Processing math: 100%

Citation: ZHAO Mingyu, ZHU Lin, FU Bowen, JIANG Suhua, ZHOU Yongning, SONG Yun. Sodium Ion Storage Performance of NiCo2S4 Hexagonal Nanosheets[J]. Acta Physico-Chimica Sinica, ;2019, 35(2): 193-199. doi: 10.3866/PKU.WHXB201801241 shu

Sodium Ion Storage Performance of NiCo2S4 Hexagonal Nanosheets

  • Corresponding author: SONG Yun, songyun@fudan.edu.cn
  • Received Date: 11 January 2018
    Revised Date: 21 January 2018
    Accepted Date: 22 January 2018
    Available Online: 24 January 2018

    Fund Project: National Natural Science Foundation of China 51601040National Natural Science Foundation of China 51572948The project was supported by the National Natural Science Foundation of China (51601040, 51572948, 51502039)National Natural Science Foundation of China 51502039

  • As a potential substitute for commercial lithium ion batteries (LIBs), sodium ion batteries (NIBs) have attracted increasing interest during the last decade. However, compared to the LIBs, the sluggish kinetics of sodium ion diffusion in NIBs due to its larger ionic radius results in deteriorated electrochemical performances, which hinders the future development and application of NIBs. Therefore, exploring anode materials that exhibit a novel kinetic mechanism is desired. Recently, extremely rapid kinetics has been realized by introducing the pseudocapacitance effect into battery systems; this effect generally refers to faradaic charge-transfer reactions, including surface or near-surface redox reactions, and fast bulk ion intercalation. To obtain a pseudocapacitance effect in battery systems, the critical step involves the rational design of a two-dimensional structure with a high conductivity. In this regard, the bimetallic sulfide thiospinel NiCo2S4 stands out by virtue of its high conductivity (1.25 × 106 S·m-1) at room temperature, which is at least two orders of magnitude higher than that of the oxide counterpart (NiCo2O4). Herein, NiCo2S4 hexagonal nanosheets with a large lateral dimension of ~2 μm and thickness ~30 nm have been successfully synthesized through coprecipitation followed by a vapor sulfidation method. As the anode material in NIBs, the NiCo2S4 nanosheets deliver a reversible capacity of 387 mAh·g-1 after 60 cycles at a current density of 1000 mA·g-1. Additionally, the NiCo2S4 nanosheets exhibit high reversible capacities of 542, 398, 347, 300, and 217 mAh·g-1 at the current densities 200, 400, 800, 1000, and 2000 mA·g-1, respectively. Ex situ X-ray diffraction analysis has been employed to reveal that the sodium ion storage process is a result of a combined Na+ intercalation and conversion reaction between Na+ and NiCo2S4. Further quantitative analysis of the kinetics has verified the extrinsic pseudocapacitance mechanism of the Na+ storage process, in which the capacitive contribution enlarges as the current density increases. The observed capacitive contribution of NiCo2S4 electrode is as high as 71% at a scan rate of 0.4 mV·s-1. This is closely attributed to the modified thin-sheet structure of NiCo2S4 and hybridization with graphene that account for the superior high-rate performance with long-term cyclability. These intriguing results shed light on a new strategy for the structural design of electrode materials for advanced NIBs. Moreover, this vapor transformation route can be extended to the preparation of other transition metal disulfides with high electrochemical activities, such as FeCo2S4, ZnCo2S4, CuCo2S4, etc.
  • 可充电的锂离子电池凭借其工作电压高、能量密度大、安全性能好和环境友好等优势,已逐步成为新能源汽车的重要动力体系1-3。然而,受限于匮乏的锂资源,近年来锂盐的价格急速攀升,导致电动汽车的成本居高不下4-7。为了解决成本问题,当前很多研究者们开始转向对钠离子电池的研究,原因主要有如下两点:1)钠在地壳中含量较高,且分布广泛。此外,钠成本低廉,钠盐价格仅为锂盐的1/20;2)钠电池和锂电池具有类似的工作原理,可以相互借鉴8

    虽然钠电池能够部分解决锂电池所存在的问题,但其研究仍然处于起步阶段。众所周知,电极材料对电池的电化学性能起着决定性作用9, 10。然而,尽管钠电池与锂电池具有相似的工作原理,但是作为商用的锂电池负极材料,石墨仅能在醚类电解液中发生钠离子脱/嵌反应,且容量只有100 mAh·g-111。因此,开发新型、高比容量和长循环稳定性的钠电池负极材料成为当前研究的热点12

    具有尖晶石结构的双元金属硫化物NiCo2S4,因具有较高的室温电导率(约为1.25 × 106 S·m-1)以及双元过渡金属Ni和Co之间的协同催化作用,使其在电化学储能领域具有广泛的应用,例如,电解水制氢13,锂离子电池14和超级电容器15等。然而,NiCo2S4材料体系作为钠离子电池负极材料的研究目前在国内外尚未开展。

