Thermodynamic Dual Descriptor
- Corresponding author: FRANCO-PÉREZ Marco, qimfranco@hotmail.com
Citation: FRANCO-PÉREZ Marco, GÁZQUEZ José L., AYERS Paul W., VELA Alberto. Thermodynamic Dual Descriptor[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 683-391. doi: 10.3866/PKU.WHXB201801031
Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford UP: New York, NY, USA, 1989.
Chermette, H. J. Comp. Chem. 1999, 20, 129. doi: 10.1002/(SICI)1096-987X(19990115)20:1 < 129::AID-JCC13 > 3.0.CO; 2-A
doi: 10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A
Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p
doi: 10.1021/cr990029p
Gázquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.
Chattaraj, P. K. Chemical Reactivity Theory: A Density Functional View; CRC Press: Boca Raton, FL, USA, 2009.
Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. doi: 10.3866/PKU.WHXB20090332
doi: 10.3866/PKU.WHXB20090332
Johnson, P. A.; Bartolotti, L.; Ayers, P. W.; Fievez, T.; Geerlings, P. Charge Density and Chemical Reactions: A Unified View from Conceptual DFT. In Modern Charge-Density Analysis; Gatti, C., Macchi, P., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 715–764.
Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801. doi: 10.1063/1.436185
doi: 10.1063/1.436185
Mulliken, R. S. J. Chem. Phys. 1934, 2, 782. doi: 10.1063/1.1749394
doi: 10.1063/1.1749394
Iczkowski, R.; Margrave, J. L. J. Am. Chem. Soc. 1961, 83, 3547. doi: 10.1021/ja01478a001
doi: 10.1021/ja01478a001
Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533. doi: 10.1021/ja00905a001
doi: 10.1021/ja00905a001
Pearson, R. G. Science 1966, 151, 172. doi: 10.1126/science.151.3707.172
doi: 10.1126/science.151.3707.172
Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512. doi: 10.1021/ja00364a005
doi: 10.1021/ja00364a005
Pearson, R. G. J. Chem. Educ. 1987, 64, 561. doi: 10.1021/ed064p561
doi: 10.1021/ed064p561
Pearson, R. G. Inorg. Chim. Acta 1995, 240, 93. doi: 10.1016/0020-1693(95)04648-8
doi: 10.1016/0020-1693(95)04648-8
Pearson, R. G., Chemical Hardness: Applications from Molecules to Solids; Wiley-VCH: Oxford, UK, 1997.
Parr, R. G.; Yang, W. T. J. Am. Chem. Soc. 1984, 106, 4049. doi: 10.1021/ja00326a036
doi: 10.1021/ja00326a036
Yang, W. T.; Parr, R. G.; Pucci, R. J. Chem. Phys. 1984, 81, 2862. doi: 10.1063/1.447964
doi: 10.1063/1.447964
Ayers, P. W.; Levy, M. Theor. Chem. Acc. 2000, 103, 353. doi: 10.1007/s002149900093
doi: 10.1007/s002149900093
Morell, C.; Grand, A.; Toro-Labbe, A. J. Phys. Chem. A 2005, 109, 205. doi: 10.1021/jp046577a
doi: 10.1021/jp046577a
Morell, C.; Grand, A.; Toro-Labbe, A. Chem. Phys. Lett. 2006, 425, 342. doi: 10.1016/j.cplett.2006.05.003
doi: 10.1016/j.cplett.2006.05.003
Cardenas, C.; Echegaray, E.; Chakraborty, D.; Anderson, J. S. M.; Ayers, P. W. J. Chem. Phys. 2009, 130, 244105. doi: 10.1063/1.3151599
