Citation: OROZCO-VALENCIA Ulises, GÁZQUEZ José L., VELA Alberto. Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 692-698. doi: 10.3866/PKU.WHXB201801121 shu

Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis

  • Corresponding author: VELA Alberto, avela@cinvestav.mx
  • Received Date: 24 November 2017
    Revised Date: 29 December 2017
    Accepted Date: 5 January 2018
    Available Online: 12 June 2018

    Fund Project: UOV was supported in part by Conacyt through a doctoral fellowship. JLG thanks Conacyt for grant 237045, and AV thanks Conacyt for grant Fronteras 867

  • A global and local charge transfer partitioning model, based on the cornerstone theory developed by Robert G. Parr and Robert G. Pearson, which introduces two charge transfer channels (one for accepting electrons (electrophilic) and another for donating (nucleophilic)), is applied to the reaction of a set of indoles with 4, 6-dinitrobenzofuroxan. The global analysis indicates that the prevalent electron transfer mechanism in the reaction is a nucleophilic one on the indoles, i.e., the indoles under consideration transfer electrons to 4, 6-dinitrobenzofuroxan. Evaluating the reactivity descriptors with exchange-correlation functionals including exact exchange (global hybrids) yields slightly better correlations than those obtained with generalized gradient-approximated functionals; however, the trends are preserved. Comparing the trend obtained with the number of electrons donated by the indoles, and predicted by the partitioning model, with that observed experimentally based on the measured rate constants, we propose that the number of electrons transferred through this channel can be used as a nucleophilicity scale to order the reactivity of indoles towards 4, 6-dinitrobenzofuroxan. This approach to obtain reactivity scales has the advantage of depending on the intrinsic properties of the two reacting species; therefore, it opens the possibility that the same group of molecules may show different reactivity trends depending on the species with which they are reacting. The local model allows systematic incorporation of the reactive atoms based on the their decreasing condensed Fukui functions, and the correlations obtained by increasing the number of reactive atoms participating in the local analysis of the transferred nucleophilic charge improve, reaching an optimal correlation, which in the present case indicates keeping three atoms from the indoles and two from 4, 6-dinitrobenzofuroxan. The atoms selected by this procedure provide valuable information about the local reactivity of the indoles. We further show that this information about the most reactive atoms on each reactant, combined with the spatial distribution of the nucleophilic and electrophilic Fukui functions of both reactants, allows one to propose non-trivial candidates of starting geometries for the search of the transition state structures present in these reactions.
  • 加载中
    1. [1]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules, Revised ed.; Oxford University Press: New York, NY, USA, 1994.

    2. [2]

      Chermette, H. J. Comput. Chem. 1999, 20, 129. doi: 10.1002/(Sici)1096-987x(19990115)20:1 < 129::Aid-Jcc13 > 3.0.Co; 2-A  doi: 10.1002/(Sici)1096-987x(19990115)20:1<129::Aid-Jcc13>3.0.Co;2-A

    3. [3]

      Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p  doi: 10.1021/cr990029p

    4. [4]

      Gázquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.

    5. [5]

      Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. doi: 10.3866/Pku.Whxb20090332  doi: 10.3866/Pku.Whxb20090332

    6. [6]

      Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065. doi: 10.1021/cr040109f  doi: 10.1021/cr040109f

    7. [7]

      Chattaraj, P. K.; Roy, D. R. Chem. Rev. 2007, 107, PR46. doi: 10.1021/cr078014b  doi: 10.1021/cr078014b

    8. [8]

      Chattaraj, P. K.; Giri, S.; Duley, S. Chem. Rev. 2011, 111, PR43. doi: 10.1021/cr100149p  doi: 10.1021/cr100149p

    9. [9]

      Pearson, R. G. Coord. Chem. Rev. 1990, 100, 403. doi: 10.1016/0010-8545(90)85016-l  doi: 10.1016/0010-8545(90)85016-l

    10. [10]

      Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512. doi: 10.1021/Ja00364a005  doi: 10.1021/Ja00364a005

    11. [11]

      Pearson, R. G. Inorg. Chem. 1988, 27, 734. doi: 10.1021/ic00277a030  doi: 10.1021/ic00277a030

    12. [12]

      Pearson, R. G. J. Org. Chem. 1989, 54, 1423. doi: 10.1021/jo00267a034  doi: 10.1021/jo00267a034

    13. [13]

      Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry; University Science Books: Sausalito, CA, USA, 2005.

    14. [14]

      Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520. doi: 10.1002/qua.20307  doi: 10.1002/qua.20307

    15. [15]

      Roos, G.; Geerlings, P.; Messens, J. J. Phys. Chem. B 2009, 113, 13465. doi: 10.1021/jp9034584  doi: 10.1021/jp9034584

    16. [16]

      Orozco-Valencia, A. U.; Gazquez, J. L.; Vela, A. J. Phys. Chem. A 2017, 121, 4019. doi: 10.1021/acs.jpca.7b01765  doi: 10.1021/acs.jpca.7b01765

    17. [17]

      Orozco-Valencia, U.; Gazquez, J. L.; Vela, A. J. Mol. Model. 2017, 23, 207. doi: 10.1007/s00894-017-3368-y  doi: 10.1007/s00894-017-3368-y

