Citation: CHEN Yanhuan, LI Jiaofu, LIU Huibiao. Preparation of Graphdiyne-Organic Conjugated Molecular Composite Materials for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2018, 34(9): 1074-1079. doi: 10.3866/PKU.WHXB201801231 shu

Preparation of Graphdiyne-Organic Conjugated Molecular Composite Materials for Lithium Ion Batteries

  • Corresponding author: LIU Huibiao, liuhb@iccas.ac.cn
  • Received Date: 29 December 2017
    Revised Date: 19 January 2018
    Accepted Date: 19 January 2018
    Available Online: 23 September 2018

    Fund Project: the National Natural Science Foundation of China 51573191the National Natural Science Foundation of China 21790050the National Natural Science Foundation of China 21790051the Key Program of the Chinese Academy of Science QYZDY-SSW-SLH015the National Key Basic Research and Development Project of China 2016YFA0200104The project was supported by the National Key Basic Research and Development Project of China (2016YFA0200104), the Key Program of the Chinese Academy of Science (QYZDY-SSW-SLH015), and the National Natural Science Foundation of China (21790050, 21790051, 51573191, 21373235)the National Natural Science Foundation of China 21373235

  • Graphdiyne(GDY) is a novel carbon allotrope containing sp-and sp2-hybridized carbon atoms.Because of GDY's special structure, theoretical studies have predicted Li storage as dense as 744 mAh∙g−1 in the form of LiC3, representing twice the specific capacity of graphite.Previous studies have reported that GDY film, bulk GDY, N-doped graphdiyne, and similar materials exhibit high specific capacity, excellent rate performance, and long cycle life when used as anode materials in lithium ion batteries(LIBs).The flat(sp2-and sp-hybridized) carbon networks endow GDY with extensive π-conjunction and uniformly distributed pores, which allow ππ interactions between GDY and organic conjugated molecules to construct a GDY/organic conjugated molecule hybrid material for high-performance anodes with in LIBs.Anode materials with higher specific capacity, better rate performance, and longer cycle life still present an important challenge in LIBs.Nitrogen doping of GDY is one of the effective ways to improve the performance of LIBs.Nitrogen doping of GDY has been achieved by annealing at high temperature in an ammonia atmosphere.The resulting material shows enhanced electrochemical properties due to the creation of numerous heteroatomic defects and active sites.Herein, we have developed a new method based on supramolecular chemistry for preparing N-doped GDY(graphdiyne/porphine) with ππ interactions between graphdiyne and organic conjugated molecules.As opposed to previously reported graphdiyne films, the as-prepared graphdiyne/porphine film can be used as an anode for LIBs without any binders or conducting agents.The resulting anode delivers a high capacity of 1000 mAh∙g−1 and exhibits excellent performance and cycle stability, suggesting that the high rate capability and long cycle life are due to the large amount of active sites provided by porphine for lithium storage.Galvanostatic measurements were performed for 5 cycles each, and retentions of 915.4, 778.9, 675.9, 553.6, and 375.2 mAh∙g−1 were obtained at current densities of 100, 200, 500, 1000, and 2000 mA∙g−1, respectively.When the current density was reset to 50 mA∙g−1, the capacity reached 900 mA∙g−1, indicating excellent structural stability during the high-rate measurements.Excellent cyclic stability with a retention of 1000 mAh∙g−1 at 50 mA∙g−1 after 50 cycles was obtained for LIB applications, which results from the unique hierarchical porosity due to the presence of butadiyne linkages.The unique hierarchical structure of the GDY/porphine film was not destroyed after 50 charge/discharge cycles at 50 mA∙g−1, which suggested high structural stability.The competitive lithium storage values provide promising potential for the development of high-performance LIBs.This strategy opens an avenue for designing N-doped graphdiyne with tunable electronic properties under mild conditions.
  • 加载中
    1. [1]

      Li, Y. L. Sci. Sin. Chim. 2017, 47:1045  doi: 10.1360/N032016-00210

    2. [2]

      Li, Y. J.; Li, Y. L. Acta Polym. Sin. 2015, 147.  doi: 10.11777/j.issn1000-3304.2015.14409

    3. [3]

      Chen, Y. H.; Liu, H. B.; Li, Y. L. Chin. Sci. Bull. 2016, 61:1 doi:10.1360/N972016-00483  doi: 10.1360/N972016-00483

    4. [4]

      Huang, C. S.; Li, Y. L. Acta Phys. -Chim. Sin. 2016, 32:1314  doi: 10.3866/PKU.WHXB201605035

    5. [5]

      Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Chem. Commun. 2010, 46:3256doi:10.1039/b922733d  doi: 10.1039/b922733d

