Citation: HIGAKI Tatsuya, JIN Rongchao. Structural Evolution Patterns of FCC-Type Gold Nanoclusters[J]. Acta Physico-Chimica Sinica, ;2018, 34(7): 755-761. doi: 10.3866/PKU.WHXB201801191 shu

Structural Evolution Patterns of FCC-Type Gold Nanoclusters


  • Author Bio:
    Rongchao Jin is currently a Professor of Chemistry at Carnegie Mellon University. He received his Ph.D. from Northwestern University in 2003. After three years of postdoctoral research at the University of Chicago, he joined the chemistry faculty of Carnegie Mellon University in 2006 and was promoted to Associate Professor in 2012 and Full Professor in 2015. His current research interests are atomically precise nanoparticles, nano-optics, and catalysis
  • Corresponding author: JIN Rongchao, rongchao@andrew.cmu.edu
  • Received Date: 9 November 2017
    Revised Date: 12 January 2018
    Accepted Date: 12 January 2018
    Available Online: 19 July 2018

    Fund Project: the U.S. National Science Foundation DMREF-0903225The project was supported by the Air Force Office of Scientific Research (FA9550-15-1-0154) and the U.S. National Science Foundation (DMREF-0903225)The project was supported by the Air Force Office of Scientific Research FA9550-15-1-0154

  • Recent progress in the research of atomically-precise metal nanoclusters has identified a series of exceptionally stable nanoclusters with specific chemical compositions. Structural determination on such "magic size" nanoclusters revealed a variety of unique structures such as decahedron, icosahedron, as well as hexagonal close packing (hcp) and body-centered cubic (bcc) packing arrangements in gold nanoclusters, which are largely different from the face-centered cubic (fcc) structure in conventional gold nanoparticles. The characteristic geometrical structures enable the nanoclusters to exhibit interesting properties, and these properties are in close correlation with their atomic structures according to the recent studies. Experimental and theoretical analyses have been applied in the structural identification aiming to clarify the universal principle in the structural evolution of nanoclusters. In this mini-review, we summarize recent studies on periodic structural evolution of fcc-based gold nanoclusters protected by thiolates. A series of nanoclusters exhibit one-dimensional growth along the [001] direction in a layer-by-layer manner from Au28(TBBT)20 to Au36(TBBT)24, Au44(TBBT)28, and to Au52(TBBT)32 (TBBT: 4-tert-butylbenzenethiolate). The optical properties of these nanoclusters also evolve periodically based on steady-state and ultrafast spectroscopy. In addition, two-dimensional growth from Au44(TBBT)28 toward both [100] and [010] directions leads to the Au92(TBBT)44 nanocluster, and the recently reported Au52(PET)32 (PET: 2-phenylethanethiol) also follows this growth pattern with partial removal of the layer. Theoretical predictions of relevant fcc nanoclusters include Au60(SCH3)36, Au68(SCH3)40, Au76(SCH3)44, etc, for the continuation of 1D growth pattern, as well as Au68(SR)36 mediating the 2D growth pattern from Au44(TBBT)28 to Au92(TBBT)44. Overall, this mini-review provides guidelines on the rules of structural evolution of fcc gold nanoclusters based on 1D, 2D and 3D growth patterns.
  • 加载中
    1. [1]

      Jin, R.; Zhou, M.; Zeng, C.; Chen, Y. Chem. Rev. 2016, 116, 10346. doi: 10.1021/acs.chemrev.5b00703  doi: 10.1021/acs.chemrev.5b00703

    2. [2]

      Tsukuda, T.; Häkkinen, H. Protected Metal Clusters: From Fundamentals to Applications, 1st ed.; Elsevier, B. V.: Amsterdam, The Netherlands, 2015.

