Citation: CHEN Wenjun, XUE Zhimin, WANG Jinfang, JIANG Jingyun, ZHAO Xinhui, MU Tiancheng. Investigation on the Thermal Stability of Deep Eutectic Solvents[J]. Acta Physico-Chimica Sinica, ;2018, 34(8): 904-911. doi: 10.3866/PKU.WHXB201712281 shu

Investigation on the Thermal Stability of Deep Eutectic Solvents

  • Corresponding author: XUE Zhimin, zmxue@bjfu.edu.cn MU Tiancheng, tcmu@ruc.edu.cn
  • Received Date: 12 December 2017
    Revised Date: 26 December 2017
    Accepted Date: 26 December 2017
    Available Online: 28 August 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China 21503016The project was supported by the National Natural Science Foundation of China 21773307The project was supported by the National Natural Science Foundation of China (21773307, 21503016)

  • In recent years, deep eutectic solvents (DESs) have attracted considerable attention. They have been applied in many fields such as dissolution and separation, electrochemistry, materials preparation, reaction, and catalysis. The DESs are generally formed by the hydrogen bonding interactions between hydrogen-bond donors (HBDs) and acceptors (HBAs). Knowledge of the thermal stability of DESs is very important for their application at high temperatures. However, there have been relatively few studies on the thermal stability of DESs. Herein, a systematic investigation on the thermal stability of 40 DESs was carried out using thermal gravimetric analysis (TGA), and the onset decomposition temperatures (Tonset) of these solvents were obtained. The most important conclusion drawn from this work is that the thermal behavior of DESs is quite different from that of ionic liquids. The anions or cations of ionic liquids decompose first, followed by the decomposition of the opposite ion at elevated temperatures. On the other hand, the DESs generally first decompose to HBDs and HBAs at high temperatures through the weakening of the hydrogen bond interactions. Subsequently, the HBDs with relatively low boiling points or poor stabilities undergo volatilization or decomposition; the HBAs also undergo volatilization or decomposition but at a higher temperature. For example, the most commonly used HBA choline chloride (ChCl) begins to decompose at around 250 ℃. The hydrogen bond plays an important role in the thermal stability of DESs. It hinders the "escape" of molecules and requires greater energy to break than pure HBAs and HBDs, which causes the Tonset of DESs to shift to higher temperatures. Note that the thermal stability of HBDs has a crucial effect on the Tonset of DESs. The HBDs would decompose or volatilize first during TGA because of their relatively poor thermal stability or lower boiling points. The more stable the HBDs are, the greater would be the Tonset values of the corresponding DESs. Further, the effects of anions on HBAs, molar ratio of HBAs to HBDs, and heating rate in fast scan TGA have been discussed. As the heating rate increased, the TGA curves of DESs shifted to higher temperatures gradually, and the temperature hysteretic effect became prominent when the rate reached 10 ℃?min?1. From an industrial application point of view, there is an overestimation of the onset decomposition temperatures of DESs by Tonset, so the long-term stability of DESs was investigated at the end of the study. This study could help understand the thermal behavior of DESs (progressive decomposition) and provide guidance for designing DESs with appropriate thermal stability for practical applications.
  • 加载中
    1. [1]

      Zhang, Z.; Song, J.; Han, B. Chem. Rev. 2017, 117, 6834. doi: 10.1021/acs.chemrev.6b00457  doi: 10.1021/acs.chemrev.6b00457

    2. [2]

      Xue, Z.; Zhang, Z.; Han, J.; Chen, Y.; Mu, T. Int. J. Greenhouse Gas Control 2011, 5, 628. doi: 10.1016/j.ijggc.2011.05.014  doi: 10.1016/j.ijggc.2011.05.014

    3. [3]

      Zhao, W.; Xue, Z.; Wang, J.; Jiang, J.; Zhao, X.; Mu, T. ACS Appl. Mater. Interfaces 2015, 7, 27608. doi: 10.1021/acsami.5b10734  doi: 10.1021/acsami.5b10734

    4. [4]

      Cao, Y.; Chen, Y.; Sun, X.; Zhang, Z.; Mu, T. Phys. Chem. Chem. Phys. 2012, 14, 12252. doi: 10.1039/C2CP41798G  doi: 10.1039/C2CP41798G

    5. [5]

      Wang, X. J.; Mu, T. Chin. Sci. Bull. 2015, 60, 2516.  doi: 10.1360/N972015-00266

    6. [6]