doi: 10.1063/1.3151599
De Proft, F.; Ayers, P. W.; Fias, S.; Geerlings, P. J. Chem. Phys. 2006, 125, 214101. doi: 10.1063/1.2387953
doi: 10.1063/1.2387953
Ayers, P. W.; Morell, C.; De Proft, F.; Geerlings, P. Chem. Eur. J. 2007, 13, 8240. doi: 10.1002/chem.200700365
doi: 10.1002/chem.200700365
De Proft, F.; Chattaraj, P. K.; Ayers, P. W.; Torrent-Sucarrat, M.; Elango, M.; Subramanian, V.; Giri, S.; Geerlings, P. J. Chem. Theory Comput. 2008, 4, 595. doi: 10.1021/ct700289p
doi: 10.1021/ct700289p
Morell, C.; Ayers, P. W.; Grand, A.; Gutierrez-Oliva, S.; Toro-Labbe, A. Phys. Chem. Chem. Phys. 2008, 10, 7239. doi: 10.1039/b810343g
doi: 10.1039/b810343g
Chamorro, E.; Pérez, P.; Duque, M.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2008, 129, 064117. doi: 10.1063/1.2965594
doi: 10.1063/1.2965594
Cárdenas, C.; Rabi, N.; Ayers, P. W.; Morell, C.; Jaramillo, P.; Fuentealba, P. J. Phys. Chem. A 2009, 113, 8660. doi: 10.1021/jp902792n
doi: 10.1021/jp902792n
Araya, J. I. M. Chem. Phys. Lett. 2011, 506, 104. doi: 10.1016/j.cplett.2011.02.051
doi: 10.1016/j.cplett.2011.02.051
Morell, C.; Ayers, P. W.; Grand, A.; Chermette, H. Phys. Chem. Chem. Phys. 2011, 13, 9601. doi: 10.1039/c0cp02083d
doi: 10.1039/c0cp02083d
Geerlings, P.; Ayers, P. W.; Toro-Labbe, A.; Chattaraj, P. K.; De Proft, F. Accounts Chem. Res. 2012, 45, 683. doi: 10.1021/ar200192t
doi: 10.1021/ar200192t
Tognetti, V.; Morell, C.; Ayers, P. W.; Joubert, L.; Chermette, H. Phys. Chem. Chem. Phys. 2013, 15, 14465. doi: 10.1039/c3cp51169c
doi: 10.1039/c3cp51169c
Morell, C.; Gázquez, J. L.; Vela, A.; Guegan, F.; Chermette, H. Phys. Chem. Chem. Phys. 2014, 16, 26832. doi: 10.1039/c4cp03167a
doi: 10.1039/c4cp03167a
Guegan, F.; Mignon, P.; Tognetti, V.; Joubert, L.; Morell, C. Phys. Chem. Chem. Phys. 2014, 16, 15558. doi: 10.1039/c4cp01613k
doi: 10.1039/c4cp01613k
Tognetti, V.; Morell, C.; Joubert, L. J. Comp. Chem. 2015, 36, 649. doi: 10.1002/jcc.23840
doi: 10.1002/jcc.23840
De Proft, F.; Forquet, V.; Ourri, B.; Chermette, H.; Geerlings, P.; Morell, C. Phys. Chem. Chem. Phys. 2015, 17, 9359. doi: 10.1039/c4cp05454g
doi: 10.1039/c4cp05454g
Guegan, F.; Tognetti, V.; Joubert, L.; Chermette, H.; Luneau, D.; Morell, C. Phys. Chem. Chem. Phys. 2016, 18, 982. doi: 10.1039/c5cp04982b
doi: 10.1039/c5cp04982b
Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L. Phys. Rev. Lett. 1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691
doi: 10.1103/PhysRevLett.49.1691
Zhang, Y. K.; Yang, W. T. Theor. Chem. Acc. 2000, 103, 346. doi: 10.1007/s002149900021
doi: 10.1007/s002149900021
Yang, W. T.; Zhang, Y. K.; Ayers, P. W. Phys. Rev. Lett. 2000, 84, 5172. doi: 10.1103/PhysRevLett.84.5172
doi: 10.1103/PhysRevLett.84.5172
Ayers, P. W. J. Math. Chem. 2008, 43, 285. doi: 10.1007/s10910-006-9195-5
doi: 10.1007/s10910-006-9195-5