    3. [3]

      Goswami, N.; Yao, Q.; Chen, T.; Xie, J. Coord. Chem. Rev. 2016, 329, 1. doi: 10.1016/j.ccr.2016.09.001  doi: 10.1016/j.ccr.2016.09.001

    4. [4]

      Kurashige, W.; Niihori, Y.; Sharma, S.; Negishi, Y. Coord. Chem. Rev. 2016, 320–321, 238. doi: 10.1016/j.ccr.2016.02.013  doi: 10.1016/j.ccr.2016.02.013

    5. [5]

      Lei, Z.; Wan, X. K.; Yuan, S. F.; Wang, J. Q.; Wang, Q. M. Dalton Trans. 2017, 46, 3427. doi: 10.1039/c6dt04763g  doi: 10.1039/c6dt04763g

    6. [6]

      Xu, W. W.; Zhu, B.; Zeng, X. C.; Gao, Y. Nat. Commun. 2016, 7, 13574. doi: 10.1038/ncomms13574  doi: 10.1038/ncomms13574

    7. [7]

      Jiang, D. E Nanoscale 2013, 5, 7149. doi: 10.1039/c3nr34192e  doi: 10.1039/c3nr34192e

    8. [8]

      Fernando, A.; Weerawardene, K. L. D. M.; Karimova, N. V.; Aikens, C. M. Chem. Rev. 2015, 115, 6112. doi: 10.1021/cr500506r  doi: 10.1021/cr500506r

    9. [9]

      Ghosh, A.; Ghosh, D.; Khatun, E.; Chakraborty, P.; Pradeep, T. Nanoscale 2017, 9, 1068. doi: 10.1039/c6nr07692k  doi: 10.1039/c6nr07692k

    10. [10]

      Higaki, T.; Liu, C.; Chen, Y.; Zhao, S.; Zeng, C.; Jin, R.; Wang, S.; Rosi, N. L.; Jin, R. J. Phys. Chem. Lett. 2017, 8, 866. doi:10.1021/acs.jpclett.6b03061  doi: 10.1021/acs.jpclett.6b03061

    11. [11]

      Wan, X. K.; Guan, Z. J.; Wang, Q. M. Angew. Chem. Int. Ed. 2017, 56, 11494. doi: 10.1002/anie.201706021  doi: 10.1002/anie.201706021

    12. [12]

      Teo, B. K.; Yang, H.; Yan, J.; Zheng, N. Inorg. Chem. 2017, 56, 11470. doi: 10.1021/acs.inorgchem.7b00427  doi: 10.1021/acs.inorgchem.7b00427

    13. [13]

      Yamazoe, S.; Matsuo, S.; Muramatsu, S.; Takano, S.; Nitta, K.; Tsukuda, T. Inorg. Chem.2017, 56, 8319. doi: 10.1021/acs.inorgchem.7b00973  doi: 10.1021/acs.inorgchem.7b00973

    14. [14]

      Zou, X.; Jin, S.; Du, W.; Li, Y.; Li, P.; Wang, S.; Zhu, M. Nanoscale 2017, 9, 16800. doi: 10.1039/C7NR06338E  doi: 10.1039/C7NR06338E

    15. [15]

      Higaki, T.; Kitazawa, H.; Yamazoe, S.; Tsukuda, T. Nanoscale 2016, 8, 11371. doi: 10.1039/c6nr01460g  doi: 10.1039/c6nr01460g

    16. [16]

      Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Science 2007, 318, 430. doi: 10.1126/science.1148624  doi: 10.1126/science.1148624

    17. [17]

      Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc.2008, 130, 5883. doi: 10.1021/ja801173r  doi: 10.1021/ja801173r

    18. [18]

      Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. J. Am. Chem. Soc. 2008, 130, 3754. doi: 10.1021/ja800561b  doi: 10.1021/ja800561b

    19. [19]

      Qian, H.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. J. Am. Chem. Soc. 2010, 132, 8280. doi: 10.1021/ja103592z  doi: 10.1021/ja103592z

    20. [20]

      Zeng, C.; Chen, Y.; Kirschbaum, K.; Lambright, K. L.; Jin, R. Science 2016, 354, 1580. doi: 10.1126/science.aak9750  doi: 10.1126/science.aak9750

    21. [21]

      Huang, L.; Yan, J. Z.; Ren, L. T.; Teo, B. K.; Zheng, N. F. Dalton Trans. 2017, 46, 1757. doi: 10.1039/c6dt04419k  doi: 10.1039/c6dt04419k