    NiCo2(OH)6纳米六角片是通过共沉淀法制备获得:首先,将5 mmol CoCl2·6H2O、2.5 mmol NiCl2·6H2O以及45 mmol乌洛托品(HMT)溶解分散在1000 mL的去离子水中。将混合得到的粉红色溶液在氩气保护和磁力搅拌的条件下120 ℃水热反应6 h。待冷却至室温后,通过真空抽滤得到亮粉色的沉淀,使用去离子水和酒精交替清洗3次。将所获亮粉色沉淀在60 ℃烘箱中保温12 h即可得到粉红色NiCo2(OH)6纳米六角片粉末。

    NiCo2S4纳米六角片是通过一步气相硫化法而进行制备。取100 mgNiCo2(OH)6粉末作为金属源,配120 mg硫粉作为硫源,在300 ℃氢氩混合气(H2与Ar的体积比为5 : 95)中硫化1.5 h得到黑色的NiCo2S4纳米六角片。作为性能对比的NiCo2O4粉末,是通过在空气中500 ℃煅烧NiCo2(OH)6粉末3 h获得。

    扫描电子显微镜(SEM)表征在Cambridge S-360上进行。原子力显微镜(AFM)表征在Bruker Dimension Icon上进行。选区电子衍射(SAED)和高分辨率透射电子显微镜(HR-TEM)测试在JEM 2011 TEM下进行,加速电压为200 kV。采用粉末X射线衍射仪(XRD,D8-ADVANCE,Bruker)表征材料的结构和物相组成。采用X射线光电子能谱仪(XPS,PHI5000C型)在真空度为1.3 × 10-7 Pa,通过单色Al、Kα X射线源来分析表征材料的组成及化学状态。

    电极片的质量是由全自动电子分析天平测得(Quintix 35-1CN,Sartorius)。NiCo2S4作为负极(其中石墨烯作为导电助剂,PVDF作为粘结剂。活性物质、导电助剂与粘结剂的质量比为70 : 15 : 15),高纯度金属钠作为对电极。聚丙烯微孔膜(Celgard 2400)作为隔膜,1 mol∙L-1 NaSO3CF3/ DEGDME(二乙二醇二甲醚)作为电解液,并组装成2032型扣式电池。整个电池的组装过程在水/氧含量均在0.15 mg·m-3以下的手套箱中完成。电池的恒电流充放电测试是在室温下由LAND CT2001A电池测试系统进行,测试电压范围为:0.01–2.80 V。循环伏安测试是在CHI 660e电化学工作站上进行。

    图 1a是硫化后制得的NiCo2S4的XRD图,衍射峰对应于NiCo2S4的(111)、(220)、(311)、(400)、(422)、(511)、(440)、(533)、(444)和(731)面,无其他明显的杂质衍射峰的出现。这表明NiCo2(OH)6的纳米六角片通过硫化,形成了高纯度的NiCo2S4。采用X射线光电子能谱(XPS)对NiCo2S4的元素成分和化合态进行了表征,其中Ni,Co,S元素的高分辨谱,如图 1bd所示。利用高斯拟合:Ni 2p能谱中存在两个自旋-轨道分裂峰(spin-orbit doublet),对应于Ni2+和Ni3+,同时存在两个伴峰(shake-up satellite)。Co 2p的能谱图与Ni 2p能图谱类似:也出现两个自旋-轨道分裂峰,对应于Co2+和Co3+同时存在两个伴峰。S 2p的能谱图中存在两个主峰和一个伴峰。上述结果与文献报道的吻合,进一步说明了前驱体经过硫化成功形成了NiCo2S4 14, 24。作为性能对比的NiCo2O4,其XRD与XPS表征结果如图S1 a–d所示(Supporting Information),XRD图中,衍射峰分别与NiCo2O4的(111)、(220)、(311)、(222)、(400)、(422)、(511)、(440)和(531)晶面相对应,无其他明显的杂质衍射峰出现。这表明NiCo2(OH)6纳米六角片通过空气灼烧,形成了高纯度的NiCo2O4。XPS的表征结果也与文献报道相吻合,进一步说明了前驱体经过在空气中灼烧成功形成了纯相的NiCo2O4 16

    图 1

    图 1.  (a) 二维NiCo2S4六角片的XRD图; (b)二维NiCo2S4六角片的Ni 2p高吸收XPS光谱; (c) Co 2p高吸收XPS光谱; (d) S 2p高吸收XPS光谱
    Figure 1.  (a) XRD pattern of 2D NiCo2S4 hexagonal nanosheets and high-resolution XPS spectra of (b) Ni 2p, (c) Co 2p, and (d) S 2p of as-obtained NiCo2S4 nanosheets sample.