    6. [6]

      Li, Y.; Xu, L.; Liu, H.; Li, Y. Chem. Soc. Rev. 2014, 43:2572 doi:10.1039/C3CS60388A  doi: 10.1039/C3CS60388A

    7. [7]

      Jia, Z.; Li, Y.; Zuo, Z.; Liu, H.; Huang, C.; Li, Y. Acc. Chem. Res. 2017, 50:2470doi:10.1021/acs.accounts.7b00205  doi: 10.1021/acs.accounts.7b00205

    8. [8]

      Sun, C.; Searles, D. J. J. Phys. Chem. C 2012, 116, 26222. doi:10.1021/jp309638z  doi: 10.1021/jp309638z

    9. [9]

      Huang, C.; Zhang, S.; Liu, H.; Li, Y.; Cui, G.; Li, Y. Nano Energy 2015, 11, 481. doi:10.1016/j.nanoen.2014.11.036  doi: 10.1016/j.nanoen.2014.11.036

    10. [10]

      Zhang, S.; Liu, H.; Huang, C.; Cui, G.; Li, Y. Chem. Commun. 2015, 1834. doi:10.1039/c4cc08706b  doi: 10.1039/c4cc08706b

    11. [11]

      Zuo, Z.; Shang, H.; Chen, Y.; Li, J.; Liu, H.; Li, Y.; Li, Y. Chem. Commun. 2017, 8074. doi:10.1039/c7cc03200e  doi: 10.1039/c7cc03200e

    12. [12]

      Wang, K.; Wang, N.; He, J.; Yang, Z.; Shen, X.; Huang, C. Electrochim. Acta 2017, 253, 506. doi:10.1016/j.electacta.2017.09.101  doi: 10.1016/j.electacta.2017.09.101

    13. [13]

      Wu, Y. P.; Jiang, C. Y.; Wan, C. R.; Fang, S. B.; Jiang, Y. Y. J. Appl. Polym. Sci.
       

    14. [14]

      Li, X.; Liu, J.; Zhang, Y.; Li, Y.; Liu, H.; Meng, X.; Yang, J.; Geng, D.; Wang, D.; Li, R.; Sun, X. J. Power Sources 2012, 197, 238. doi: 10.1016/j.jpowsour.2011.09.024  doi: 10.1016/j.jpowsour.2011.09.024

    15. [15]

      Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M. ACS Nano 2010, 4, 6337. doi: 10.1021/nn101926g  doi: 10.1021/nn101926g

    16. [16]

      Liu, R. J.; Liu, H. B.; Li, Y. L.; Yi, Y. P.; Shang, X. K.; Zhang, S. S.; Yu, X. L.; Zhang, S. J.; Cao, H. B.; Zhang, G. J. Nanoscale 2014, 6, 11336. doi: 10.1039/C4NR03185G  doi: 10.1039/C4NR03185G

    17. [17]

      Zhang, S.; Du, H.; He, J.; Huang, C.; Liu, H.; Cui, G.; Li, Y. ACS Appl. Mater. Interfaces 2016, 8, 8467. doi: 10.1021/acsami.6b00255  doi: 10.1021/acsami.6b00255

    18. [18]

      Sonoda, M.; Inaba, A.; Itahashi, K.; Tobe, Y. ChemInform 2001, 32, 2419. doi: 10.1002/chin.200149071  doi: 10.1002/chin.200149071

    19. [19]

      Estrade-Szwarckopf, H. Carbon 2004, 42, 1713. doi: 10.1016/j.carbon.2004.03.005  doi: 10.1016/j.carbon.2004.03.005

    20. [20]

      Ihm, K.; Kang, T. H.; Lee, D. H.; Park, S. Y.; Kim, K. J.; Kim, B.; Yang, J. H.; Park, C. Y. Surf. Sci. 2006, 600, 3729. doi: 10.1016/j.susc.2006.01.075  doi: 10.1016/j.susc.2006.01.075

    21. [21]

      Sarno, D. M.; Matienzo, L. J.; Wayne E. Jones, J. Inorg. Chem. 2001, 40, 6308. doi: 10.1021/ic010315v  doi: 10.1021/ic010315v

    22. [22]

      Yang, H.; Zhang, S. L.; Han, L. H.; Zhang, Z.; Xue, Z.; Gao, J.; Li, Y. J.; Huang, C. S.; Yi, Y. P.; Liu, H. B.; Li, Y. L. ACS Appl. Mater. Interfaces 2016, 8, 5366. doi: 10.1021/acsami.5b12370  doi: 10.1021/acsami.5b12370

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    12. [12]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    15. [15]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    16. [16]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    19. [19]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(8)
  • Abstract views(387)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return