Citation: FRANCO-PÉREZ Marco, GÁZQUEZ José L., AYERS Paul W., VELA Alberto. Thermodynamic Dual Descriptor[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 683-391. doi: 10.3866/PKU.WHXB201801031 shu

Thermodynamic Dual Descriptor

  • Corresponding author: FRANCO-PÉREZ Marco, qimfranco@hotmail.com
  • Received Date: 16 November 2017
    Revised Date: 27 December 2017
    Accepted Date: 27 December 2017
    Available Online: 3 June 2018

    Fund Project: PWA thanks NSERC for support from the Canada Research Chairs, Compute Canada, and an NSERC Discovery Grant. MFP thanks Universidad Autónoma Metropolitana-Iztapalapa for a Visiting Professor Invitation. JLG and AV thank Conacyt for Grants 237045 and 128369, respectively

  • A new definition of the dual descriptor, namely, the thermodynamic dual descriptor, is developed within the grand canonical potential formalism. This new definition is formulated to describe the same physical phenomenon as the original definition proposed by Morell, Grand, and Toro-Labbé (J. Phys. Chem. A 2005, 109, 205), which is characterized by a second-order response of the electron density towards an electron flux. To formulate the new definition, we performed two successive partial derivatives of the average electron density, one with respect to the average number of electrons, and the other with respect to the chemical potential of the electron reservoir. When the derivative is expressed in terms of the three-state ensemble model, in the regime of low temperatures up to temperatures of chemical interest, one finds that the thermodynamic dual descriptor can be expressed as ∆fT(r) = (β/2)C[f+(r)-f-(r)], where β = 1/kBT, C is a global quantity that depends on the temperature and global electronic properties of the molecule (the first ionization potential and the electron affinity), C = 1 for systems with zero fractional charge, and C = Cω > 0 (albeit very close to zero) for systems with nonzero fractional charge, , and f+(r) and f-(r) are the nucleophilic and electrophilic Fukui functions, respectively. The quantity within the square brackets is the original definition of the dual descriptor. As the local terms (the ones containing regioselectivity information) are equal to those of the dual descriptor, ∆fT(r) has the same regioselectivity information, multiplied by the global quantity (β/2)C. This implies that the regioselectivity information contained in the original dual descriptor is preserved at all temperatures different from zero, and for any value of C > 0. One of the most important features of this new definition is that it avoids the undesired Dirac delta behavior observed when the second order partial derivative of the average density is taken with respect to the average number of electrons, using the exact density dependence of the average number of electrons.
  • 加载中
    1. [1]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford UP: New York, NY, USA, 1989.
       

    2. [2]

      Chermette, H. J. Comp. Chem. 1999, 20, 129. doi: 10.1002/(SICI)1096-987X(19990115)20:1 < 129::AID-JCC13 > 3.0.CO; 2-A  doi: 10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A

    3. [3]

      Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p  doi: 10.1021/cr990029p

    4. [4]

      Gázquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.

    5. [5]

      Chattaraj, P. K. Chemical Reactivity Theory: A Density Functional View; CRC Press: Boca Raton, FL, USA, 2009.

    6. [6]

      Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. doi: 10.3866/PKU.WHXB20090332  doi: 10.3866/PKU.WHXB20090332

    7. [7]

      Johnson, P. A.; Bartolotti, L.; Ayers, P. W.; Fievez, T.; Geerlings, P. Charge Density and Chemical Reactions: A Unified View from Conceptual DFT. In Modern Charge-Density Analysis; Gatti, C., Macchi, P., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 715–764.

    8. [8]

      Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801. doi: 10.1063/1.436185  doi: 10.1063/1.436185

    9. [9]

      Mulliken, R. S. J. Chem. Phys. 1934, 2, 782. doi: 10.1063/1.1749394  doi: 10.1063/1.1749394

    10. [10]

      Iczkowski, R.; Margrave, J. L. J. Am. Chem. Soc. 1961, 83, 3547. doi: 10.1021/ja01478a001  doi: 10.1021/ja01478a001

    11. [11]

      Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533. doi: 10.1021/ja00905a001  doi: 10.1021/ja00905a001

    12. [12]

      Pearson, R. G. Science 1966, 151, 172. doi: 10.1126/science.151.3707.172  doi: 10.1126/science.151.3707.172

    13. [13]

      Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512. doi: 10.1021/ja00364a005  doi: 10.1021/ja00364a005

    14. [14]

      Pearson, R. G. J. Chem. Educ. 1987, 64, 561. doi: 10.1021/ed064p561  doi: 10.1021/ed064p561

    15. [15]

      Pearson, R. G. Inorg. Chim. Acta 1995, 240, 93. doi: 10.1016/0020-1693(95)04648-8  doi: 10.1016/0020-1693(95)04648-8

    16. [16]

      Pearson, R. G., Chemical Hardness: Applications from Molecules to Solids; Wiley-VCH: Oxford, UK, 1997.