    为了表征样品的形貌,图 2ab分别给出了NiCo2S4的低倍和高倍SEM图。如图 2a所示,NiCo2S4呈现出二维六角形薄片状,且边长约为2 μm。高倍SEM图(图 2b)进一步表征出这些六角形薄片表面较为粗糙,这可能是由于硫蒸气与前驱体表面反应所致17。与SEM结果相吻合,AFM测试结果也证实了NiCo2S4的六角片形貌。此外,通过原子力显微镜轻敲模式(AFM-Tapping Mode),获得了NiCo2S4六角片的厚度信息,其厚度约为30 nm。图S1e、f分别给出了NiCo2O4的高倍和低倍SEM图,如图所示,NiCo2O4呈现出与NiCo2S4相似的形貌,同样为六角形薄片状,并且边长约为2 μm。

    图 2

    图 2.  二维NiCo2S4六角片的(a,b) SEM图和(c) AFM图
    Figure 2.  (a, b) SEM images and (c) AFM image of 2D NiCo2S4 hexagonal nanosheets.

    图 3a为NiCo2S4的TEM形貌。NiCo2S4呈现出规则六角片形状,边长约为2 μm,该结果与SEM和AFM的结果相一致。图 3b为其选区电子衍射图(SAED),呈现明显的衍射环特性,表明通过气相硫化获得的NiCo2S4为多晶结构。此外,衍射环由内而外分别对应NiCo2S4晶体的(111)、(220)、(222)、(400)、(511)以及(440)晶面,与XRD结果一致。图 3c为NiCo2S4的高分辨TEM (HR-TEM)图,该图显示存在5.42和2.83 Å (1 Å = 0.1 nm)的晶面间距,它们分别与NiCo2S4的(111)和(311)晶面相对应。

    图 3

    图 3.  二维NiCo2S4六角片的(a)低倍TEM图; (b)选区电子衍射图; (c)高分辨TEM图
    Figure 3.  TEM image (a); SADE (b) and HR-TEM image (c) of 2D NiCo2S4 hexagonal nanosheets.

    基于NiCo2S4的二维片层结构,本文对其电化学储钠性能进行了测试。图 4a为NiCo2S4在0.01–3.00 V范围内,前1至4圈的循环伏安特性曲线(CV),扫描速率为0.1 mV·s-1图 4b为不同充放电状态下,NiCo2S4电极片的离线XRD表征图。通过CV图以及离线XRD表征图可以得出:首次放电过程中,NiCo2S4在1.33和0.73 V存在两个还原峰。如图 4b所示,当放电至1.3 V左右,NiCo2S4的相依旧存在,该过程为Na+的插嵌反应。由此可以得出1.33 V位置的峰对应于Na+嵌入到NiCo2S4晶体中形成NaxNiCo2S4这一过程18。当放电至0.7 V左右,NiCo2S4相消失,并出现Na2S相,该结果表明位于0.73 V的强峰主要对应于固体电解质界面膜(SEI)的形成以及在电化学转化反应过程中生成Ni,Co和Na2S。在首次充电过程中,NiCo2S4在1.73和2.03 V存在两个氧化峰。如图 4b所示,当充电至1.7 V左右,对应的Na2S峰强度减弱并随着充电的进行逐渐消失,这一结果表明1.73和2.01 V的两个氧化峰分别对应于表面脱钠过程和Ni、Co转化为NiSx和CoSx的过程。

    图 4

    图 4.  (a) NiCo2S4六角片前四圈循环伏安曲线; (b)不同充放电状态下NiCo2S4电极片的离线XRD表征图; (c) NiCo2S4六角片电极前五圈恒流充电/放电曲线; (d) NiCo2S4与NiCo2O4电池的前60圈循环性能对比图; (e) NiCo2S4与NiCo2O4电池的倍率性能对比图
    Figure 4.  (a) First four CVs of NiCo2S4 hexagonal nanosheets; (b) The off-line XRD pattern of the NiCo2S4 electrode of different charging/discharging states; (c) First five charge/discharge profiles of NiCo2S4 hexagonal nanosheets; (d) Cycling performance of NiCo2S4 and NiCo2S4; (e) Rate performance of NiCo2S4 and NiCo2S4.