Miranda-Quintana, R. A.; Ayers, P. W. J. Chem. Phys. 2016, 144, 244112. doi: 10.1063/1.4953557
doi: 10.1063/1.4953557
Heidar Zadeh, F.; Miranda-Quintana, R. A.; Verstraelen, T.; Bultinck, P.; Ayers, P. W. J. Chem. Theory Comput. 2016, 12, 5777. doi: 10.1021/acs.jctc.6b00494
doi: 10.1021/acs.jctc.6b00494
Ayers, P. W.; Morell, C.; De Proft, F.; Geerlings, P. Chem. Eur. J. 2007, 13 8240. doi: 10.1002/chem.200700365
doi: 10.1002/chem.200700365
Polanco-Ramírez, C. A.; Franco-Pérez, M.; Carmona-Espíndola, J.; Gázquez, J. L.; Ayers, P. W. Phys. Chem. Chem. Phys. 2017, 19, 12355. doi: 10.1039/c7cp00691h
doi: 10.1039/c7cp00691h
Kaplan, T. A. J. Statist. Phys. 2006, 122, 1237. doi: 10.1007/s10955-005-8067-x
doi: 10.1007/s10955-005-8067-x
Ayers, P. W. Theor. Chem. Acc. 2007, 118, 371. doi: 10.1007/s00214-007-0277-7
doi: 10.1007/s00214-007-0277-7
Franco-Pérez, M.; Ayers, P. W.; Gázquez, J. L.; Vela, A. J. Chem. Phys. 2015, 143, 244117. doi: 10.1063/1.4938422
doi: 10.1063/1.4938422
Franco-Pérez, M.; Gázquez, J. L.; Ayers, P. W.; Vela, A. J. Chem. Phys. 2015, 143, 154103. doi: 10.1063/1.4932539
doi: 10.1063/1.4932539
Franco-Pérez, M.; Gázquez, J. L.; Vela, A. J. Chem. Phys. 2015, 143, 024112. doi: 10.1063/1.4923260
doi: 10.1063/1.4923260
Malek, A.; Balawender, R. J. Chem. Phys. 2015, 142, 054104. doi: 10.1063/1.4906555
doi: 10.1063/1.4906555
Franco-Pérez, M.; Ayers, P. W.; Gázquez, J. L. Theor. Chem. Acc. 2016, 135, 199. doi: 10.1007/s00214-016-1961-2
doi: 10.1007/s00214-016-1961-2
Miranda-Quintana, R. A.; Ayers, P. W. Phys. Chem. Chem. Phys. 2016, 18, 15070. doi: 10.1039/c6cp00939e
doi: 10.1039/c6cp00939e
Franco-Pérez, M.; Ayers, P. W.; Gázquez, J. L.; Vela, A. Phys. Chem. Chem. Phys. 2017, 19, 13687. doi: 10.1039/c7cp00692f
doi: 10.1039/c7cp00692f
Franco-Pérez, M.; Ayers, P. W.; Gázquez, J. L.; Vela, A. J. Chem. Phys. 2017, 147, 094105. doi: 10.1063/1.4999761
doi: 10.1063/1.4999761
Franco-Pérez, M.; Gázquez, J. L.; Ayers, P. W.; Vela, A. J. Chem. Phys. 2017, 147, 074113. doi: 10.1063/1.4998701
doi: 10.1063/1.4998701
Franco-Pérez, M.; Heidar-Zadeh, F.; Ayers, P. W.; Gázquez, J. L.; Vela, A. Phys. Chem. Chem. Phys. 2017, 19, 11588. doi: 10.1039/c7cp00224f
doi: 10.1039/c7cp00224f
Franco-Pérez, M.; Polanco-Ramirez, C. A.; Ayers, P. W.; Gázquez, J. L.; Vela, A. Phys. Chem. Chem. Phys. 2017, 19, 16095. doi: 10.1039/c7cp02613g
doi: 10.1039/c7cp02613g
Miranda-Quintana, R. A. J. Chem. Phys. 2017, 146, 214113. doi: 10.1063/1.4984611
doi: 10.1063/1.4984611
Miranda-Quintana, R. A.; Chattaraj, P. K.; Ayers, P. W. J. Chem. Phys. 2017, 147, 124103. doi: 10.1063/1.4996443
doi: 10.1063/1.4996443
Miranda-Quintana, R. A.; Kim, T. D.; Cardenas, C.; Ayers, P. W. Theor. Chem. Acc. 2017, 136, 135. doi: 10.1007/s00214-017-2167-y
doi: 10.1007/s00214-017-2167-y
Mermin, N. D. Phys. Rev. 1965, 137, A1441.