      Tang, B.; Row, K. H. Monatsh. Chem. 2013, 144, 1427. doi: 10.1007/s00706-013-1050-3  doi: 10.1007/s00706-013-1050-3

    7. [7]

      Smith, E. L.; Abbott, A. P.; Ryder, K. S. Chem. Rev. 2014, 114, 11060. doi: 10.1021/cr300162p  doi: 10.1021/cr300162p

    8. [8]

      Maugeri, Z.; de Maria, P. D. RSC Adv. 2012, 2, 421. doi: 10.1039/C1RA00630D  doi: 10.1039/C1RA00630D

    9. [9]

      Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jerome, F. Chem. Soc. Rev. 2012, 41, 7108. doi: 10.1039/C2CS35178A  doi: 10.1039/C2CS35178A

    10. [10]

      Jhong, H. R.; Wong, D. S. H.; Wan, C. C.; Wang, Y. Y.; Wei, T. C. Electrochem. Commun. 2009, 11, 209. doi: 10.1016/j.elecom.2008.11.001  doi: 10.1016/j.elecom.2008.11.001

    11. [11]

      Liu, P.; Hao, J. W.; Mo, L. P.; Zhang, Z. H. RSC Adv. 2015, 5, 48675. doi: 10.1039/C5RA05746A  doi: 10.1039/C5RA05746A

    12. [12]

      Nkuku, C. A.; LeSuer, R. J. Phys. Chem. B 2007, 111, 13271. doi: 10.1021/jp075794j  doi: 10.1021/jp075794j

    13. [13]

      Jiang, J.; Yan, C.; Zhao, X.; Luo, H.; Xue, Z.; Mu, T. Green Chem. 2017, 19, 3023. doi: 10.1039/C7GC01012E  doi: 10.1039/C7GC01012E

    14. [14]

      Jiang, J.; Zhao, W.; Xue, Z.; Li, Q.; Yan, C.; Mu, T. ACS Sustainable Chem. Eng. 2016, 4, 5814. doi: 10.1021/acssuschemeng.6b01860  doi: 10.1021/acssuschemeng.6b01860

    15. [15]

      Li, G.; Yan, C.; Cao, B.; Jiang, J.; Zhao, W.; Wang, J.; Mu, T. Green Chem. 2016, 18, 2522. doi: 10.1039/C5GC02691A  doi: 10.1039/C5GC02691A

    16. [16]

      Chen, Y.; Cao, Y.; Shi, Y.; Xue, Z.; Mu, T. Ind. Eng. Chem. Res. 2012, 51, 7418. doi: 10.1021/ie300247v  doi: 10.1021/ie300247v

    17. [17]

      Cao, Y.; Mu, T. Ind. Eng. Chem. Res.2014, 53, 8651. doi: 10.1021/ie5009597  doi: 10.1021/ie5009597

    18. [18]

      Xue, Z.; Zhang, Y.; Zhou, X. -Q.; Cao, Y.; Mu, T. Thermochim. Acta 2014, 578, 59. doi: 10.1016/j.tca.2013.12.005  doi: 10.1016/j.tca.2013.12.005

    19. [19]

      Liu, S.; Chen, Y.; Shi, Y.; Sun, H.; Zhou, Z.; Mu, T. J. Mol. Liq. 2015, 206, 95. doi: 10.1016/j.molliq.2015.02.022  doi: 10.1016/j.molliq.2015.02.022

    20. [20]

      Sun, X.; Liu, S.; Khan, A.; Zhao, C.; Yan, C.; Mu, T. New J. Chem. 2014, 38, 3449. doi: 10.1039/C4NJ00384E  doi: 10.1039/C4NJ00384E

    21. [21]

      Li, Q.; Jiang, J.; Li, G.; Zhao, W.; Zhao, X.; Mu, T. Sci. China Chem. 2016, 59, 571. doi: 10.1007/s11426-016-5566-3  doi: 10.1007/s11426-016-5566-3

    22. [22]

      Wang, B.; Qin, L.; Mu, T.; Xue, Z.; Gao, G. Chem. Rev. 2017, 117, 7113. doi: 10.1021/acs.chemrev.6b00594.  doi: 10.1021/acs.chemrev.6b00594

    23. [23]

      Morrison, H. G.; Sun, C. C.; Neervannan, S. Int. J. Pharm. 2009, 378, 136. doi: 10.1016/j.ijpharm.2009.05.039  doi: 10.1016/j.ijpharm.2009.05.039