    从第二圈循环曲线中可以看出,1.33 V处的还原峰消失,并且0.73 V的还原峰强度减弱并移至0.95 V。推测是因为NiCo2S4的结构在第一圈循环之后发生了不可逆转变,且SEI膜的生成也导致不可逆容量损失19, 20。但是从第二圈循环开始,后续循环相应的还原/氧化峰位置均能与第二圈高度重合,这表明NiCo2S4电极材料具有良好的循环可逆性能21

    图 4c为NiCo2S4电极在前1至5圈的恒流充放电曲线图(GDC),循环电压范围为0.01–2.80 V。首次放电,在1.46和0.81 V处都出现了明显的放电平台,分别对应于图 4a循环伏安曲线的两个还原峰。首次的放电比容量达到872 mAh·g-1,超出NiCo2S4的理论容量(704 mAh·g-1)。这主要是因为表面离子的吸附以及SEI膜的形成22, 23。首圈充电比容量为522 mAh·g-1,库伦效率为60%。库伦效率低的主要原因是SEI膜的形成以及部分形成的多硫化物溶解于电解液中24, 25。第一次充电过程中在2.23 V处有一个平台,对应于Na2S的分解以及Ni、Co金属颗粒被氧化26, 27。从第二圈开始,后续循环的GDC曲线高度重合,进一步证实了NiCo2S4具有良好的储钠电化学可逆性28

    图 4d对比了NiCo2S4与NiCo2O4在相同的条件下(电流密度为1000 mA·g-1)的充放电循环性能。从图中可以看出,二维NiCo2S4纳米片在60次循环后仍然保持高达387 mAh·g-1的放电容量,该值明显高于相同条件下的NiCo2O4 (129 mAh·g-1)。这一结果表明NiCo2S4具有更优异的循环性能以及更高的可逆容量。

    为了研究材料的倍率性能,将所制备的NiCo2S4与NiCo2O4电极在不同的电流密度下进行充放电循环。图 4e分别给出NiCo2S4与NiCo2O4电极在不同倍率下充放电的循环性能。在200、400、800、1000和2000 mA·g-1的电流密度下,NiCo2S4电极的放电容量分别为542、398、347、300和217 mAh·g-1。而对于NiCo2O4电极,在200、400、800、1000和2000 mA·g-1的电流密度下,其放电容量分别为349、173、126、118和100 mAh·g-1。显然,相比于NiCo2O4,NiCo2S4展现出更加优异的倍率性能。主要得益于NiCo2S4的高导电性。

    为了对NiCo2S4优异的储钠性能进行分析,本文对其动力学行为进行了研究。图 5a为NiCo2S4在不同扫描速率下的循环伏安曲线。由图可知,随着扫速增加,峰电流逐渐增加,还原峰电位降低,氧化峰电位升高。根据先前报道,峰电流(i)与扫速(v)存在如下关系29, 30

    i=avb

    (1)

    lg(i)=b×lgv+lga

    (2)

    图 5

    图 5.  (a) NiCo2S4六角片在不同扫描速率下(0.1到0.4 mV•s-1)的循环伏安曲线; (b)在不同峰电压下的lgi vs lgv的曲线; (c)在0.4 mV•s-1下循环伏安曲线中赝电容对电流的所占比例图; (d)在不同扫描速率下赝电容贡献所占比例条形图
    Figure 5.  (a) CVs of NiCo2S4 hexagonal nanosheets at various scan rates from 0.1 to 0.4 mV•s-1; (b)Corresponding lgi vs lgv plots at each redox peak (peak current: i, scan rate: v); (c) CV curve with the pseudocapacitive contribution shown by the blue region at a scan rate of 0.4 mV•s-1; (d) bar chart exhibiting the contribution ratio of pseudocapacitive contribution (blue) at various scan rates.

    其中i为峰电流,v为扫描速率,ab为调整参数。图 5b为lgi与lgv的关系曲线,其斜率为b值。线性拟合后得到的还原峰(0.1 mV·s-1时约为0.93 V)以及在氧化峰(0.1 mV·s-1时约为1.73 V)的b值分别为0.56和0.69。根据先前报道,当b值等于1时,该氧化还原过程为赝电容行为; 当b值等于0.5时,该氧化还原过程为嵌入(脱出)扩散行为,比容量与钠离子脱/嵌数成线性关系。对NiCo2S4的两个氧化还原峰计算得出的b值介于0.5和1之间,说明这些氧化还原过程既存在扩散行为也存在一部分赝电容行为,其中赝电容行为有利于提高倍率性能28图 5cd进一步给出了在不同扫描速度下,氧化还原过程中赝电容的贡献,由于NiCo2S4的氧化还原过程由赝电容行为和嵌入扩散行为两部分组成,所以峰电流i可用方程(3)表述31, 32

    i=k1v+k2v1/2

    (3)

    其中,k1k2对应赝电容行为和嵌入扩散行为所占比例,根据峰电流变化可以进行调整。图 5c中的蓝色部分即为赝电容行为所占贡献,全部电荷的71%来源于赝电容行为,并且图 5d表明赝电容贡献随着扫描速率的增加而增加。这种赝电容行为是有利于提高倍率性能和长周期循环稳定性的。

