Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

Citation: GONZÁLEZ Marco Martínez, CÁRDENAS Carlos, RODRÍGUEZ Juan I., LIU Shubin, HEIDAR-ZADEH Farnaz, MIRANDA-QUINTANA Ramón Alain, AYERS Paul W.. Quantitative Electrophilicity Measures[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 662-674. doi: 10.3866/PKU.WHXB201711021 shu

Quantitative Electrophilicity Measures

  • Corresponding author: MIRANDA-QUINTANA Ramón Alain, ramirandaq@gmail.com AYERS Paul W., ayers@mcmaster.ca
  • Received Date: 13 September 2017
    Revised Date: 13 October 2017
    Accepted Date: 30 October 2017
    Available Online: 2 June 2017

    Fund Project: CC acknowledges support by FONDECYT (1140313), Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia-FB0807, and project RC-130006 CILIS; Chile. PWA acknowledges support from NSERC, the Canada Research Chairs, and Compute Canada; Canada

  • Quantitative correlation of several theoretical electrophilicity measures over different families of organic compounds are examined relative to the experimental values of Mayr et al. Notably, the ability to predict these values accurately will help to elucidate the reactivity and selectivity trends observed in charge-transfer reactions. A crucial advantage of this theoretical approach is that it provides this information without the need of experiments, which are often demanding and time-consuming. Here, two different types of electrophilicity measures were analyzed. First, models derived from conceptual density functional theory (c-DFT), including Parr's original proposal and further generalizations of this index, are investigated. For instance, the approaches of Gázquez et al. and Chamorro et al. are considered, whereby it is possible to distinguish between processes in which a molecule gains or loses electrons. Further, we also explored two novel electrophilicity definitions. On one hand, the potential of environmental perturbations to affect electron incorporation into a system is analyzed in terms of recent developments in c-DFT. These studies highlight the importance of considering the molecular surroundings when a consistent description of chemical reactivity is needed. On the other hand, we test a new definition of electrophilicity that is free from inconsistencies (so-called thermodynamic electrophilicity). This approach is based on Parr's pioneering insights, though it corrects issues present in the standard working expression for the calculation of electrophilicity. Additionally, we use machine-learning tools (i.e., symbolic regression) to identify the models that best fit the experimental values. In this way, the best possible description of the electrophilicity values in terms of different electronic structure quantities is obtained. Overall, this straightforward approach enables one to obtain good correlations between the theoretical and experimental quantities by using the simple, yet powerful, interpretative advantage of c-DFT methods. In general, we observed that the correlations found at the HF/6-31G(d) level of theory are of semi-quantitative value. To obtain more accurate results, we showed that working with families of compounds with similar functional groups is indispensable.
  • The concepts of electrophilicity and nucleophilicity are cornerstones of our understanding of chemical reactivity 1, 2. Usually, they are merely considered in a qualitative way, together with the notions of electron accepting/donating groups, to rationalize chemical reactivity trends. However, their remarkable utility has also inspired researchers to find ways to quantify the electrophilic and nucleophilic character of a given molecule. These efforts have deepened our understanding of what makes a compound a better or worse electrophile/nucleophile, how these properties could be tuned, and how they relate to other quantities. We view the work of Mayr et al. 3-7 as especially important. These authors have established electrophilicity and nucleophilicity scales by means of extensive experimental tests. The defining element of these studies is the following expression:

    logk20C=s(EMayr+NMayr)

    where k20 ℃ is the rate constant of the reaction (at 20 ℃) between the nucleophile and the electrophile, while s and NMayr are parameters specific to the former, and EMayr to the latter. Analyzing several combinations of electrophile-nucleophile pairs, the corresponding parameters can be determined. These definitions of the nucleophilicity and electrophilicity is clearly based on the concept that strong electrophiles react with strong nucleophiles rapidly and vigorously, while weak electrophiles and weak nucleophiles react slowly and reluctantly, if at all.

    Parallel to these experimental determinations, there is steadfast interest in finding mathematical equations to quantify the electrophilicity of a molecule 8-10. Perhaps the best example of this is the early work of Maynard et al. 11, which proposed a simple expression for the electrophilicity in terms of electron attachment/removal energies. Parr et al. 12 then provided a theoretical justification for Maynard's proposal within the framework of conceptual density functional theory (c-DFT) 13-23. This landmark contribution gave chemists a simple, yet powerful, tool that has been successfully applied to the analysis of regioselectivity of cycloaddition reactions 24-27, the study of leaving groups 28, 29, transition states 30-32, and redox reactions 33-35. This c-DFT electrophilicity measure has also been used as a descriptor in several quantitative structure activity relationship (QSAR) studies 36-39. But arguably the biggest impact of the precise quantitative definition of the electrophilicity is that it provided a way to prove the minimum electrophilicity principle (MEP) 40-44. Expanding on Parr's work, and also within the c-DFT formalism, Gázquez et al. 45, and Chamorro et al. 46, 47 have generalized this index. Recently, new working expressions for this index has been proposed, which are free from some inconsistencies found in previous versions 48, 49.

    The proliferation of theoretical electrophilicity measures makes it desirable to assess their performance. This is main goal of this work. As a reference for comparison, we will use Mayr's parameter. Since the theoretical and experimental measures of electrophilicity refer to different effects, we do not expect them to be exactly the same. However, we believe that a good theoretical measure of electrophilicity must capture the trends from Mayr's work. In addition to testing existing theoretical definitions, we will also attempt to use machine learning techniques to find a mathematical expression that reproduces the Mayr electrophilicity.

    Parr et al. 12 defined the electrophilicity, ω, as the stabilization energy associated with the electronic saturation of the system (e.g., molecule). In other words, how the energy of a system changes when it reaches equilibrium with a perfect electron donor. Evaluating this definition requires a model for how the electronic energy, E, changes with respect to the number of electrons, N. If we neglect the changes in the external potential (e.g., molecular geometry) during the electron saturation process, we can estimate energy variation in terms of the following (truncated) Taylor expansion 50:

    E(N)=E(N0)+(EN)v(r)(NN0)+12(2EN2)v(r)(NN0)2

    Within the c-DFT framework is customary to identify the coefficients of this expansion with different reactivity descriptors. For example, Parr et al. 51 proposed to identify the coefficient of the linear term with the (electronic) chemical potential of the system, μ, which is in turn defined as the additive inverse of the electronegativity, χ:

    μχ(EN)v(r)

    In a similar way, Parr and Pearson 50 identified the coefficient of the quadratic term with the chemical hardness, η, which is in turn defined as the multiplicative inverse of the chemical softness, S:

    η1S=(2EN2)v(r)

    In c-DFT, a perfect electron donor is defined as a system with zero electronegativity (e.g., zero chemical potential). This means that Parr's electrophilicity definition can be written as:

    ω=Eμ=μ0Eμ=0

    where μ0 is the chemical potential of the isolated system.