    17. [17]

      Parr, R. G.; Yang, W. T. J. Am. Chem. Soc. 1984, 106, 4049. doi: 10.1021/ja00326a036  doi: 10.1021/ja00326a036

    18. [18]

      Yang, W. T.; Parr, R. G.; Pucci, R. J. Chem. Phys. 1984, 81, 2862. doi: 10.1063/1.447964  doi: 10.1063/1.447964

    19. [19]

      Ayers, P. W.; Levy, M. Theor. Chem. Acc. 2000, 103, 353. doi: 10.1007/s002149900093  doi: 10.1007/s002149900093

    20. [20]

      Morell, C.; Grand, A.; Toro-Labbe, A. J. Phys. Chem. A 2005, 109, 205. doi: 10.1021/jp046577a  doi: 10.1021/jp046577a

    21. [21]

      Morell, C.; Grand, A.; Toro-Labbe, A. Chem. Phys. Lett. 2006, 425, 342. doi: 10.1016/j.cplett.2006.05.003  doi: 10.1016/j.cplett.2006.05.003

    22. [22]

      Cardenas, C.; Echegaray, E.; Chakraborty, D.; Anderson, J. S. M.; Ayers, P. W. J. Chem. Phys. 2009, 130, 244105. doi: 10.1063/1.3151599  doi: 10.1063/1.3151599

    23. [23]

      De Proft, F.; Ayers, P. W.; Fias, S.; Geerlings, P. J. Chem. Phys. 2006, 125, 214101. doi: 10.1063/1.2387953  doi: 10.1063/1.2387953

    24. [24]

      Ayers, P. W.; Morell, C.; De Proft, F.; Geerlings, P. Chem. Eur. J. 2007, 13, 8240. doi: 10.1002/chem.200700365  doi: 10.1002/chem.200700365

    25. [25]

      De Proft, F.; Chattaraj, P. K.; Ayers, P. W.; Torrent-Sucarrat, M.; Elango, M.; Subramanian, V.; Giri, S.; Geerlings, P. J. Chem. Theory Comput. 2008, 4, 595. doi: 10.1021/ct700289p  doi: 10.1021/ct700289p

    26. [26]

      Morell, C.; Ayers, P. W.; Grand, A.; Gutierrez-Oliva, S.; Toro-Labbe, A. Phys. Chem. Chem. Phys. 2008, 10, 7239. doi: 10.1039/b810343g  doi: 10.1039/b810343g

    27. [27]

      Chamorro, E.; Pérez, P.; Duque, M.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2008, 129, 064117. doi: 10.1063/1.2965594  doi: 10.1063/1.2965594

    28. [28]

      Cárdenas, C.; Rabi, N.; Ayers, P. W.; Morell, C.; Jaramillo, P.; Fuentealba, P. J. Phys. Chem. A 2009, 113, 8660. doi: 10.1021/jp902792n  doi: 10.1021/jp902792n

    29. [29]

      Araya, J. I. M. Chem. Phys. Lett. 2011, 506, 104. doi: 10.1016/j.cplett.2011.02.051  doi: 10.1016/j.cplett.2011.02.051

    30. [30]

      Morell, C.; Ayers, P. W.; Grand, A.; Chermette, H. Phys. Chem. Chem. Phys. 2011, 13, 9601. doi: 10.1039/c0cp02083d  doi: 10.1039/c0cp02083d

    31. [31]

      Geerlings, P.; Ayers, P. W.; Toro-Labbe, A.; Chattaraj, P. K.; De Proft, F. Accounts Chem. Res. 2012, 45, 683. doi: 10.1021/ar200192t  doi: 10.1021/ar200192t

    32. [32]

      Tognetti, V.; Morell, C.; Ayers, P. W.; Joubert, L.; Chermette, H. Phys. Chem. Chem. Phys. 2013, 15, 14465. doi: 10.1039/c3cp51169c  doi: 10.1039/c3cp51169c

    33. [33]

      Morell, C.; Gázquez, J. L.; Vela, A.; Guegan, F.; Chermette, H. Phys. Chem. Chem. Phys. 2014, 16, 26832. doi: 10.1039/c4cp03167a  doi: 10.1039/c4cp03167a

    34. [34]

      Guegan, F.; Mignon, P.; Tognetti, V.; Joubert, L.; Morell, C. Phys. Chem. Chem. Phys. 2014, 16, 15558. doi: 10.1039/c4cp01613k  doi: 10.1039/c4cp01613k

    35. [35]

      Tognetti, V.; Morell, C.; Joubert, L. J. Comp. Chem. 2015, 36, 649. doi: 10.1002/jcc.23840  doi: 10.1002/jcc.23840