    在NiCo2S4电极的充放电过程中赝电容有较大的贡献可能主要得益于:二维NiCo2S4纳米片拥有高活性表面,并且提供了Na+扩散的快速通道,纳米级的厚度也缩短了电解液中离子的扩散路径。此外,石墨烯的加入不仅可以增强电极的电子电导率,而且还在循环过程中缓冲NiCo2S4的体积变化以及稳定SEI层,从而进一步提升NiCo2S4的电化学性能25

    本文采用共沉淀以及后续的气相硫化成功制备了二维NiCo2S4纳米片。电化学测试表明,NiCo2S4电极具有明显优于NiCo2O4电极的电化学性能。在1000 mA·g-1的电流密度下,循环60次后NiCo2S4电极仍可保持约387 mAh∙g-1的可逆比容量,此外,归功于NiCo2S4纳米片二维片层结构,NiCo2S4在储钠过程中存在赝电容行为,展现出优异的倍率性能(在200、400、800、1000和2000 mAh∙g-1的电流密度下,容量分别为542、398、347、300和217 mAh∙g-1)。上述结果不仅证实了二维NiCo2S4纳米片作为钠电负极材料的潜在应用,而且也为其他过渡金属硫化物的结构设计以及其在能源转换与存储领域中的应用提供了一种新的思路。

    1. [1]

      Le, Y.; Yang, J. F.; Lou, X. W. Angew. Chem. Int. Ed. 2016, 55, 13422. doi: 10.1002/anie.201606776  doi: 10.1002/anie.201606776

    2. [2]

      Chen, Y. M.; Yu, Y. M.; Li, Z.; Paik, U.; Lou, X. W. Sci. Adv. 2016, 2, 1600021. doi: 10.1126/sciadv.1600021  doi: 10.1126/sciadv.1600021

    3. [3]

      Ye, J.; Chen, T.; Chen, Q.; Chen, W.; Yu, Z.; Xu, S. J. Mater. Chem. A 2016, 4, 13194. doi: 10.1039/c6ta04196e  doi: 10.1039/c6ta04196e

    4. [4]

      Zhu, Y. J.; Fan, X. L.; Suo, L. M.; Luo, C.; Gao, T.; Wang, C. S. ACS Nano 2016, 10, 1529. doi: 10.1021/acsnano.5b07081  doi: 10.1021/acsnano.5b07081

    5. [5]

      Li, X.; Zai, J.; Xiang, S.; Liu, Y.; He, X.; Xu, Z.; Wang, K.; Ma, Z.; Qian, X. Adv. Energy Mater. 2016, 6, 1601056. doi: 10.1002/aenm.201601056  doi: 10.1002/aenm.201601056

    6. [6]

      Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Adv. Mater. 2010, 22, E170. doi: 10.1002/adma.201000717  doi: 10.1002/adma.201000717

    7. [7]

      Kim, H.; Kim, D. J.; Seo, D. H.; Yeom, M. S.; Kang, K.; Kim, D. K.; Jung, Y. Chem. Mater. 2012, 24, 1205. doi: 10.1021/cm300065y  doi: 10.1021/cm300065y

    8. [8]

      Zhu, Y. J.; Choi, S. H.; Fan, X. L.; Shin, J.; Ma, Z. H.; Zachariah, M. R.; Jang, W. C.; Wang, C. S. Adv. Energy Mater. 2017, 7, 1601578. doi: 10.1002/aenm.201601578  doi: 10.1002/aenm.201601578

    9. [9]

      Lee, E.; Brown, D. E.; Alp, E. E.; Ren, Y.; Lu, J.; Woo, J. J.; Johnson, C. S. Chem. Mater. 2015, 27, 6755. doi: 10.1021/acs.chemmater.5b02918  doi: 10.1021/acs.chemmater.5b02918

    10. [10]

      Liu, H.; Jia, M. Q.; Zhu, Q. Z.; Cao, B.; Chen, R. J.; Wang, Y.; Wu, F.; Xu, B. ACS Appl. Mater. Interfaces 2016, 8, 26878. doi: 10.1021/acsami.6b09496  doi: 10.1021/acsami.6b09496

    11. [11]

      Jache, B.; Adelhelm, P. Angew. Chem. Int. Ed. 2014, 53, 10169. doi: 10.1002/anie.201403734  doi: 10.1002/anie.201403734

    12. [12]

      Che, H.; Chen, S.; Xie, Y.; Wang, H.; Amine, K.; Liao, X.; Ma, Z. Energy Environ. Sci. 2017, 10, 1075. doi: 10.1039/C7EE00524E  doi: 10.1039/C7EE00524E

    13. [13]