    The standard way to approximate this index is to notice that, according to Sanderson's electronegativity equalization principle 52, the system will reach electronic saturation when:

    (EN)v(r)=0

    Substituting Eq. (2) in this expression we can calculate the maximum number of bound electrons, △Nmax:

    ΔNmax

    From this it is now easy to see that:

    {{\omega }_{\text{parabolic}}} = \frac{{{\mu ^2}}}{{2\eta }} = \frac{{{\chi ^2}}}{{2\eta }}

    Notice that we have explicitly indicated that this expression corresponds to the quadratic energy model used in Eq. (2). (It is possible to generalize this expression to differentiate between the electrophilicity of spin up and spin down electrons 53-60, but this will not be considered here.)

    To obtain a working expression for the electrophilicity we need to express the chemical potential and chemical hardness in terms of quantities from electronic structure theory that can be computed using standard quantum chemistry software. This can be done by viewing Eq. (2) as a parabolic interpolation of the electronic energy of the system with N0, N0 + 1, and N0 -1 electrons or, equivalently, using a three-point finite differences approximation with △N = 1 61:

    \mu = - \frac{{I + A}}{2}

    \eta = I - A

    here, I and A are the ionization energy and electron affinity, respectively. Substituting these expressions in Eq. (8) we obtain:

    {{\omega }_{\text{parabolic}}} = \frac{{{{\left( {I + A} \right)}^2}}}{{8\left( {I - A} \right)}}

    Motivated by the success of the parabolic model, Gázquez, Cedillo, and Vela (GCV) proposed a two-parabolas model that allowed them to describe electron transfer processes in a more realistic way 45. The key insight in their work was to distinguish between the electron-accepting and the electron-donating processes. (Since we will be only concerned here with the ability of a system to incorporate electron, we will neglect the latter.) In their formulation, the electron-rich and electron-poor regimes are described by different parabolas (e.g., different E vs N models) with the same curvature. Imposing different conditions on this simple model, they obtained the expressions for the chemical potentials of the system when is gaining, μGCV+ electrons:

    \mu _{\text{GCV}}^{\text{+}} = - \frac{{I + 3A}}{4}

    Their model is completed with the assumption that the chemical hardness for both electron-accepting and electron-donating processes is equal:

    \eta _{\text{GCV}}= \frac{{I - A}}{2}

    These new expressions can be substituted in the general working equation obtained by Parr (cf. Eq. (8)), resulting in the following electroaccepting, ωGCV+, power45:

    \omega _{\text{GCV}}^{\text{+}} = \frac{{{{\left( {\mu _{\text{GCV}}^{\text{+}} } \right)}^2}}}{{\eta _{\text{GCV}}^{{}}}} = \frac{{{{\left( {I + 3A} \right)}^2}}}{{16\left( {I - A} \right)}}

    Inspired by the work of GCV, Chamorro, Duque, and Pérez (CDP) 46, 47 rewrote Eq. (8) using the electron accepting, μ+, chemical potential obtained from the piecewise linear interpolation of Perdew, Parr, Levy, and Balduz 62:

    {\mu ^ + } = - A

    Therefore, they obtained:

    \omega _{\text{CDP1}}^{\text{+}} = \frac{{{{\left( {\mu _{}^ + } \right)}^2}}}{{\eta _{}^{}}} = \frac{{{A^2}}}{{\left( {I - A} \right)}}

    Additionally, these authors also proposed a simpler ansatz, where the chemical hardness of a system gaining electrons could be related to the chemical potential of the inverse process. In other words, making 46, 47:

    {\eta ^ + } = \left| {{\mu ^ - }} \right|

    From here results:

    \omega _{\text{CDP2}}^{\text{+}} = \frac{{{{\left( {\mu _{}^ + } \right)}^2}}}{{\eta _{}^ + }} = \frac{{{A^2}}}{{\left| I \right|}}

    Recently, it has been pointed out that there are several problems with the classical way to calculate the electrophilicity, Eq. (11) 49. Most notably, this formula gives unreasonable results for polycations (where △Nmax > > 1) and for species with small electron affinities (where △Nmax should be close to zero, but may not be). These, and other, problems could be traced back to the fact that while the parabolic interpolation is mathematically consistent 63, it lacks a rigorous physical justification 64, 65 (except for some cases) 66, 67. This situation motivated the analysis of the electrophilicity index using a finite temperature formulation of the grand-canonical ensemble (an approach that has provided rigorous foundations to several c-DFT results) 48, 68-75. Within this formulation, it is easy to obtain an exact working expression that preserves the physical meaning of Parr's definition. This thermodynamic electrophilicity, ωTD, is simply given by 49:

    {{\omega }_{\text{TD}}} = \sum\limits_{k = 1} {^{{M_0}}{A_k}\, \theta \left( {^{{M_0}}{A_k}} \right)}

    where M0Ak is the kth electron affinity of the system with M0 particles, and θ(x) is Heaviside (step) function. If we are only considering the same three states used in the parabolic model (e.g., "neutral", "cationic", and "anionic" states), this result is reduced to:

    {{\omega }_{\text{TD}}} = A\, \theta \left( A \right)

    This merely takes the electrophilicity to be equal to A when A > 0, and zero in the other cases. This is the simplified expression that we will be using in the following.

