Citation: SHEN Yanfang, CHENG Longjiu. Electronic Stability of Eight-electron Tetrahedral Pd4 Clusters[J]. Acta Physico-Chimica Sinica, ;2018, 34(7): 830-836. doi: 10.3866/PKU.WHXB201712151 shu

Electronic Stability of Eight-electron Tetrahedral Pd4 Clusters

  • Corresponding author: CHENG Longjiu, clj@ustc.edu
  • Received Date: 31 October 2017
    Revised Date: 29 November 2017
    Accepted Date: 11 December 2017
    Available Online: 15 July 2017

    Fund Project: by the National Natural Science Foundation of China 21573001The project was supported by the National Natural Science Foundation of China (21573001), and the Foundation of Distinguished Young Scientists of Anhui Province, China

  • Motivated by the unusual structure of the [Pd4(μ3-SbMe3)4(SbMe3)4] cluster, which is composed of a tetrahedral (Td) Pd(0) core with four terminal SbMe3 ligands and four triply bridging SbMe3 ligands capping the four triangular Pd3 faces (J. Am. Chem. Soc. 2016, 138, 6964), we performed a computational study of the structure and bonding characteristics of the Td [Pd4(μ3-SbH3)4(SbH3)4] cluster and a series of its analogues. The Td structure of the [Pd4(μ3-SbH3)4(SbH3)4] cluster could be explained by the cluster electron-counting rules based on the 18-electron rule for transition-metal centers; each sp3 hybridized Pd atom contributed ten valence electrons, and eight valence electrons were provided by one terminal SbH3 and three bridging μ3-SbH3 ligands. The [Pd4(μ3-SbH3)4(SbH3)4] cluster had a count of 104 valence electrons in total; chemical bonding analysis indicated that the cluster featured twenty electron lone pairs generated by d orbital of the four Pd atoms, twenty-four Sb―H σ bonds, four terminal Pd―Sb σ bonds, and four delocalized bonds. There were two bonding patterns of the eight delocalized electrons between the four capping Sb atoms and the Pd4 core. The first pattern was based on the superatom-network (SAN) model, whereby the palladium cluster could be described as a network of four 2e superatoms. The second pattern was based on the spherical jellium model, whereby the cluster could be rationalized as an 8e [Pd4(μ3-SbH3)4] superatom with 1S21P6 electronic configuration. The density functional theory (DFT) calculations showed that the Td [Pd4(μ3-SbH3)4(SbH3)4] cluster had a large HOMO-LUMO (HOMO: highest occupied molecular orbital; LUMO: lowest unoccupied molecular orbital) energy gap (2.84 eV) and a negative nucleus-independent chemical shift (NICS) value (-12) at the center of the [Pd4(μ3-SbH3)4(SbH3)4] cluster, indicating its high chemical stability and aromaticity. Furthermore, the NICS values in the range of 0–0.30 nm of the [Pd4(μ3-SbH3)4] motifs were much more negative than those of [Pd4(SbH3)4] in the same range, revealing that the overall stability of [Pd4(μ3-SbH3)4(SbH3)4] was likely derived from the local stability of Pd4(μ3-SbH3)4. Meanwhile, the d10d10 interaction played a critical role in stabilizing the Pd4 tetrahedron structure, which is similar to the aurophilicity in Au-Au clusters. It was also found that there is a large difference in the stability of transition metal and non-transition metal clusters with a tetrahedron structure. The structures and bonding patterns of the designed analogues were similar to those of [Pd4(μ3-SbH3)4(SbH3)4]. To summarize, this study was relevant for deciphering the nature of the bonds in a tetrahedral complex with four cores and eight ligands, and predicting a series of analogues. It is expected that this work will provide more options for the synthesis of tetrahedral 4-core transition metal compounds.
  • 加载中
    1. [1]

      Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Gronbeck, H.; Hakkinen, H. Proc. Natl. Acad. Sci. USA 2008, 105, 9157. doi: 10.1073/pnas.0801001105  doi: 10.1073/pnas.0801001105

    2. [2]

      Reber, A. C.; Khanna, S. N. Acc. Chem. Res. 2017, 50, 255. doi: 10.1021/acs.accounts.6b00464  doi: 10.1021/acs.accounts.6b00464

    3. [3]

      Dhayal, R. S.; Liao, J. H.; Liu, Y. C.; Chiang, M. H.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Angew. Chem. Int. Ed. 2015, 54, 3702. doi: 10.1002/anie.201410332  doi: 10.1002/anie.201410332

    4. [4]