      Li, T.; Xu, Y.; Xing, F.; Cao, X.; Bian, J.; Wang, N.; Wang, Z. L. Adv. Energy Mater. 2017, 7, 1700124. doi: 10.1002/aenm.201700124  doi: 10.1002/aenm.201700124

    14. [14]

      Zou, R.; Zhang, Z.; Yuen, M. F.; Sun, M.; Hu, J.; Lee, C. S.; Zhang, W. NPG Asia Mater. 2015, 7, 195. doi: 10.1038/am.2015.63  doi: 10.1038/am.2015.63

    15. [15]

      Kang, W.; Wang, Y.; Xu, J. J. Mater. Chem. A 2017, 5, 7667. doi: 10.1039/C7TA00003K  doi: 10.1039/C7TA00003K

    16. [16]

      Chen, S.; Qiao, S. Z. ACS Nano 2013, 7, 10190. doi: 10.1021/nn404444r  doi: 10.1021/nn404444r

    17. [17]

      Wu, X.; Li, S.; Wang, B.; Liu, J.; Yu, M. Phys. Chem. Chem. Phys. 2017, 19, 11554. doi: 10.1039/C7CP00509A  doi: 10.1039/C7CP00509A

    18. [18]

      Yuan, D. X.; Huang, G.; Yin, D. M.; Wang, X. X.; Wang, C. L.; Wang, L. M. ACS Appl. Mater. Interfaces 2017, 9, 18178. doi: 10.1021/acsami.7b02176  doi: 10.1021/acsami.7b02176

    19. [19]

      Xiao, Y.; Lee, S. H.; Sun, Y. K. Adv. Energy Mater. 2016, 7, 1601329. doi: 10.1002/aenm.201601329  doi: 10.1002/aenm.201601329

    20. [20]

      Chen, S. Q.; Wu, S.; Shen, L. F.; Zhu, C. B.; Huang, Y. Y.; Xi, K.; Maier, J.; Yu, Y. Adv. Mater. 2017, 1700431. doi: 10.1002/adma.201700431  doi: 10.1002/adma.201700431

    21. [21]

      Liu, J. H. ; Zhang, H. ; Liu, X. J. ; Liu, J. S. Inorg. Chem. 2015, 32, 2331.

    22. [22]

      Kyle, C. K.; Stephany, G.; Naween, D.; Jonathan, L. S.; Souza, J. P.; Trevor, H. C.; Mark, A. C.; Adam, H.; Simon, M. H.; Mullins, B. C. J. Mater. Chem. A 2014, 2, 14209. doi: 10.1039/c4ta02684e  doi: 10.1039/c4ta02684e

    23. [23]

      Hu, T. T.; Liu, Z. G.; Borkiewicz, O. J.; Cheng, J.; Hua, X.; Dunstan, M. T.; Yu, X. Q.; Wiaderek, K.M.; Du, L. S.; Chapman, K. W.; et al. Nat. Mater. 2013, 12, 1130. doi: 10.1038/NMAT3784  doi: 10.1038/NMAT3784

    24. [24]

      Li, T.; Long, Z. H.; Zhang, D. H. Acta Phys. -Chim. Sin. 2016, 32, 573.  doi: 10.3866/PKU.WHXB201511105

    25. [25]

      Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947. doi: 10.1002/adfm.v23.8  doi: 10.1002/adfm.v23.8

    26. [26]

      Song, Y.; Chen, Z.; Li, Y.; Qin, C.W.; Fang, F.; Zhou, Y.; Hu, L.; Sun, D. J. Mater. Chem. A 2017, 5, 9022. doi: 10.1039/C7TA01758H  doi: 10.1039/C7TA01758H

    27. [27]

      Wu, X.; Li, S.; Wang, B.; Liu, J.; Yu, M. Phys. Chem. Chem. Phys. 2016, 18, 4505. doi: 10.1039/c5cp07541f  doi: 10.1039/c5cp07541f

    28. [28]

      Song, Y.; Cao, Y.; Wang, J.; Zhou, Y. N.; Fang, F.; Li, Y.; Gao, S. P.; Gu, Q. F.; Hu, L.; Sun, D. ACS Appl. Mater. Interfaces 2016, 3, 21334. doi: 10.1021/acsami.6b05506  doi: 10.1021/acsami.6b05506

    29. [29]

      Brezensinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Nat. Mater. 2010, 9, 146. doi: 10.1038/nmat2612  doi: 10.1038/nmat2612

    30. [30]

      Sun, R. M.; Wei, Q. L.; Sheng, J. Z.; Shi, C. W.; An, Q. Y.; Lin, S. J.; Mai, L. Q. Nano Energy 2017, 35, 396. doi: 10.1016/j.nanoen.2017.03.036  doi: 10.1016/j.nanoen.2017.03.036