    Finally, it has been also shown that a consistent description of chemical reactivity within c-DFT requires the descriptors to incorporate the effects of the molecular surroundings 75-79. The simplest way to do so is using the insights obtained from the Klopman-Salem frontier molecular orbital treatment 80-86, which allows us to obtain model expressions for the perturbed chemical potential, μP, and the perturbed chemical hardness, ηP 76:

    {{\mu }_{\text{P}}} = - \frac{{\gamma I + A}}{{1 + \gamma }}

    {{\eta }_{\text{P}}} = \xi (I - A)

    where γ and ζ are non-negative parameters that model the interaction with the environment. Including these modified descriptors in Eq. (8) we obtain a more general, perturbed electrophilicity, ωP:

    {{\omega }_{\text{P}}} = \frac{{{{({{{\mu }_{\text{P}}}})}^2}}}{{2{{{\eta }_{\text{P}}}}}} = \frac{1}{{2\xi {{(1 + \gamma )}^2}}}\frac{{{{(\gamma I + A)}^2}}}{{I - A}}

    In the following, we will analyze how the previously discussed electrophilicity measures correlate with Mayr's electrophilicity parameter. To do this, we will work with a simple linear correlation:

    {{E}_{\text{Mayr}}} = m\omega + b

    Since the effect of the \frac{1}{{2\xi {{(1 + \gamma )}^2}}} factor in Eq. (23) can be included in the slope, m, of the linear regression, we will work with a simplified version of the perturbed electrophilicity, namely:

    {\tilde \omega _\text{P}} = \frac{{{{(\gamma I + A)}^2}}}{{I - A}}

    The indices presented in the previous section are chemically motivated and, as such, they help us determine the factors which govern the acceptance of electrons by an electrophile. While this is a valuable approach, sometimes we are more interested in obtaining an accurate estimate of the electrophilicity, regardless of the insight, it might provide. An attractive alternative in this respect is the use of machine learning (ML) tools 87-91.

    Here, we will work with a very powerful data mining tool: symbolic regression (SR) 92-100. SR is a supervised method, which means that we provide the algorithm with a "training set" in order to find correlations between different descriptors and a property of interest. The goal of SR is to use a training set to obtain a mathematical function that relates the desired properties to the data. In this way, SR gives the best functional form (of a given pre-specified complexity), along with the best numerical parameters, for a given training set. In more technical terms, given a set of data values \{ \vec x;y\} (training set), with \vec x representing a vector of independent variables (e.g., descriptors), and y the dependent variable (which will be predicted from \vec x ), SR finds the function \bar y = f(\vec x) that best describes the overall data. The optimization process takes place over a function space, expanded by mathematical operators and constants 100. If the function space includes all possible functional forms, that is, the length of the mathematical expression can go up to infinity and there is no restriction on the operators used, the method will find many different functions which fit all the data exactly. However, this might cause problems when describing points/observations outside the training set. It is therefore common to enforce some constraints during the SR procedure (e.g., the length of the functions, the number of operands and numerical parameters used, etc.)

    Once we restrict the accessible function space, an intuitive choice would be to select a set of basis functions to expand it. However, while this will turn the SR problem into a more familiar linear regression, the size of the basis needed makes this impractical in most cases. This demands the use of different optimization methods, with evolutionary algorithms being a popular choice. Here we will focus on two such algorithms: genetic programming (GP) 100-103 and grammatical evolution (GE) 104-106.

    Genetic programming (GP) 100-102 draws inspiration from the mechanism of DNA replication, with new "generations" (e.g., functional forms) leading towards better solutions. On this algorithm, each possible solution is referred to as an "individual". In the case of an SR, these are functions proposed to fit the data. These individuals are commonly represented as a tree (see Fig. 1). The leaves represent constants or data variables, and the nodes represent the allowed mathematical operators. It is important to remark that it is possible if desired, to use basically any function as an operator, and not only the four basic arithmetic operators.

    图 1

    图 1  Tree representation of Parr's electrophilicity equation.
    Figure 1.  Tree representation of Parr's electrophilicity equation.

    The algorithm starts with a random generation of possible solutions (trees) that fulfill the restrictions imposed (e.g., the operators allowed and the maximum length of the solution). Then, a new generation of solutions is created, following three steps: breeding, evaluation, and selection. The breeding involves the creation of a new set of alternative solutions. This can be done in several ways 107: copying a solution to the new generation; combining two solutions to produce two new ones by exchanging two randomly selected subtrees between the parents (crossover) 108; changing part of a solution (subtree) for a new, randomly generated, one (mutation) 103 (see Figs. 2 and 3). The crossover operator ensures that the individuals of the new generation share characteristics of their parents; while the mutation process prevents premature convergence of the algorithm by adding randomness. These changes occur in an uncontrolled way. Then, the evaluation step consists in the evaluation of the fitness function for each of the newly created candidate solutions. The last step consists of the selection of some of the newly created solutions in order to conform the population of the new generation. The probability to select an individual increases with the quality of the fitness calculated in the evaluation step. This process is repeated until a termination criterion is fulfilled (typically given by the number of iterations or a fitness threshold).

    图 2

    图 2  Effect of the mutation operator on a tree.
    Figure 2.  Effect of the mutation operator on a tree.

    图 3

    图 3  Effect of the crossover operator on two trees.
    Figure 3.  Effect of the crossover operator on two trees.

    Grammatical evolution (GE) 104-106, a more recent evolutionary algorithm, uses a grammar to map an integer array into a program (in the case of an SR, into a function). To do the mapping, GE uses a context-free grammar 109-111, which along with an alphabet of terminal symbols, a set of non-terminal symbols, production rules, and a start symbol, is capable of deriving a model from an integer string. These integer strings are then optimized by an evolutionary technique. At every step, the composition rules are used to map from the array to the corresponding model, in order to evaluate the fitness of the latter. This resembles the natural process in which the genotype is separated from the phenotype. The optimization procedure can mimic the steps used in the GP case, but other algorithms such as particle swarm optimization 112 can also be used.

    The different electrophilicity measures were tested over a set of 58 molecules for which Mayr's EMayr parameter is known113 (see Table 1). This global set includes several families of electrophiles, grouped following Mayr's "star classification system" 114. According to this criterion, we have a group of 3 1-star electrophiles, 21 3-stars electrophiles, 22 5-stars electrophiles, and 12 neutral electrophiles.