      Malola, S.; Lehtovaara, L.; Knoppe, S.; Hu, K. J.; Palmer, R. E.; Burgi, T.; Hakkinen, H. J. Am. Chem. Soc. 2012, 134, 19560. doi: 10.1021/ja309619n  doi: 10.1021/ja309619n

    5. [5]

      Chauhan, V.; Reber, A. C.; Khanna, S. N. J. Am. Chem. Soc. 2017, 139, 1871. doi: 10.1021/jacs.6b09416  doi: 10.1021/jacs.6b09416

    6. [6]

      Wan, X. K.; Lin, Z. W.; Wang, Q. M. J. Am. Chem. Soc. 2012, 134, 14750. doi: 10.1021/ja307256b  doi: 10.1021/ja307256b

    7. [7]

      Qian, H. F.; Eckenhoff, W. T.; Zhu, Y.; Pintaue, T.; Jin, R. C. J. Am. Chem. Soc. 2010, 132, 8280. doi: 10.1021/ja103592z  doi: 10.1021/ja103592z

    8. [8]

      Yuan, S. F.; Li, P.; Tang, Q.; Wan, X. K.; Nan, Z. A.; Jiang, D. E.; Wang, Q. M. Nanoscale 2017, 9, 11405. doi: 10.1039/c7nr02687k  doi: 10.1039/c7nr02687k

    9. [9]

      Geitner, F. S.; Dums, J. V.; Fassler, T. F. J. Am. Chem. Soc. 2017, 139, 11933. doi: 10.1021/jacs.7b05834  doi: 10.1021/jacs.7b05834

    10. [10]

      Zhu, M. Z.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. C. J. Am. Chem. Soc. 2008, 130, 1138. doi: 10.1021/ja0782448  doi: 10.1021/ja0782448

    11. [11]

      Xu, W. W.; Zhu, B.; Zeng, X. C.; Gao, Y. Nat. Commun. 2016, 7, 13574. doi: 10.1038/ncomms13574  doi: 10.1038/ncomms13574

    12. [12]

      Zhu, M.; Li, M. B.; Yao, C. H.; Xia, N.; Zhao, Y.; Yan, N.; Liao, L. W.; Wu, Z. K. Acta Phys. -Chim. Sin. 2018, 34 (7), 792.  doi: 10.3866/PKU.WHXB201710091

    13. [13]

      Wu, X. W.; Yi, G. Acta Phys. -Chim. Sin. 2018, 34 (7), 770.  doi: 10.3866/PKU.WHXB201711061

    14. [14]

      Tominaga, C.; Hikosou, D.; Osaka, I.; Kawasak, H. Acta Phys. -Chim. Sin. 2018, 34 (7), 805. doi: 10.3866/PKU.WHXB201710271  doi: 10.3866/PKU.WHXB201710271

    15. [15]

      Roach, P. J.; Reber, A. C.; Woodward, W. H.; Khanna, S. N.; Castleman, A. W., Jr. Proc. Natl. Acad. Sci. USA 2007, 104, 14565. doi: 10.1073/pnas.0706613104  doi: 10.1073/pnas.0706613104

    16. [16]

      Knight, W. D.; Clemenger, K.; de Heer, W. A.; Saunders, W. A.; Chou, M. Y.; Cohen, M. L. Phys. Rev. Lett. 1984, 52, 2141. doi: 10.1103/PhysRevLett.52.2141  doi: 10.1103/PhysRevLett.52.2141

    17. [17]

      Clemenger, K. Phys. Rev. B 1985, 32, 1359. doi: 10.1103/PhysRevB.32.1359  doi: 10.1103/PhysRevB.32.1359

    18. [18]

      de Heer, W. A. Rev. Mod. Phys. 1993, 65, 611. doi: 10.1103/RevModPhys.65.611  doi: 10.1103/RevModPhys.65.611

    19. [19]

      Khanna, S. N.; Jena, P. Phys. Rev. B 1995, 51, 13705. doi: 10.1103/PhysRevB.51.13705  doi: 10.1103/PhysRevB.51.13705

    20. [20]

      Bergeron, D. E.; Castleman, A. W.; Morisato, T.; Khanna, S. N. Science 2004, 304, 84. doi: 10.1126/science.1093902  doi: 10.1126/science.1093902

    21. [21]

      Bergeron, D. E.; Roach, P. J.; Castleman, A. W.; Jones, N.; Khanna, S. N. Science 2005, 307, 231. doi: 10.1126/science.1105820  doi: 10.1126/science.1105820

    22. [22]

      Castleman, A. W.; Khanna, S. N. J. Phys. Chem. C 2009, 113, 2664. doi: 10.1021/jp806850h  doi: 10.1021/jp806850h

    23. [23]