    24. [24]

      Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. J. Am. Chem. Soc. 2004, 126, 9142. doi: 10.1021/ja048266j  doi: 10.1021/ja048266j

    25. [25]

      Lynam, J. G.; Kumar, N.; Wong, M. J. Bioresour. Technol. 2017, 238, 684. doi: 10.1016/j.biortech.2017.04.079  doi: 10.1016/j.biortech.2017.04.079

    26. [26]

      Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Chem. Commun. 2003, 70. doi: 10.1039/B210714G  doi: 10.1039/B210714G

    27. [27]

      Abbott, A. P.; Capper, G.; Davies, D. L.; Munro, H. L.; Rasheed, R. K.; Tambyrajah, V. Chem. Commun. 2001, 2010. doi: 10.1039/B106357J  doi: 10.1039/B106357J

    28. [28]

      Hayyan, A.; Mjalli, F. S.; AlNashef, I. M.; Al-Wahaibi, Y. M.; Al-Wahaibi, T.; Hashim, M. A. J. Mol. Liq. 2013, 178, 137. doi: 10.1016/j.molliq.2012.11.025  doi: 10.1016/j.molliq.2012.11.025

    29. [29]

      Ilgen, F.; Ott, D.; Kralisch, D.; Reil, C.; Palmberger, A.; Konig, B. Green Chem.2009, 11, 1948. doi: 10.1039/B917548M  doi: 10.1039/B917548M

    30. [30]

      Sun, S.; Niu, Y.; Xu, Q.; Sun, Z.; Wei, X. Ind. Eng. Chem. Res.2015, 54, 8019. doi: 10.1021/acs.iecr.5b01789  doi: 10.1021/acs.iecr.5b01789

    31. [31]

      Abbott, A. R.; Capper, G.; Gray, S. ChemPhysChem 2006, 7, 803. doi: 10.1002/cphc.200500489  doi: 10.1002/cphc.200500489

    32. [32]

      Amarasekara, A. S.; Owereh, O. S. J. Therm. Anal. Calorim.2011, 103, 1027. doi: 10.1007/s10973-010-1101-5  doi: 10.1007/s10973-010-1101-5

    33. [33]

      Jagadeeswara Rao, C.; Venkata Krishnan, R.; Venkatesan, K. A.; Nagarajan, K.; Srinivasan, T. G. J. Therm. Anal. Calorim. 2009, 97, 937. doi: 10.1007/s10973-009-0193-2  doi: 10.1007/s10973-009-0193-2

    34. [34]

      Ngo, H. L.; LeCompte, K.; Hargens, L.; McEwen, A. B. Thermochim. Acta 2000, 357–358, 97. doi: 10.1016/S0040-6031[00]00373-7  doi: 10.1016/S0040-6031[00]00373-7

    35. [35]

      Yue, D.; Jing, Y.; Ma, J.; Yao, Y.; Jia, Y. J. Therm. Anal. Calorim. 2012, 110, 773. doi: 10.1007/s10973-011-1960-4  doi: 10.1007/s10973-011-1960-4

    36. [36]

      Heym, F.; Etzold, B. J. M.; Kern, C.; Jess, A. Phys. Chem. Chem. Phys. 2010, 12, 12089. doi: 10.1039/C0CP00097C  doi: 10.1039/C0CP00097C

    37. [37]

      Seeberger, A.; Andresen, A. -K.; Jess, A. Phys. Chem. Chem. Phys. 2009, 11, 9375. doi: 10.1039/B909624H  doi: 10.1039/B909624H

    38. [38]

      Wooster, T. J.; Johanson, K. M.; Fraser, K. J.; MacFarlane, D. R.; Scott, J. L. Green Chem.2006, 8, 691. doi: 10.1039/B606395K  doi: 10.1039/B606395K

    39. [39]

      Del Sesto, R. E.; McCleskey, T. M.; Macomber, C.; Ott, K. C.; Koppisch, A. T.; Baker, G. A.; Burrell, A. K. Thermochim. Acta 2009, 491, 118. doi: 10.1016/j.tca.2009.02.023  doi: 10.1016/j.tca.2009.02.023

    40. [40]

      Crosthwaite, J. M.; Muldoon, M. J.; Dixon, J. K.; Anderson, J. L.; Brennecke, J. F. J. Chem. Thermodyn. 2005, 37, 559. doi: 10.1016/j.jct.2005.03.013  doi: 10.1016/j.jct.2005.03.013