    22. [22]

      Yuan, S. F.; Li, P.; Tang, Q.; Wan, X. K.; Nan, Z. A.; Jiang, D. E; Wang, Q. M. Nanoscale 2017, 9, 11405. doi: 10.1039/c7nr02687k  doi: 10.1039/c7nr02687k

    23. [23]

      Liao, L. W.; Zhuang, S. L.; Wang, P.; Xu, Y. N.; Yan, N.; Dong, H. W.; Wang, C. M.; Zhao, Y.; Xia, N.; Li, J.; et al. Angew. Chem. Int. Ed.2017, 56, 12644. doi: 10.1002/anie.201707582  doi: 10.1002/anie.201707582

    24. [24]

      Gan, Z.; Chen, J.; Wang, J.; Wang, C.; Li, M. B.; Yao, C.; Zhuang, S.; Xu, A.; Li, L.; Wu, Z. Nat. Commun. 2017, 8, 14739. doi:10.1021/acs.jpcc.7b01730  doi: 10.1021/acs.jpcc.7b01730

    25. [25]

      Higaki, T.; Liu, C.; Zeng, C.; Jin, R.; Chen, Y.; Rosi, N. L.; Jin, R. Angew. Chem. Int. Ed. 2016, 55, 6694. doi: 10.1002/anie.201601947  doi: 10.1002/anie.201601947

    26. [26]

      Liu, C.; Li, T.; Li, G.; Nobusada, K.; Zeng, C.; Pang, G.; Rosi, N. L.; Jin, R. Angew. Chem. Int. Ed. 2015, 54, 9826. doi:10.1002/anie.201502667  doi: 10.1002/anie.201502667

    27. [27]

      Zeng, C.; Chen, Y.; Das, A.; Jin, R. J. Phys. Chem. Lett. 2015, 6, 2976. doi: 10.1021/acs.jpclett.5b01150  doi: 10.1021/acs.jpclett.5b01150

    28. [28]

      Chen, Y.; Liu, C.; Tang, Q.; Zeng, C.; Higaki, T.; Das, A.; Jiang, D. E.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2016, 138, 1482. doi:10.1021/jacs.5b12094  doi: 10.1021/jacs.5b12094

    29. [29]

      Higaki, T.; Liu, C.; Zhou, M.; Luo, T. Y.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2017, 139, 9994. doi: 10.1021/jacs.7b04678  doi: 10.1021/jacs.7b04678

    30. [30]

      Higaki, T.; Zeng, C.; Chen, Y.; Hussain, E.; Jin, R. CrystEngComm 2016, 18, 6979. doi: 10.1039/C6CE01325B  doi: 10.1039/C6CE01325B

    31. [31]

      Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H. Proc. Natl. Acad. Sci. USA 2008, 105, 9157. doi:10.1073/pnas.0801001105  doi: 10.1073/pnas.0801001105

    32. [32]

      Jin, R.; Liu, C.; Zhao, S.; Das, A.; Xing, H.; Gayathri, C.; Xing, Y.; Rosi, N. L.; Gil, R. R.; Jin, R. ACS Nano 2015, 9, 8530. doi: 10.1021/acsnano.5b03524  doi: 10.1021/acsnano.5b03524

    33. [33]

      Zhou, M.; Jin, R.; Sfeir, M. Y.; Chen, Y.; Song, Y.; Jin, R. Proc. Natl. Acad. Sci. USA 2017, 114, E4697. doi: 10.1073/pnas.1704699114  doi: 10.1073/pnas.1704699114

    34. [34]

      Zeng, C.; Qian, H.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. Angew. Chem. Int. Ed. 2012, 51, 13114. doi: 10.1002/anie.201207098  doi: 10.1002/anie.201207098

    35. [35]

      Zeng, C.; Li, T.; Das, A.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2013, 135, 10011. doi: 10.1021/ja404058q  doi: 10.1021/ja404058q

    36. [36]