      Luo, Z.; Castleman, A. W. Acc. Chem. Res. 2014, 47, 2931. doi: 10.1021/ar5001583  doi: 10.1021/ar5001583

    24. [24]

      Cheng, L. J.; Yuan, Y.; Zheng, X. Z.; Yang, J. L. Angew. Chem. Int. Ed. 2013, 52, 9035. doi: 10.1002/anie.201302926  doi: 10.1002/anie.201302926

    25. [25]

      Gutrath, B. S.; Oppel, I. M.; Presly, O.; Beljakov, I.; Meded, V.; Wenzel, W.; Simon, U. Angew. Chem. Int. Ed. 2013, 52, 3529. doi: 10.1002/anie.201208681  doi: 10.1002/anie.201208681

    26. [26]

      Koyasu, K.; Tsukuda, T. Phys. Chem. Chem. Phys. 2014, 16, 21717. doi: 10.1039/c4cp03199g  doi: 10.1039/c4cp03199g

    27. [27]

      Yan, L. J.; Cheng, L. J.; Yang, J. L. Chin. J. Chem. Phys. 2015, 28, 476. doi: 10.1063/1674-0068/28/cjcp1505105  doi: 10.1063/1674-0068/28/cjcp1505105

    28. [28]

      Cheng, L.; Ren, C.; Zhang, X.; Yang, J. Nanoscale 2013, 5, 1475. doi: 10.1039/c2nr32888g  doi: 10.1039/c2nr32888g

    29. [29]

      Liu, L. R.; Li, P.; Yuan, L. F.; Cheng, L. J.; Yang, J. L. Nanoscale 2016, 8, 12787. doi: 10.1039/c6nr01998f  doi: 10.1039/c6nr01998f

    30. [30]

      Cheng, L. J.; Zhang, X. Z.; Jin, B. K.; Yang, J. L. Nanoscale 2014, 6, 12440. doi: 10.1039/c4nr03550j  doi: 10.1039/c4nr03550j

    31. [31]

      Wang, H. Y.; Cheng, L. J. Nanoscale 2017, 9, 13209. doi: 10.1039/c7nr03114a  doi: 10.1039/c7nr03114a

    32. [32]

      Trebbe, R.; Goddard, R.; Rufinska, A.; Seevogel, K.; Porschke, K. R. Organometallics 1999, 18, 2466. doi: 10.1021/om990239s  doi: 10.1021/om990239s

    33. [33]

      Dedieu, A. Chem. Rev. 2000, 100, 543. doi: 10.1021/cr980407a  doi: 10.1021/cr980407a

    34. [34]

      Moc, J.; Musaev, D. G.; Morokuma, K. J. Phys. Chem. A 2000, 104, 11606. doi: 10.1021/jp0022104  doi: 10.1021/jp0022104

    35. [35]

      Puddephatt, R. J. J. Org. Chem. 2017, 849, 268. doi: 10.1016/j.jorganchem.2017.01.030  doi: 10.1016/j.jorganchem.2017.01.030

    36. [36]

      Tang, S.; Eisenstein, O.; Nakao, Y.; Sakaki, S. Organometallics 2017, 36, 2761. doi: 10.1021/acs.organomet.7b00256  doi: 10.1021/acs.organomet.7b00256

    37. [37]

      Kalita, B.; Deka, R. C. J. Am. Chem. Soc. 2009, 131, 13252. doi: 10.1021/ja904119b  doi: 10.1021/ja904119b

    38. [38]

      Nava, P.; Sierka, M.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2003, 5, 3372. doi: 10.1039/b303347c  doi: 10.1039/b303347c

    39. [39]

      Benjamin, S. L.; Krämer, T.; Levason, W.; Light, M. E.; Macgregor, S. A.; Reid, G. J. Am. Chem. Soc. 2016, 138, 6964. doi: 10.1021/jacs.6b04060  doi: 10.1021/jacs.6b04060

    40. [40]

      Zubarev, D. Y.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2008, 10, 5207. doi: 10.1039/B804083D  doi: 10.1039/B804083D

    41. [41]

      Frisch, M. ; Trucks, G. ; Schlegel, H. B. ; Scuseria, G. ; Robb, M. ; Cheeseman, J. ; Scalmani, G. ; Barone, V. ; Mennucci, B. ; Petersson, G. ; et al. Gaussian 09, Revision B. 01; Gaussian Inc. : Wallingford, CT, USA, 2010

    42. [42]

      Varetto, U. Molekel 5. 4. 0. 8, Swiss National Supercomputing Centre, Manno, Switzerland, 2009.