    表 1

    表 1  Studied molecules, their classification according to Mayr's system, their experimental EMayr values 113, and their calculated I and A (given in eV).
    Table 1.  Studied molecules, their classification according to Mayr's system, their experimental EMayr values 113, and their calculated I and A (given in eV).
    下载: 导出CSV
    Classification Molecule EMayr I A
    1-star methyl(phenyl) methyleneammonium -5.17 13.399 5.145
    1-star vilsmeier ion -5.77 16.255 5.233
    1-star Dimethylmethyl eneammonium -6.69 17.321 5.273
    3-stars tropylium ion -3.72 15.627 5.784
    3-stars 2-phenyl-1.3-dithiolan-2-ylium -5.91 13.050 5.718
    3-stars 2-phenyl-1.3-dithianylium -6.43 12.806 5.431
    3-stars 1.1 -bis(4-dimethylaminophenyl)-3-phenylallylium -8.97 9.480 4.749
    3-stars 1-(4-chlorophenyl)cyclopent-2-enylium 3.20 12.716 6.145
    3-stars (pfp)2CH+ 5.40 12.716 6.356
    3-stars 1 -phenylcyclopent-2-enylium 2.89 13.155 6.068
    3-stars N-ethylidenecarbazolium 2.41 11.750 5.264
    3-stars methoxy-(4-methylphenyl) methylium 1.90 13.652 5.649
    3-stars 1.3-diphenylpropyn-1 -ylium-Cr(CO)3 1.07 10.641 6.100
    3-stars methoxy-(4-methoxyphenyl) methylium 0.14 12.916 5.306
    3-stars 1.1 -dianisyl-3-phenylallylium -2.67 10.622 5.373
    3-stars methoxy-phenylmethylium 2.97 13.995 5.851
    3-stars flavylium -3.45 12.094 5.570
    3-stars methoxy-flavylium -4.95 11.238 5.265
    3-stars acridinium -7.15 11.886 5.321
    3-stars 1.1.3-tris(4-dimethylphenyl) allylium -9.84 8.901 4.468
    3-stars pop(tol)CH+ 2.16 11.156 5.663
    3-stars 1.1.3-triphenylallylium 0.98 11.349 5.925
    3-stars 1.3-dithianylium -2.14 14.606 5.674
    3-stars fc(Me)CH+ -2.57 11.699 4.755
    5-stars (ani)2CH+ 0.00 11.186 5.429
    5-stars (fur)2CH+ -1.36 10.873 5.307
    5-stars (mfa)2CH+ -3.85 10.224 5.090
    5-stars (mor)2CH+ -5.53 9.719 4.806
    5-stars (dma)2CH+ -7.02 9.809 4.691
    5-stars (pyr)2CH+ -7.69 9.533 4.533
    5-stars (thq)2CH+ -8.22 9.456 4.489
    5-stars (pcp)2CH+ 6.02 12.205 6.417
    5-stars (ind)2CH+ -8.76 9.456 4.506
    5-stars (jul)2CH+ -9.45 9.149 4.354
    5-stars (lil)2CH+ -10.04 9.160 4.294
    5-stars benzhydrylium ion 5.90 12.785 6.289
    5-stars pfp(Ph)CH+ 5.60 12.750 6.321
    5-stars tol(Ph)CH+ 4.59 12.392 6.107
    5-stars (tol)2CH+ 3.63 12.038 5.945
    5-stars ani(Ph)CH+ 2.11 11.915 5.801
    5-stars ani(tol)CH+ 1.48 11.595 5.665
    5-stars ani(pop)CH+ 0.61 10.843 5.437
    5-stars (mpa)2CH+ -5.89 9.597 4.643
    5-stars pop(Ph)CH+ 2.90 11.493 5.859
    5-stars (dpa)2〇H+ -4.72 8.969 4.752
    5-stars fc(Ph)CH+ -2.64 10.952 5.323
    neutral p-(methoxy) -10.80 8.443 1.437
    neutral p-(dimethylamino) -13.30 7.589 1.149
    neutral ani(Br)2QM -8.63 6.790 1.488
    neutral 5-methoxyfuroxano[3.4-d] -8.37 9.358 2.072
    neutral benzylidenemalononitril -9.42 9.085 1.626
    neutral benzaldehyde-boron 1.12 9.413 2.127
    neutral ani(Ph)2QM -12.18 6.595 1.470
    neutral dma(Ph)2QM -13.39 5.773 1.515
    neutral tol(t-Bu)2QM -15.83 6.848 1.269
    neutral ani(t-Bu)2QM -16.11 6.582 1.069
    neutral dma(t-Bu)2QM -17.29 5.941 1.01 7
    neutral jul(t-Bu)2QM -17.90 6.438 1.144

    The structures of all the molecules were optimized at the HF/6-31g(d) level of theory. Then, single-point calculations were performed for these geometries after adding one electron, and after removing one electron. In this way, we obtain the necessary data to calculate the vertical ionization potentials and electron affinities (see Table 1). All the calculations were performed using Gaussian 09 115.

    The SR calculations were performed using GP and GE algorithms, with different "tree lengths". The mutation probability was set to 15%, and the maximum number of generations was set to 50. For each case, three runs were performed, as a way to check the stability of the SR results. The final expressions were simplified, when possible. These calculations were performed using the HeuristicLab-3.3.12 software package 116.

    In Table 2 we show the values of the fitted parameters for every tested model. We have performed 5 different fits, one for each of the 4 separate families of compounds, and one that takes into account all the molecules. It is interesting to note that in the case of the 1-star family the slope of the linear regression (cf. Eq. (24)) is negative when we use the ωparabolic, ωTD, and {\tilde \omega _{\rm{P}}} indices. This is a surprising result since these are precisely the electrophilicity measures that have the strongest theoretical justification. This implies that these indices can even give qualitatively wrong results, namely, they are in some cases incapable of predicting the relative order of electrophilicity observed experimentally. This is a reminder that these simple electronic structure-based indices miss many of the factors that govern the tendency of a system to gain electrons during the course of an actual chemical reaction. Nonetheless, it is reassuring that when we work with bigger datasets, all the studied models have positive slopes. This means that, overall, these indices are able to recover the rough trends in Mayr's electrophilicity parameter.