      Zeng, C.; Chen, Y.; Iida, K.; Nobusada, K.; Kirschbaum, K.; Lambright, K. J.; Jin, R. J. Am. Chem. Soc.2016, 138, 3950. doi: 10.1021/jacs.5b12747  doi: 10.1021/jacs.5b12747

    37. [37]

      Zeng, C.; Chen, Y.; Liu, C.; Nobusada, K.; Rosi, N. L.; Jin, R. Sci. Adv. 2015, 1, e1500425. doi: 10.1126/sciadv.1500425  doi: 10.1126/sciadv.1500425

    38. [38]

      Cheng, L.; Yuan, Y.; Zhang, X.; Yang, J.; Angew. Chem. Int. Ed. 2013, 52, 9035. doi: 10.1002/anie.201302926  doi: 10.1002/anie.201302926

    39. [39]

      Yang, R.; Chevrier, D. M.; Zeng, C.; Jin, R.; Zhang, P. Can. J. Chem. 2017, 95, 1220. doi: 10.1139/cjc-2017-0169  doi: 10.1139/cjc-2017-0169

    40. [40]

      Zhou, M.; Zeng, C.; Sfeir, M. Y.; Cotlet, M.; Iida, K.; Nobusada, K.; Jin, R. J. Phys. Chem. Lett. 2017, 8, 4023. doi: 10.1021/acs.jpclett.7b01597  doi: 10.1021/acs.jpclett.7b01597

    41. [41]

      Xu, W. W.; Li, Y.; Gao, Y.; Zeng, X. C. Nanoscale 2016, 8, 7396. doi: 10.1039/C6NR00272B  doi: 10.1039/C6NR00272B

    42. [42]

      Ma, Z.; Wang, P.; Pei, Y. Nanoscale 2016, 8, 17044. doi: 10.1039/C6NR04998B  doi: 10.1039/C6NR04998B

    43. [43]

      Takano, S.; Yamazoe, S.; Koyasu, K.; Tsukuda, T. J. Am. Chem. Soc. 2015, 137, 7027. doi: 10.1021/jacs.5b03251  doi: 10.1021/jacs.5b03251

    44. [44]

      Zeng, C.; Liu, C.; Chen, Y.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2016, 138, 8710. doi: 10.1021/jacs.6b04835  doi: 10.1021/jacs.6b04835

    45. [45]

      Wang, P.; Sun, X.; Liu, X.; Xiong, L.; Ma, Z.; Pei, Y. J. Phys. Chem. Lett. 2017, 8, 1248. doi: 10.1021/acs.jpclett.7b00111  doi: 10.1021/acs.jpclett.7b00111

    46. [46]

      Zhuang, S.; Liao, L.; Li, M. B.; Yao, C.; Zhao, Y.; Donga, H.; Li, J.; Deng, H.; Li, L.; Wu, Z. Nanoscale 2017, 9, 14809. doi: 10.1039/c7nr05239a  doi: 10.1039/c7nr05239a

    47. [47]

      Kwak, K.; Thanthirige, V. D.; Pyo, K.; Lee, D.; Ramakrishna, G. J. Phys. Chem. Lett. 2017, 8, 4898. doi: 10.1021/acs.jpclett.7b01892  doi: 10.1021/acs.jpclett.7b01892

  • 加载中
    1. [1]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    2. [2]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    3. [3]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    4. [4]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    5. [5]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    6. [6]

      Rakesh Kumar Gupta Zhi Wang Di Sun . Shining bright: Revolutionary near-unity NIR phosphorescent metal nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(11): 100417-100417. doi: 10.1016/j.cjsc.2024.100417

    7. [7]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    8. [8]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    9. [9]

      Ji LiuDongsheng HeTianjiao HaoYumin HuYan ZhaoZhen LiChang LiuDaquan ChenQiyue WangXiaofei XinYan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296

    10. [10]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    11. [11]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    12. [12]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    13. [13]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    14. [14]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    15. [15]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    16. [16]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    17. [17]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    18. [18]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    19. [19]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    20. [20]

      Shuo ZhangHaitao LiaoZhi-Qun LiuChong YanJia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284

Metrics
  • PDF Downloads(9)
  • Abstract views(381)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return