    18. [18]

      Lakhdar, S.; Westermaier, M.; Terrier, F.; Goumont, R.; Boubaker, T.; Ofial, A. R.; Mayr, H. J. Org. Chem. 2006, 71, 9088. doi: 10.1021/jo0614339  doi: 10.1021/jo0614339

    19. [19]

      Parr, R. G.; Yang, W. T. J. Am. Chem. Soc. 1984, 106, 4049. doi: 10.1021/ja00326a036  doi: 10.1021/ja00326a036

    20. [20]

      Berkowitz, M. J. Am. Chem. Soc. 1987, 109, 4823. doi: 10.1021/ja00250a012  doi: 10.1021/ja00250a012

    21. [21]

      Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708. doi: 10.1021/ja00279a008  doi: 10.1021/ja00279a008

    22. [22]

      Fuentealba, P.; Perez, P.; Contreras, R. J. Chem. Phys. 2000, 113, 2544. doi: 10.1063/1.1305879  doi: 10.1063/1.1305879

    23. [23]

      Ayers, P. W.; Morrison, R. C.; Roy, R. K. J. Chem. Phys. 2002, 116, 8731. doi: 10.1063/1.1467338  doi: 10.1063/1.1467338

    24. [24]

      Bultinck, P.; Fias, S.; Van Alsenoy, C.; Ayers, P. W.; Carbo-Dorca, R. J. Chem. Phys. 2007, 127, 034102. doi: 10.1063/1.2749518  doi: 10.1063/1.2749518

    25. [25]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, USA, 2009.
       

    26. [26]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    27. [27]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396. doi: 10.1103/PhysRevLett.78.1396  doi: 10.1103/PhysRevLett.78.1396

    28. [28]

      Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129. doi: 10.1007/bf00549096  doi: 10.1007/bf00549096

    29. [29]

      Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics Modell. 1996, 14, 33. doi: 10.1016/0263-7855(96)00018-5  doi: 10.1016/0263-7855(96)00018-5

    30. [30]

      Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x  doi: 10.1007/s00214-007-0310-x

    31. [31]

      Terrier, F.; Pouet, M. J.; Halle, J. C.; Hunt, S.; Jones, J. R.; Buncel, E. J. Chem. Soc., Perkin Trans. 2 1993, 1665. doi: 10.1039/p29930001665  doi: 10.1039/p29930001665

    32. [32]

      Domingo, L. R.; Perez, P. Org. Biomol. Chem. 2011, 9, 7168. doi: 10.1039/c1ob05856h  doi: 10.1039/c1ob05856h

  • 加载中
    1. [1]

      Haiyan Yin Abdusalam Ablez Zhuangzhuang Wang Weian Li Yanqi Wang Qianqian Hu Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560

    2. [2]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    3. [3]

      Junqing YeMengyuan RenJunfeng QianXibao LiQun Chen . Advances in graphene quantum dots-based photocatalysts for enhanced charge transfer in photocatalytic reactions. Chinese Chemical Letters, 2025, 36(9): 110857-. doi: 10.1016/j.cclet.2025.110857

    4. [4]

      Huifang MaTao XuSaifei YuanShujuan LiJiayao WangYuping ZhangHao RenShulai Lei . Interlayer interactions and electron transfer effects on sodium adsorption on 2D heterostructures surfaces. Chinese Chemical Letters, 2025, 36(8): 110219-. doi: 10.1016/j.cclet.2024.110219

    5. [5]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    6. [6]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    7. [7]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    8. [8]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    9. [9]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    10. [10]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    11. [11]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    12. [12]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    13. [13]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Hongen CaoXinrui XiaoXu ZhangYiyang ZhangLei Yu . Element Transfer Reaction theory: Scientific connotation and its applications in chemical industry. Chinese Chemical Letters, 2025, 36(9): 110924-. doi: 10.1016/j.cclet.2025.110924

    15. [15]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    16. [16]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    17. [17]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    18. [18]

      Xiao YuDongyue CuiMengmeng WangZhaojin WangMengzhu WangDeshuang TuVladimir BregadzeChangsheng LuQiang ZhaoRunfeng ChenHong Yan . Boron cluster-based TADF emitter via through-space charge transfer enabling efficient orange-red electroluminescence. Chinese Chemical Letters, 2025, 36(3): 110520-. doi: 10.1016/j.cclet.2024.110520

    19. [19]

      Manlin LuSheng LiaoJiayu LiZidong YuNingjiu ZhaoZuoti XieShunli ChenLi DangMing-De Li . Face-to-face π-π interactions and electron communication boosting efficient reverse intersystem crossing in through-space charge transfer molecules. Chinese Chemical Letters, 2025, 36(6): 110066-. doi: 10.1016/j.cclet.2024.110066

    20. [20]

      Jinjin YangChuanhui ZhuShuang ZhaoTao XiaPengfei TanYutian ZhangMei-Huan ZhaoYijie ZengMan-Rong Li . Spin-orbit-controlled metal-insulator transition in metastable SrIrO3 stabilized by physical and chemical pressures. Chinese Chemical Letters, 2025, 36(6): 109891-. doi: 10.1016/j.cclet.2024.109891

Metrics
  • PDF Downloads(6)
  • Abstract views(344)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return