    表 2

    表 2  Fit parameters for all the c-DFT-based electrophilicity measures studied.
    Table 2.  Fit parameters for all the c-DFT-based electrophilicity measures studied.
    下载: 导出CSV
    Electrophilicity Measure Group m b γ
    {{\omega }_{\text{parabolic}}} 1-star -16.74420 81.9794 -
    3-stars 3.98655 -25.6185 -
    5-stars 6.39720 -39.5342 -
    neutral 13.71310 -34.4945 -
    all 2.78903 -18.0825 -
    \omega _{{\rm{GCV}}}^{\rm{ + }} 1-star 2.09010 -18.2650 -
    3-stars 1.71621 -15.3898 -
    5-stars 4.26748 -36.4802 -
    neutral 12.84160 -30.6268 -
    all 1.76362 -15.6848 -
    \omega _{{\rm{CDP1}}}^{\rm{ + }} 1-star 1.44274 -9.7232 -
    3-stars 1.41243 -8.4555 -
    5-stars 5.87687 -32.0067 -
    neutral 26.43710 -21.5261 -
    all 2.33240 -13.1769 -
    \omega _{{\rm{CDP2}}}^{\rm{ + }} 1-star 3.55743 -12.1201 -
    3-stars 5.80997 -16.4733 -
    5-stars 13.70820 -37.5049 -
    neutral 37.74420 -22.8075 -
    all 5.09763 -14.5782 -
    {\omega _{{\rm{TD}}}} 1-star -10.99610 51.4882 -
    3-stars 6.62658 -38.3932 -
    5-stars 7.75751 -42.8484 -
    neutral 12.82170 -30.4143 -
    all 3.01701 -17.8939 -
    {{\tilde \omega }_{\rm{P}}} 1-star -1.69823 69.3941 1.03686
    3-stars 0.04583 -35.7190 5.28113
    5-stars 0.04319 -42.3104 6.16113
    neutral 3.16158 -33.4227 0.66305
    all 0.08921 -19.9208 2.59209

    With the parameters given in Table 1, it is easy to evaluate the quality of the different fits (see Table 3). In general, good correlations are obtained in all cases, with the exception of the 3-stars family. This is probably because the 3-star family is the most structurally diverse group. For example, here we can find heterosubstituted carbocations (like flavylium and 1, 3-dithianylium), methal-stabilized carbocations (like the 1, 3-diphenylpropyn-1-ylium-Cr(CO)3), benzhydril cations (like pop(tol) CH+ and (pfp)2CH+), cyclic conjugated carbocations (like the tropylium ion), and other π-delocalized carbocations (like 1, 1, 3-triphenylallylium and 1-(4-chlorophenyl) cyclopent-2-enylium). In this case, even the best fit (given by ωTD) still results in an RMSD of 2.950, and a correlation coefficient lower than 0.6. This is a strong indication that to predict the electrophilicity of a given compound we should use a model trained on a set of molecules with similar characteristics. An alternative, in the case we are especially interested in structurally diverse sets, could be to include information regarding condensed local reactivity descriptors 117-120.

    表 3

    表 3  Average error (AE), mean absolute error (MAE), root mean square deviation (RMSD), and correlation coefficient (R2) for all the c-DFT-based electrophilicity measures studied.
    Table 3.  Average error (AE), mean absolute error (MAE), root mean square deviation (RMSD), and correlation coefficient (R2) for all the c-DFT-based electrophilicity measures studied.
    下载: 导出CSV
    Electrophilicity measure Group AE (×105) MAE RMSD R2
    {\omega _{{\rm{parabolic}}}} 1-star -430.40 0.043 0.048 0.999933
    3-stars -3.29 3.025 3.348 0.472271
    5-stars -3.89 0.654 0.809 0.979628
    neutral -3.93 1.660 2.289 0.968319
    all 2.02 2.993 3.542 0.775577
    \omega _{{\rm{GCV}}}^{\rm{ + }} 1-star -6.24 0.263 0.300 0.997419
    3-stars -3.37 3.303 3.717 0.349430
    5-stars -2.81 0.907 1.143 0.959311
    neutral 7.12 1.898 2.368 0.966093
    all 2.63 3.076 3.698 0.755331
    \omega _{{\rm{CDP1}}}^{\rm{ + }} 1-star 0.13 0.246 0.277 0.997809
    3-stars -0.87 3.430 3.973 0.256914
    5-stars -1.16 1.266 1.646 0.915585
    neutral 2.10 2.760 3.250 0.936163
    all 0.04 3.356 3.967 0.718476
    \omega _{{\rm{CDP2}}}^{\rm{ + }} 1-star 1.72 0.238 0.266 0.997971
    3-stars 1.24 3.289 3.683 0.361174
    5-stars -9.99 0.792 0.983 0.969887
    neutral 0.95 2.655 3.083 0.942530
    all -5.20 3.122 3.778 0.744672
    {\omega _{{\rm{TD}}}} 1-star 8.78 0.188 0.204 0.998807
    3-stars 4.06 2.470 2.950 0.590157
    5-stars 4.29 0.515 0.647 0.986951
    neutral 3.49 1.900 2.363 0.966248
    all 3.83 3.101 3.644 0.762501
    {{\tilde \omega }_{\rm{P}}} 1-star -169.20 0.002 0.002 1.000000
    3-stars -2.97 2.643 3.038 0.565367
    5-stars 1.09 0.514 0.639 0.987296
    neutral -4.03 1.690 2.256 0.969225
    all -1.26 2.978 3.499 0.781001

    This insight is supported by the very good fits obtained for the 5-stars and neutral groups (particularly, when we consider the values of R2). These families are mostly formed by structurally similar compounds: benzhydryl cations in the 5-star case, and quinone methides (with a few alkenes substituted with electron-withdrawing groups) in the neutral case. The structural variety of the neutral family is reflected instead in the RMSD values, which are significantly higher than those found in the 5-star case. Overall, all the electrophilicity measures studied have very similar performances over these sets. Nonetheless, in terms of RMSD and R2, the ωCDP1+ and ωCDP2+ indices are outperformed by others. These trends are preserved when we perform the fits including all the studied molecules. Finally, we should note that the simple model based on ωTD consistently ranks among the best. Recall that is simply equal to the electron affinity; it is not surprising that the electrophilicity and the electron affinity are closely related.