    31. [31]

      Simon, P.; Gogotsi, Y.; Dunn, B. Science 2014, 343, 1210. doi: 10.1126/science.1249625  doi: 10.1126/science.1249625

    32. [32]

      Chao, D. L.; Zhu, C. R.; Yang, P. H.; Xia, X. H.; Liu, J. L.; Wang, J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J.; et al. Nat. Commun. 2016, 7, 12122. doi: 10.1038/ncomms12122  doi: 10.1038/ncomms12122

    1. [1]

      Le, Y.; Yang, J. F.; Lou, X. W. Angew. Chem. Int. Ed. 2016, 55, 13422. doi: 10.1002/anie.201606776  doi: 10.1002/anie.201606776

    2. [2]

      Chen, Y. M.; Yu, Y. M.; Li, Z.; Paik, U.; Lou, X. W. Sci. Adv. 2016, 2, 1600021. doi: 10.1126/sciadv.1600021  doi: 10.1126/sciadv.1600021

    3. [3]

      Ye, J.; Chen, T.; Chen, Q.; Chen, W.; Yu, Z.; Xu, S. J. Mater. Chem. A 2016, 4, 13194. doi: 10.1039/c6ta04196e  doi: 10.1039/c6ta04196e

    4. [4]

      Zhu, Y. J.; Fan, X. L.; Suo, L. M.; Luo, C.; Gao, T.; Wang, C. S. ACS Nano 2016, 10, 1529. doi: 10.1021/acsnano.5b07081  doi: 10.1021/acsnano.5b07081

    5. [5]

      Li, X.; Zai, J.; Xiang, S.; Liu, Y.; He, X.; Xu, Z.; Wang, K.; Ma, Z.; Qian, X. Adv. Energy Mater. 2016, 6, 1601056. doi: 10.1002/aenm.201601056  doi: 10.1002/aenm.201601056

    6. [6]

      Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Adv. Mater. 2010, 22, E170. doi: 10.1002/adma.201000717  doi: 10.1002/adma.201000717

    7. [7]

      Kim, H.; Kim, D. J.; Seo, D. H.; Yeom, M. S.; Kang, K.; Kim, D. K.; Jung, Y. Chem. Mater. 2012, 24, 1205. doi: 10.1021/cm300065y  doi: 10.1021/cm300065y

    8. [8]

      Zhu, Y. J.; Choi, S. H.; Fan, X. L.; Shin, J.; Ma, Z. H.; Zachariah, M. R.; Jang, W. C.; Wang, C. S. Adv. Energy Mater. 2017, 7, 1601578. doi: 10.1002/aenm.201601578  doi: 10.1002/aenm.201601578

    9. [9]

      Lee, E.; Brown, D. E.; Alp, E. E.; Ren, Y.; Lu, J.; Woo, J. J.; Johnson, C. S. Chem. Mater. 2015, 27, 6755. doi: 10.1021/acs.chemmater.5b02918  doi: 10.1021/acs.chemmater.5b02918

    10. [10]

      Liu, H.; Jia, M. Q.; Zhu, Q. Z.; Cao, B.; Chen, R. J.; Wang, Y.; Wu, F.; Xu, B. ACS Appl. Mater. Interfaces 2016, 8, 26878. doi: 10.1021/acsami.6b09496  doi: 10.1021/acsami.6b09496

    11. [11]

      Jache, B.; Adelhelm, P. Angew. Chem. Int. Ed. 2014, 53, 10169. doi: 10.1002/anie.201403734  doi: 10.1002/anie.201403734

    12. [12]

      Che, H.; Chen, S.; Xie, Y.; Wang, H.; Amine, K.; Liao, X.; Ma, Z. Energy Environ. Sci. 2017, 10, 1075. doi: 10.1039/C7EE00524E  doi: 10.1039/C7EE00524E

    13. [13]

      Li, T.; Xu, Y.; Xing, F.; Cao, X.; Bian, J.; Wang, N.; Wang, Z. L. Adv. Energy Mater. 2017, 7, 1700124. doi: 10.1002/aenm.201700124  doi: 10.1002/aenm.201700124

    14. [14]

      Zou, R.; Zhang, Z.; Yuen, M. F.; Sun, M.; Hu, J.; Lee, C. S.; Zhang, W. NPG Asia Mater. 2015, 7, 195. doi: 10.1038/am.2015.63  doi: 10.1038/am.2015.63

    15. [15]

      Kang, W.; Wang, Y.; Xu, J. J. Mater. Chem. A 2017, 5, 7667. doi: 10.1039/C7TA00003K  doi: 10.1039/C7TA00003K

    16. [16]

