Liu, H.; Li, Y.; Li, Y. Chem. Commun. 2017, 53, 8074. doi: 10.1039/C7CC03200E  doi: 10.1039/C7CC03200E

  • 加载中
    1. [1]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    2. [2]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    3. [3]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    7. [7]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    8. [8]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    9. [9]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    10. [10]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Cheng Rong Jiang Jiang Xinyu Zheng . Constructivism and Deconstructivism in General Chemistry Teaching: Taking the Teaching of Colloidal Solutions as an Example. University Chemistry, 2024, 39(2): 292-297. doi: 10.3866/PKU.DXHX202308035

    13. [13]

      Yinuo Wu Jiantao Ye Xie Zhou Yu Qian Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077

    14. [14]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    17. [17]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    18. [18]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    19. [19]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    20. [20]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

Metrics
  • PDF Downloads(21)
  • Abstract views(1148)
  • HTML views(214)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return