    In Tables 4 and 5 we show the expressions obtained using GE and GP for all families, respectively. In cases where the optimization algorithm resulted in more than one expression, we will only consider the two that have the highest correlation coefficient values. All the solutions with tree lengths up to 4 are explicitly presented. Additionally, we will also discuss some examples of more complex expressions obtained with greater tree lengths.

    表 4

    表 4  Equations obtained using grammatical evolution.
    Table 4.  Equations obtained using grammatical evolution.
    下载: 导出CSV
    Group Tree length Equation code Equation
    1-star 3 ge_13a 22.89987 - 1.05725{A^2}
    4 ge_14a164.68588 - 30.71200\left( {A + \frac{A}{{\rm{I}}}} \right)
    3-stars 3 ge_33a - 20.61898 + 0.61253{A^2}
    4 ge_34a - 14.64513 + 0.07463{A^3}
    5-stars 3 ge_53a - 42.84836 + 7.75751A
    4 ge_54a - 46.17069 + 7.67312\left( {A + \frac{A}{{\rm{I}}}} \right)
    neutral 3 ge_N3a - 30.41432 + 12.82174A
    4 ge_N4a - 29.00367 - 13.69916\left( { - A + \frac{A}{{\rm{I}}}} \right)
    all 3 ge_A3a - 14.29564 + 0.42896{A^2}
    4 ge_A4a - 13.01861 + 0.06894{A^3}
    The equation codes reflect the method (ge: grammatical evolution), the group ("1": 1-star, "3": 3-stars, "5": 5-stars, "N": neutral, "A": all), the three length (3 or 4), and an identifier that indicates if the equation corresponds to the best ("a") or second best ("b") value of R2.

    表 5

    表 5  Equations obtained using genetic programming.
    Table 5.  Equations obtained using genetic programming.
    下载: 导出CSV
    Group tree length equation code Equation
    1-star 3 gp_13a 22.89987 - 1.05725{A^2}
    4 gp_14a 266.68256 - 40.14199\left( {1.20624A + \frac{{1.47614A}}{{\rm{I}}}} \right)
    gp_14b - 4.81713 - \frac{{0.08337{\rm{I}}}}{{11.35373 - 0.61098{\rm{I}}}}
    3-stars 3 gp_33a - 20.61898 + 0.61253{A^2}
    4 gp_34a - 2.56271 + \frac{{30.02478\left( { - 15.66098 + 2.92280A} \right)}}{{ - 0.59686A + 1.48008{\rm{I}}}}
    gp_34b - 17.79382 + \frac{{6.97869A}}{{5.84563 - 0.61188A}}
    5-stars 3 gp_53a - 41.95494 + 2.60385\left( {3.44526A - 0.26105{\rm{I}}} \right)
    gp_53b 39.26578 - \frac{{213.70576}}{A}
    4 gp_54a 23.56579 + 6.52492\left( { - 0.51781A + 0.82428{\rm{I}} - \frac{{4.91576{\rm{I}}}}{A}} \right)
    gp_54b 75.61898 - \frac{{908.67326}}{{5.50625 + 1.18802A}}
    neutral 3 gp_N3a - 33.14915 - 10.36197\left( { - 1.01822A - 0.07852{\rm{I}}} \right)
    gp_N3b - 33.14997 + 4.31176\left( {2.44675A + 0.18877{\rm{I}}} \right)
    4 gp_N4a - 20.89515 - 9.87138\left( { - 1.08308A + \frac{{4.69108}}{{\rm{I}}}} \right)
    gp_N4b - 20.89563 + 7.80050\left( {1.37063A - \frac{{5.93618}}{{\rm{I}}}} \right)
    all 3 gp_A3a - 14.29564 + 0.42896{A^2}
    4 gp_A4a - 19.18065 + \frac{{86.80017}}{{15.67561 - 1.92879A}}
    gp_A4b - 19.19082 - \frac{{29.28176}}{{ - 5.28135 + 0.64965A}}
    The equation codes reflect the method (gp: genetic programming), the group ("1": 1-star, "3": 3-stars, "5": 5-stars, "N": neutral, "A": all), the three length (3 or 4), and an identifier that indicates if the equation corresponds to the best ("a") or second best ("b") value of R2.

    Unsurprisingly, given the choice to select between I or A to construct a function to fit EMayr, both algorithms choose the latter. However, here we see much more general functional forms including the electron affinity. For example, now we have a greater variety of terms with different powers of A (ranging from -1 to +3). In all these cases (except in the pathological 1-star family), the final equations are monotonically increasing functions of A.

    The results of the different statistical measures corresponding to the SR fits can be found in Table 6. Overall, the performance of these methods is very similar to the c-DFT electrophilicity measures. For example, for the 3-stars family, the RMSD and R2 values obtained both by GE and GP algorithms are virtually identical to those corresponding to the best c-DFT indices (ωTD and {\tilde \omega _{\rm{P}}}). For this family, the quality of the fit remains essentially unaltered if we increase the tree length using the GE algorithm (increasing the tree length up to 7 only increases R2 up to 0.539182). On the other hand, increasing the tree length does improve the fit quality when we use GP. In this case, a tree length of 7 gave an R2 of 0.703165. The corresponding expression (which, in our notation, would be equation gp_73a) is:

    \begin{array}{l} {{E}_{\text{Mayr}}}= - 111.13658 + 0.02161 \cdot \\ {\rm{ }}\left[{-\frac{{-2.31931A + 3.44598{\rm{I}}}}{{30.82453-2.31931A - 1.33811{\rm{I}}}} + } \right.(185.33349 - \\ {\rm{ }}\left. {\begin{array}{*{20}{c}} {}\\ {} \end{array}6.39258{\rm{I}})(12.50612 + 1.81923{\rm{I}} + 0.19209A\rm{I})} \right] \end{array}