    36. [36]

      De Proft, F.; Forquet, V.; Ourri, B.; Chermette, H.; Geerlings, P.; Morell, C. Phys. Chem. Chem. Phys. 2015, 17, 9359. doi: 10.1039/c4cp05454g  doi: 10.1039/c4cp05454g

    37. [37]

      Guegan, F.; Tognetti, V.; Joubert, L.; Chermette, H.; Luneau, D.; Morell, C. Phys. Chem. Chem. Phys. 2016, 18, 982. doi: 10.1039/c5cp04982b  doi: 10.1039/c5cp04982b

    38. [38]

      Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L. Phys. Rev. Lett. 1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691  doi: 10.1103/PhysRevLett.49.1691

    39. [39]

      Zhang, Y. K.; Yang, W. T. Theor. Chem. Acc. 2000, 103, 346. doi: 10.1007/s002149900021  doi: 10.1007/s002149900021

    40. [40]

      Yang, W. T.; Zhang, Y. K.; Ayers, P. W. Phys. Rev. Lett. 2000, 84, 5172. doi: 10.1103/PhysRevLett.84.5172  doi: 10.1103/PhysRevLett.84.5172

    41. [41]

      Ayers, P. W. J. Math. Chem. 2008, 43, 285. doi: 10.1007/s10910-006-9195-5  doi: 10.1007/s10910-006-9195-5

    42. [42]

      Miranda-Quintana, R. A.; Ayers, P. W. J. Chem. Phys. 2016, 144, 244112. doi: 10.1063/1.4953557  doi: 10.1063/1.4953557

    43. [43]

      Heidar Zadeh, F.; Miranda-Quintana, R. A.; Verstraelen, T.; Bultinck, P.; Ayers, P. W. J. Chem. Theory Comput. 2016, 12, 5777. doi: 10.1021/acs.jctc.6b00494  doi: 10.1021/acs.jctc.6b00494

    44. [44]

      Ayers, P. W.; Morell, C.; De Proft, F.; Geerlings, P. Chem. Eur. J. 2007, 13 8240. doi: 10.1002/chem.200700365  doi: 10.1002/chem.200700365

    45. [45]

      Polanco-Ramírez, C. A.; Franco-Pérez, M.; Carmona-Espíndola, J.; Gázquez, J. L.; Ayers, P. W. Phys. Chem. Chem. Phys. 2017, 19, 12355. doi: 10.1039/c7cp00691h  doi: 10.1039/c7cp00691h

    46. [46]

      Kaplan, T. A. J. Statist. Phys. 2006, 122, 1237. doi: 10.1007/s10955-005-8067-x  doi: 10.1007/s10955-005-8067-x

    47. [47]

      Ayers, P. W. Theor. Chem. Acc. 2007, 118, 371. doi: 10.1007/s00214-007-0277-7  doi: 10.1007/s00214-007-0277-7

    48. [48]

      Franco-Pérez, M.; Ayers, P. W.; Gázquez, J. L.; Vela, A. J. Chem. Phys. 2015, 143, 244117. doi: 10.1063/1.4938422  doi: 10.1063/1.4938422

    49. [49]

      Franco-Pérez, M.; Gázquez, J. L.; Ayers, P. W.; Vela, A. J. Chem. Phys. 2015, 143, 154103. doi: 10.1063/1.4932539  doi: 10.1063/1.4932539

    50. [50]

      Franco-Pérez, M.; Gázquez, J. L.; Vela, A. J. Chem. Phys. 2015, 143, 024112. doi: 10.1063/1.4923260  doi: 10.1063/1.4923260

    51. [51]

      Malek, A.; Balawender, R. J. Chem. Phys. 2015, 142, 054104. doi: 10.1063/1.4906555  doi: 10.1063/1.4906555

    52. [52]

      Franco-Pérez, M.; Ayers, P. W.; Gázquez, J. L. Theor. Chem. Acc. 2016, 135, 199. doi: 10.1007/s00214-016-1961-2  doi: 10.1007/s00214-016-1961-2

    53. [53]

      Miranda-Quintana, R. A.; Ayers, P. W. Phys. Chem. Chem. Phys. 2016, 18, 15070. doi: 10.1039/c6cp00939e  doi: 10.1039/c6cp00939e

    54. [54]

      Franco-Pérez, M.; Ayers, P. W.; Gázquez, J. L.; Vela, A. Phys. Chem. Chem. Phys. 2017, 19, 13687. doi: 10.1039/c7cp00692f  doi: 10.1039/c7cp00692f

    55. [55]

      Franco-Pérez, M.; Ayers, P. W.; Gázquez, J. L.; Vela, A. J. Chem. Phys. 2017, 147, 094105. doi: 10.1063/1.4999761  doi: 10.1063/1.4999761