    43. [43]

      Boldyrev, A. I.; Wang, L. S. Phys. Chem. Chem. Phys. 2016, 18, 11589. doi: 10.1039/c5cp07465g  doi: 10.1039/c5cp07465g

    44. [44]

      Sergeeva, A. P.; Popov, I. A.; Piazza, Z. A.; Li, W. L.; Romanescu, C.; Wang, L. S.; Boldyrev, A. I. Acc. Chem. Res. 2014, 47, 1349. doi: 10.1021/ar400310g  doi: 10.1021/ar400310g

    45. [45]

      Popov, I. A.; Jian, T.; Lopez, G. V.; Boldyrev, A. I.; Wang, L. S. Nat. Commun. 2015, 6, 8654. doi: 10.1038/ncomms9654  doi: 10.1038/ncomms9654

    46. [46]

      Li, W. L.; Jian, T.; Chen, X.; Chen, T. T.; Lopez, G. V.; Li, J.; Wang, L. S. Angew.Chem. 2016, 128, 7484. doi: 10.1002/ange.201601548  doi: 10.1002/ange.201601548

    47. [47]

      Xu, C.; Cheng, L. J.; Yang, J. L. J. Chem. Phys. 2014, 141, 124301. doi: 10.1063/1.4895727  doi: 10.1063/1.4895727

    48. [48]

      Li, L. F.; Xu, C.; Jin, B. K.; Cheng, L. J. Dalton Trans. 2014, 43, 11739. doi: 10.1039/c4dt01106f  doi: 10.1039/c4dt01106f

    49. [49]

      Yuan, Y.; Cheng, L. J. J. Chem. Phys. 2013, 138, 024301. doi: 10.1063/1.4773281  doi: 10.1063/1.4773281

    50. [50]

      Li, L. F.; Xu, C.; Jin, B. K.; Cheng, L. J. J. Chem. Phys. 2013, 139, 174310. doi: 10.1063/1.4827517  doi: 10.1063/1.4827517

    51. [51]

      Li, L. F.; Xu, C.; Cheng, L. J. Comput. Theor. Chem. 2013, 1021, 144. doi: 10.1016/j.comptc.2013.07.001  doi: 10.1016/j.comptc.2013.07.001

    52. [52]

      Yuan, Y.; Cheng, L. J. J. Chem. Phys. 2012, 137, 044308. doi: 10.1063/1.4738957  doi: 10.1063/1.4738957

    53. [53]

      Cheng, L. J. J. Chem. Phys. 2012, 136, 104301. doi: 10.1063/1.3692183  doi: 10.1063/1.3692183

    54. [54]

      Pyykkö, P. J. Phys. Chem. A 2015, 119, 2326. doi: 10.1021/jp5065819  doi: 10.1021/jp5065819

    55. [55]

      Cui, G. L.; Cao, X. Y.; Fang, W. H.; Dolg, M.; Thiel, W. Angew. Chem. Int. Ed. 2013, 52, 10281. doi: 10.1002/anie.201305487  doi: 10.1002/anie.201305487

    56. [56]

      Pyykkö, P. Angew. Chem. Int. Ed. 2004, 43, 4412. doi: 10.1002/anie.200300624  doi: 10.1002/anie.200300624

    57. [57]

      Schmidbaur, H.; Schier, A. Angew. Chem. Int. Ed. 2015, 54, 746. doi: 10.1002/anie.201405936  doi: 10.1002/anie.201405936

    58. [58]

      Pyykkö, P.; Mendizabal, F. Inorg. Chem. 1998, 37, 3018. doi: 10.1021/ic980121o  doi: 10.1021/ic980121o

    59. [59]

      Harwell, D. E.; Mortimer, M. D.; Knobler, C. B.; Anet, F. A. L.; Hawthorne, M. F. J. Am. Chem. Soc. 1996, 118, 2679. doi: 10.1021/ja953976y  doi: 10.1021/ja953976y

  • 加载中
    1. [1]

      Jiaxiang GuoZeyi LiTianyu ZhangXinyu TianYue WangChuandong Dou . Thienothiophene-centered ladder-type π-systems that feature distinct quinoidal π-extension. Chinese Chemical Letters, 2024, 35(5): 109337-. doi: 10.1016/j.cclet.2023.109337

    2. [2]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    3. [3]

      Jiayao Li Xinru Peng Shiwei Yin Changwei Wang Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213

    4. [4]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    5. [5]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    6. [6]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    7. [7]

      Shicheng DongJun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214

    8. [8]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    9. [9]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    10. [10]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    11. [11]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    12. [12]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    13. [13]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    14. [14]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    15. [15]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    16. [16]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    17. [17]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    18. [18]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    19. [19]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    20. [20]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

Metrics
  • PDF Downloads(7)
  • Abstract views(462)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return