  • 加载中
    1. [1]

      Shi LiWenshuai ZhaoYong QiWenbin NiuWei MaBingtao TangShufen Zhang . Hydrogen bonding induced ultra-highly thermal stability of azo dyes for color films. Chinese Chemical Letters, 2025, 36(9): 110653-. doi: 10.1016/j.cclet.2024.110653

    2. [2]

      Yi-Chang Yang Rui-Xi Wang Li-Ming Wu Ling Chen . Regulating the coplanarity of π-conjugated units through hydrogen bonding in FAHC2O4 and FAH2C3N3S3 crystals. Chinese Journal of Structural Chemistry, 2025, 44(10): 100714-100714. doi: 10.1016/j.cjsc.2025.100714

    3. [3]

      Bing XieQi JiangFang ZhuYaoyao LaiYueming ZhaoWei HePei Yang . Transdermal delivery of amphotericin B using deep eutectic solvents for antifungal therapy. Chinese Chemical Letters, 2025, 36(5): 110508-. doi: 10.1016/j.cclet.2024.110508

    4. [4]

      Zhaoyu Liu Dan Wang Guohui Liu Huili Zhang He Li Xiaoju Li Ruihu Wang . Sound-Bioinspired Dual-Conductive Hydrogel Sensors for High Sensitivity and Environmental Weatherability. Chinese Journal of Structural Chemistry, 2025, 44(8): 100628-100628. doi: 10.1016/j.cjsc.2025.100628

    5. [5]

      Yun Zhou Geqian Fang Haiyan Wang Wenjun Yu Chun Zhu Jin-Xia Liang Jian Lin . Non-covalent interactions between adsorbed •OH species and UiO-66-NH2 for methane hydroxylation. Chinese Journal of Structural Chemistry, 2025, 44(8): 100629-100629. doi: 10.1016/j.cjsc.2025.100629

    6. [6]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    7. [7]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    8. [8]

      Qiao ZhangXin TanZihang LiuJingyu MaDongqi CaoFenfang LiShengyi Dong . Optically healable and mechanically tough supramolecular glass from low-molecular-weight compounds. Chinese Chemical Letters, 2025, 36(8): 110660-. doi: 10.1016/j.cclet.2024.110660

    9. [9]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    10. [10]

      Zhilei ZhangYanan SunXiaosong ShiXiaozhe YinDawei LiuErjing WangJie LiuYuanyuan HuLang Jiang . Molecular tailoring towards two-dimensional organic crystals at the thickness limit. Chinese Chemical Letters, 2025, 36(9): 110786-. doi: 10.1016/j.cclet.2024.110786

    11. [11]

      Qi LiMinqiao LiangHuifen ZhuangZhengyang ChenYuxiang JiangXiaofei ChenYifa ChenYa-Qian Lan . Underscoring the polyimide-linkage in covalent organic frameworks and related applications. Chinese Chemical Letters, 2026, 37(2): 111593-. doi: 10.1016/j.cclet.2025.111593

    12. [12]

      Yuan YanLingqi ShenYu WangBincheng GongZuguang LiHongdeng Qiu . Development of switchable deep eutectic solvents: Applications in extraction of natural products. Chinese Chemical Letters, 2025, 36(11): 110845-. doi: 10.1016/j.cclet.2025.110845

    13. [13]

      Xia-Lin DaiYu-Hang YaoJian-Feng ZhenWei GaoJia-Mei ChenTong-Bu Lu . Reaction crystallization method based on deep eutectic solvents: A novel, green and efficient cocrystal synthesis approach. Chinese Chemical Letters, 2025, 36(11): 110413-. doi: 10.1016/j.cclet.2024.110413

    14. [14]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    15. [15]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    16. [16]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    17. [17]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    18. [18]

      Xiqing Liang Tian Zhao Jiawei Li Haohui Tan Hai Chen Liyan Zeng . Pentaerythritol’s Journey of Making Friends. University Chemistry, 2025, 40(10): 175-185. doi: 10.12461/PKU.DXHX202412009

    19. [19]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    20. [20]

      Ziqi Chen Miriding Mutailipu . Achieving the birefringence-bandgap trade-off: hydrogen-bond engineered biuret-cyanurate. Chinese Journal of Structural Chemistry, 2025, 44(10): 100695-100695. doi: 10.1016/j.cjsc.2025.100695

Metrics
  • PDF Downloads(134)
  • Abstract views(1563)
  • HTML views(215)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return