    56. [56]

      Franco-Pérez, M.; Gázquez, J. L.; Ayers, P. W.; Vela, A. J. Chem. Phys. 2017, 147, 074113. doi: 10.1063/1.4998701  doi: 10.1063/1.4998701

    57. [57]

      Franco-Pérez, M.; Heidar-Zadeh, F.; Ayers, P. W.; Gázquez, J. L.; Vela, A. Phys. Chem. Chem. Phys. 2017, 19, 11588. doi: 10.1039/c7cp00224f  doi: 10.1039/c7cp00224f

    58. [58]

      Franco-Pérez, M.; Polanco-Ramirez, C. A.; Ayers, P. W.; Gázquez, J. L.; Vela, A. Phys. Chem. Chem. Phys. 2017, 19, 16095. doi: 10.1039/c7cp02613g  doi: 10.1039/c7cp02613g

    59. [59]

      Miranda-Quintana, R. A. J. Chem. Phys. 2017, 146, 214113. doi: 10.1063/1.4984611  doi: 10.1063/1.4984611

    60. [60]

      Miranda-Quintana, R. A.; Chattaraj, P. K.; Ayers, P. W. J. Chem. Phys. 2017, 147, 124103. doi: 10.1063/1.4996443  doi: 10.1063/1.4996443

    61. [61]

      Miranda-Quintana, R. A.; Kim, T. D.; Cardenas, C.; Ayers, P. W. Theor. Chem. Acc. 2017, 136, 135. doi: 10.1007/s00214-017-2167-y  doi: 10.1007/s00214-017-2167-y

    62. [62]

      Mermin, N. D. Phys. Rev. 1965, 137, A1441.  doi: 10.1103/PhysRev.137.A1441

    63. [63]

      Kohn, W.; Vashishta, P. Theory of the Inhomogeneous Electron Gas; March, N. H., Ed.; Plenum: New York, NY, USA, 1983; p. 124.

    64. [64]

      Parr, R. G.; Chattaraj, P. K. J. Am. Chem. Soc. 1991, 113, 1854. doi: 10.1021/ja00005a072  doi: 10.1021/ja00005a072

    65. [65]

      Chattaraj, P. K.; Cedillo, A.; Parr, R. G. Chem. Phys. 1996, 204, 429. doi: 10.1016/0301-0104(95)00276-6  doi: 10.1016/0301-0104(95)00276-6

    66. [66]

      Chandler, D. Introduction to Modern Statistical Mechanics; Oxford University Press: New York, NY, USA, 1987; p. 288.

    67. [67]

      Landau, L. D.; Lifshitz, E. M. Statistical Physics; Pergamon Press: Elmsford, NY, USA, 1959.

    68. [68]

      Franco-Pérez, M.; Gázquez, J. L.; Ayers, P.; Vela, A. J. Chem. Theory Comput. 2017, doi: 10.1021/acs.jctc.7b00940  doi: 10.1021/acs.jctc.7b00940

    69. [69]

      Yang, W. T.; Parr, R. G. Proc. Nat. Acad. Sci. 1985, 82, 6723. doi: 10.1073/pnas.82.20.6723  doi: 10.1073/pnas.82.20.6723

    70. [70]

      Berkowitz, M.; Parr, R. G. J. Chem. Phys. 1988, 88, 2554. doi: 10.1063/1.454034  doi: 10.1063/1.454034

    71. [71]

      Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2001, 123, 2007. doi: 10.1021/ja002966g  doi: 10.1021/ja002966g

    72. [72]

      Sablon, N.; De Proft, F.; Ayers, P. W.; Geerlings, P. J. Chem. Theory Comput. 2010, 6, 3671. doi: 10.1021/ct1004577  doi: 10.1021/ct1004577

    73. [73]

      Sablon, N.; De Proft, F.; Geerlings, P. J. Phys. Chem. Lett. 2010, 1, 1228. doi: 10.1021/jz1002132  doi: 10.1021/jz1002132

    74. [74]

      Geerlings, P.; Fias, S.; Boisdenghien, Z.; De Proft, F. Chem. Soc. Rev. 2014, 43, 4989. doi: 10.1039/c3cs60456j  doi: 10.1039/c3cs60456j

  • 加载中
    1. [1]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    2. [2]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    3. [3]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    4. [4]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    5. [5]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    6. [6]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    7. [7]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    8. [8]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    9. [9]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    10. [10]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    11. [11]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    12. [12]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    13. [13]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    14. [14]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    15. [15]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    16. [16]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    17. [17]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    18. [18]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    19. [19]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    20. [20]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

Metrics
  • PDF Downloads(6)
  • Abstract views(187)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return