      Chen, S.; Qiao, S. Z. ACS Nano 2013, 7, 10190. doi: 10.1021/nn404444r  doi: 10.1021/nn404444r

    17. [17]

      Wu, X.; Li, S.; Wang, B.; Liu, J.; Yu, M. Phys. Chem. Chem. Phys. 2017, 19, 11554. doi: 10.1039/C7CP00509A  doi: 10.1039/C7CP00509A

    18. [18]

      Yuan, D. X.; Huang, G.; Yin, D. M.; Wang, X. X.; Wang, C. L.; Wang, L. M. ACS Appl. Mater. Interfaces 2017, 9, 18178. doi: 10.1021/acsami.7b02176  doi: 10.1021/acsami.7b02176

    19. [19]

      Xiao, Y.; Lee, S. H.; Sun, Y. K. Adv. Energy Mater. 2016, 7, 1601329. doi: 10.1002/aenm.201601329  doi: 10.1002/aenm.201601329

    20. [20]

      Chen, S. Q.; Wu, S.; Shen, L. F.; Zhu, C. B.; Huang, Y. Y.; Xi, K.; Maier, J.; Yu, Y. Adv. Mater. 2017, 1700431. doi: 10.1002/adma.201700431  doi: 10.1002/adma.201700431

    21. [21]

      Liu, J. H. ; Zhang, H. ; Liu, X. J. ; Liu, J. S. Inorg. Chem. 2015, 32, 2331.

    22. [22]

      Kyle, C. K.; Stephany, G.; Naween, D.; Jonathan, L. S.; Souza, J. P.; Trevor, H. C.; Mark, A. C.; Adam, H.; Simon, M. H.; Mullins, B. C. J. Mater. Chem. A 2014, 2, 14209. doi: 10.1039/c4ta02684e  doi: 10.1039/c4ta02684e

    23. [23]

      Hu, T. T.; Liu, Z. G.; Borkiewicz, O. J.; Cheng, J.; Hua, X.; Dunstan, M. T.; Yu, X. Q.; Wiaderek, K.M.; Du, L. S.; Chapman, K. W.; et al. Nat. Mater. 2013, 12, 1130. doi: 10.1038/NMAT3784  doi: 10.1038/NMAT3784

    24. [24]

      Li, T.; Long, Z. H.; Zhang, D. H. Acta Phys. -Chim. Sin. 2016, 32, 573.  doi: 10.3866/PKU.WHXB201511105

    25. [25]

      Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947. doi: 10.1002/adfm.v23.8  doi: 10.1002/adfm.v23.8

    26. [26]

      Song, Y.; Chen, Z.; Li, Y.; Qin, C.W.; Fang, F.; Zhou, Y.; Hu, L.; Sun, D. J. Mater. Chem. A 2017, 5, 9022. doi: 10.1039/C7TA01758H  doi: 10.1039/C7TA01758H

    27. [27]

      Wu, X.; Li, S.; Wang, B.; Liu, J.; Yu, M. Phys. Chem. Chem. Phys. 2016, 18, 4505. doi: 10.1039/c5cp07541f  doi: 10.1039/c5cp07541f

    28. [28]

      Song, Y.; Cao, Y.; Wang, J.; Zhou, Y. N.; Fang, F.; Li, Y.; Gao, S. P.; Gu, Q. F.; Hu, L.; Sun, D. ACS Appl. Mater. Interfaces 2016, 3, 21334. doi: 10.1021/acsami.6b05506  doi: 10.1021/acsami.6b05506

    29. [29]

      Brezensinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Nat. Mater. 2010, 9, 146. doi: 10.1038/nmat2612  doi: 10.1038/nmat2612

    30. [30]

      Sun, R. M.; Wei, Q. L.; Sheng, J. Z.; Shi, C. W.; An, Q. Y.; Lin, S. J.; Mai, L. Q. Nano Energy 2017, 35, 396. doi: 10.1016/j.nanoen.2017.03.036  doi: 10.1016/j.nanoen.2017.03.036

    31. [31]

      Simon, P.; Gogotsi, Y.; Dunn, B. Science 2014, 343, 1210. doi: 10.1126/science.1249625  doi: 10.1126/science.1249625

    32. [32]

      Chao, D. L.; Zhu, C. R.; Yang, P. H.; Xia, X. H.; Liu, J. L.; Wang, J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J.; et al. Nat. Commun. 2016, 7, 12122. doi: 10.1038/ncomms12122  doi: 10.1038/ncomms12122

  • 加载中
    1. [1]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    4. [4]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    5. [5]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    6. [6]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    7. [7]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    8. [8]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    9. [9]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    14. [14]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    15. [15]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    16. [16]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    17. [17]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    18. [18]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

Metrics
  • PDF Downloads(24)
  • Abstract views(795)
  • HTML views(163)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return