    表 6

    表 6  Average error (AE), mean absolute error (MAE), root mean square deviation (RMSD), and correlation coefficient (R2) for all the SR-based electrophilicity measures studied.
    Table 6.  Average error (AE), mean absolute error (MAE), root mean square deviation (RMSD), and correlation coefficient (R2) for all the SR-based electrophilicity measures studied.
    下载: 导出CSV
    Group Equation Code AE (×105) MAE RMSD R2
    1-star ge_13a 7.82 0.187 0.202 0.895135
    gp_13a 7.82 0.187 0.202 0.895135
    ge_14a 442.77 0.093 0.010 0.974507
    gp_14a 15.73 0.000 0.000 1.000000
    gp_14b -11.74 0.000 0.000 1.000000
    3-stars ge_33a -0.38 2.455 2.937 0.533955
    gp_33a -0.38 2.455 2.937 0.533955
    ge_34a -56.10 2.442 2.931 0.535784
    gp_34a -4.19 2.463 2.898 0.546226
    gp_34b 15.04 2.428 2.926 0.537606
    5-stars ge_53a 0.29 0.515 0.647 0.985249
    gp_53a -9.50 0.507 0.622 0.986389
    gp_53b 0.41 0.480 0.631 0.985974
    ge_54a -1.49 0.499 0.619 0.986486
    gp_54a 13.15 0.401 0.520 0.990477
    gp_54b -14.91 0.417 0.579 0.988212
    neutral ge_N3a -0.31 1.896 2.363 0.778481
    gp_N3a -2.90 1.688 2.263 0.796833
    gp_N3b -9.76 1.688 2.263 0.796833
    ge_N4a -0.27 1.761 2.287 0.792417
    gp_N4a -4.24 1.656 2.242 0.800661
    gp_N4b -2.88 1.656 2.242 0.800661
    all ge_A3a -8.68 2.689 3.325 0.718186
    gp_A3a -8.68 2.689 3.325 0.718186
    ge_A4a 16.78 2.355 3.119 0.752041
    gp_A4a -4.98 2.305 3.037 0.764869
    gp_A4b -8.51 2.304 3.037 0.764869

    Nonetheless, requiring an extremely complicated expression to get a semi-quantitative fit is a reminder of the difficulty of predicting experimental electrophilicities with a single expression over a structurally diverse set of compounds.

    For the 5-stars family the SR results are excellent, and increasing the tree length in the latter case does not produce a noticeable improvement in the quality of the fit. On the other hand, it is interesting to note that when we work with all the molecules at the same time, the c-DFT indices perform slightly better than the SR expressions. However, when we increase the tree length both GP and GE algorithms provide significantly better solutions. For example, the equation ge_A7a would be:

    {{E}_{\text{Mayr}}}=-22.92968+5.70056\left( A+\frac{{{A}^{2}}}{I-{{A}^{2}}} \right)

    and it corresponds to an R2 of 0.85897. Its GP analog, namely, equation gp_A7a is:

    {{E}_{\text{Mayr}}} = - 22.92968 + 5.70056\left( {A + \frac{{{A^2}}}{{I - {A^2}}}} \right)

    \begin{array}{l} {{E}_{\text{Mayr}}} = - 22.45682 + 0.47192\left[{-\frac{{4.18726}}{A}-} \right.\\ {\rm{ }}\frac{{17.83630}}{{-3.90327 + 1.54873A}} - 0.27450{A^2} \times ( - 5.61841 - \\ {\rm{ }}\left. {\begin{array}{*{20}{c}} {}\\ {} \end{array}0.37166A + 0.31182{\rm{I}}) + 1.39466{\rm{I}}} \right] \end{array}

    which in turn has an R2 of 0.87667.

    These results indicate that we need to increase the flexibility of SR methods when the complexity of the system under study increases. This is to be expected since these methods need to "learn" the physical insights that are already built in the c-DFT descriptors.

    In this work we have assessed how different theoretical electrophilicity measures can be used to predict the experimental values of this index determined by Mayr et al. The different c-DFT indices used provided acceptable results, as long as they were applied to molecules with similar structures. From a quantitative point of view, it is reassuring that a measure as simple as the electron affinity, ωTD, provides results of comparable (if not better) quality than models based on more complex indices. This means that we can predict experimental electrophilicity values without computing the ionization energy, which reduces the computational effort.

    Perhaps the biggest appealing of the c-DFT approach is that one uses simple expressions, with chemically-motivated terms. In this way, we gain valuable insights into the factors that determinate the electrophilicity at a molecular level. However, we noticed that there are cases when the c-DFT measures were unable to provide the correct qualitative ordering corresponding to the experimental electrophilicity. This serves as an indication that still more effort is needed to improve the c-DFT descriptors, so they can provide a more realistic description of the electron uptake processes. For example, local reactivity indicators are probably needed in order to compare the electrophilicities of diverse families of molecules that include several different types of electrophilic reactive sites (A similar observation has been made for quantitative studies of the quality of leaving groups 28).

    To the best of our knowledge, we are reporting the first application of symbolic regression techniques to the prediction of experimental electrophilicity values and the first study of symbolic regression within the conceptual DFT framework. Symbolic regression has the advantage that the resulting models can be improved systematically, by removing restrictions from the optimization process. We showed that this is a key factor for making adequate predictions over relatively complex sets. The simplest models once again proved that the best way to predict the electrophilicity, which often only requires calculating the electron affinity. In general, the expressions obtained using GE are simpler than those obtained using GP, but in most cases the corresponding fits are equivalent. Finally, it should be remarked that, while attractive, these models could be prone to overfitting.

    In general, when used carefully, the different theoretical methods studied here provide adequate predictions of the experimental electrophilicity. Further studies are necessary, however, to assess their utility over a broader range of compounds, including their validation using independent "test" sets of molecules. It is also interesting to check whether using the exact electrophilicity formula given in Eq. (19) will improve the quantitative predictions.