doi: 10.1103/PhysRev.137.A1441
Kohn, W.; Vashishta, P. Theory of the Inhomogeneous Electron Gas; March, N. H., Ed.; Plenum: New York, NY, USA, 1983; p. 124.
Parr, R. G.; Chattaraj, P. K. J. Am. Chem. Soc. 1991, 113, 1854. doi: 10.1021/ja00005a072
doi: 10.1021/ja00005a072
Chattaraj, P. K.; Cedillo, A.; Parr, R. G. Chem. Phys. 1996, 204, 429. doi: 10.1016/0301-0104(95)00276-6
doi: 10.1016/0301-0104(95)00276-6
Chandler, D. Introduction to Modern Statistical Mechanics; Oxford University Press: New York, NY, USA, 1987; p. 288.
Landau, L. D.; Lifshitz, E. M. Statistical Physics; Pergamon Press: Elmsford, NY, USA, 1959.
Franco-Pérez, M.; Gázquez, J. L.; Ayers, P.; Vela, A. J. Chem. Theory Comput. 2017, doi: 10.1021/acs.jctc.7b00940
doi: 10.1021/acs.jctc.7b00940
Yang, W. T.; Parr, R. G. Proc. Nat. Acad. Sci. 1985, 82, 6723. doi: 10.1073/pnas.82.20.6723
doi: 10.1073/pnas.82.20.6723
Berkowitz, M.; Parr, R. G. J. Chem. Phys. 1988, 88, 2554. doi: 10.1063/1.454034
doi: 10.1063/1.454034
Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2001, 123, 2007. doi: 10.1021/ja002966g
doi: 10.1021/ja002966g
Sablon, N.; De Proft, F.; Ayers, P. W.; Geerlings, P. J. Chem. Theory Comput. 2010, 6, 3671. doi: 10.1021/ct1004577
doi: 10.1021/ct1004577
Sablon, N.; De Proft, F.; Geerlings, P. J. Phys. Chem. Lett. 2010, 1, 1228. doi: 10.1021/jz1002132
doi: 10.1021/jz1002132
Geerlings, P.; Fias, S.; Boisdenghien, Z.; De Proft, F. Chem. Soc. Rev. 2014, 43, 4989. doi: 10.1039/c3cs60456j
doi: 10.1039/c3cs60456j
Zixu Xie , Pengfei Zhang , Ziyao Zhang , Chen Chen , Xing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768
Xu-Hui Yue , Xiang-Wen Zhang , Hui-Min He , Lei Qiao , Zhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907
Yan Wang , Huixin Chen , Fuda Yu , Shanyue Wei , Jinhui Song , Qianfeng He , Yiming Xie , Miaoliang Huang , Canzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Min Fu , Pan He , Sen Zhou , Wenqiang Liu , Bo Ma , Shiying Shang , Yaohao Li , Ruihan Wang , Zhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Ying Li , Long-Jie Wang , Yong-Kang Zhou , Jun Liang , Bin Xiao , Ji-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033
Min Huang , Ru Cheng , Shuai Wen , Liangtong Li , Jie Gao , Xiaohui Zhao , Chunmei Li , Hongyan Zou , Jian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
Jingyuan Yang , Xinyu Tian , Liuzhong Yuan , Yu Liu , Yue Wang , Chuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
Tao LIU , Yuting TIAN , Ke GAO , Xuwei HAN , Ru'nan MIN , Wenjing ZHAO , Xueyi SUN , Caixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107
Hang Chen , Chengzhi Cui , Hebo Ye , Hanxun Zou , Lei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
Jingxuan Liu , Shiqi Zhao , Xiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416