    1. [1]

      Miller, B. Advanced Organic Chemistry: Reactions and Mechanisms; Prentice-Hall: Upper Saddle River, NJ, USA, 1998.doi: 10.1021/ed075p1558  doi: 10.1021/ed075p1558

    2. [2]

      March, J. Advanced Organic Chemistry; Wiley-Interscience: New York, NY, USA, 1992. doi: 10.1002/0470084960  doi: 10.1002/0470084960

    3. [3]

      Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66.doi: 10.1021/ar020094c  doi: 10.1021/ar020094c

    4. [4]

      Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; et al. J. Am. Chem. Soc. 2001, 123, 9500. doi: 10.1021/ja010890y  doi: 10.1021/ja010890y

    5. [5]

      Mayr, H.; Patz, M. Angew. Chem. Int. Ed. 1994, 33, 938.doi: 10.1002/anie.199409381  doi: 10.1002/anie.199409381

    6. [6]

      Mayr, H.; Ofial, A. R. J. Phys. Org. Chem. 2008, 21, 584.doi: 10.1002/poc.1325  doi: 10.1002/poc.1325

    7. [7]

      Mayr, H.; Ofial, A. R. Pure Appl. Chem. 2005, 77, 1807.doi: 10.1351/pac200577111807  doi: 10.1351/pac200577111807

    8. [8]

      Liu, S. B. In Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K., Ed.; Taylor and Francis: Boca Raton, FL, USA, 2009; p. 179.

    9. [9]

      Chattaraj, P. K.; Giri, S. Ann. Rep. Prog. Chem. C 2009, 105, 13.doi: 10.1039/B802832J  doi: 10.1039/B802832J

    10. [10]

      Chattaraj, P. K.; Giri, S.; Duley, S. Chem. Rev. 2011, 111, PR43.doi: 10.1021/cr100149p  doi: 10.1021/cr100149p

    11. [11]

      Maynard, A. T.; Huang, M.; Rice, W. G.; Covell, D. G. Proc. Natl. Acad. Sci. USA 1998, 95, 11578. doi: 10.1073/pnas.95.20.11578  doi: 10.1073/pnas.95.20.11578

    12. [12]

      Parr, R. G.; von Szentpály, L.; Liu, S. B. J. Am. Chem. Soc. 1999, 121, 1922. doi: 10.1021/ja983494x  doi: 10.1021/ja983494x

    13. [13]

      Chermette, H. J. Comput. Chem. 1999, 20, 129.doi: 10.1002/(SICI)1096-987X(19990115)20:1 < 129::AID-JCC13 > 3.0.CO; 2-A  doi: 10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A

    14. [14]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford UP: New York, NY, USA, 1989.
       

    15. [15]

      Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029  doi: 10.1021/cr990029

    16. [16]

      Johnson, P. A.; Bartolotti, L. J.; Ayers, P. W.; Fievez, T.; Geerlings, P. Modern Charge Density Analysis; Gatti, C., Macchi, P., Eds.; Springer: New York, NY, USA, 2012; p. 715.
       

    17. [17]

      Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520. doi: 10.1002/qua.20307  doi: 10.1002/qua.20307

    18. [18]

      Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2000, 122, 2010.doi: 10.1021/ja9924039  doi: 10.1021/ja9924039

    19. [19]

      Miranda-Quintana, R. A. Conceptual Density Functional Theory and its Applications in the Chemical Domain; Islam, N., Kaya, S., Eds.; Apple Academic Press: NJ, USA, in press.
       

    20. [20]

      Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K., Ed.; CRC Press: Boca Raton, FL, USA, 2009.

    21. [21]

      Fuentealba, P.; Cárdenas, C. Chemical Modelling; Springborg, M., Ed.; The Royal Society of Chemistry: London, UK, 2015; Vol. 11, p. 151.
       

    22. [22]

      Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. doi: 10.3866/PKU.WHXB20090332  doi: 10.3866/PKU.WHXB20090332

    23. [23]

      Gazquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.

    24. [24]

      Domingo, L. R.; Perez, P.; Saez, J. A. RSC Adv. 2013, 3, 1486.doi: 10.1039/C2RA22886F  doi: 10.1039/C2RA22886F

    25. [25]

      Domingo, L. R.; Zaragoza, R. J.; Saez, J. A.; Arno, M. Molecules 2012, 17, 1335. doi: 10.3390/molecules17021335  doi: 10.3390/molecules17021335

    26. [26]

      Domingo, L. R.; Perez, P.; Contreras, R. Tetrahedron 2004, 60, 6585. doi: 10.1016/j.tet.2004.06.003  doi: 10.1016/j.tet.2004.06.003

    27. [27]

      Domingo, L. R.; Aurell, M. J.; Perez, P.; Contreras, R. J. Phys. Chem. A 2002, 106, 6871. doi: 10.1021/jp020715j  doi: 10.1021/jp020715j

    28. [28]

      Anderson, J. S. M.; Liu, Y. L.; Thomson, J. W.; Ayers, P. W. J. Mol. Struct.: THEOCHEM 2010, 943, 168.doi: 10.1016/j.theochem.2009.12.013  doi: 10.1016/j.theochem.2009.12.013

    29. [29]

      Ayers, P. W.; Anderson, J. S. M.; Rodriguez, J. I.; Jawed, Z. Phys. Chem. Chem. Phys. 2005, 7, 1918. doi: 10.1039/B500996K  doi: 10.1039/B500996K

    30. [30]

      Chamorro, E.; Chattaraj, P. K.; Fuentealba, P. J. Phys. Chem. A 2003, 107, 7068. doi: 10.1021/jp035435y  doi: 10.1021/jp035435y

    31. [31]

      Parthasarathi, R.; Elango, M.; Subramanian, V.; Chattaraj, P. K. Theor. Chem. Acc. 2005, 113, 257. doi: 10.1007/s00214-005-0634-3  doi: 10.1007/s00214-005-0634-3

    32. [32]

      González, M. M.; Hernández-Castillo, D.; Montero-Cabrera, L. A.; Miranda-Quintana, R. A. Int. J. Quantum Chem. 2017, e25444.doi: 10.1002/qua.25444  doi: 10.1002/qua.25444

    33. [33]

      Moens, J.; Jaque, P.; De Proft, F.; Geerlings, P. J. Phys. Chem. A 2008, 112, 6023. doi: 10.1021/jp711652a  doi: 10.1021/jp711652a

    34. [34]

      Moens, J.; Geerlings, P.; Roos, G. Chem. -A Eur. J. 2007, 13, 8174. doi: 10.1002/chem.200601896  doi: 10.1002/chem.200601896

    35. [35]

      Moens, J.; Roos, G.; Jaque, P.; Proft, F.; Geerlings, P. Chem. -A Eur. J. 2007, 13, 9331. doi: 10.1002/chem.200700547  doi: 10.1002/chem.200700547

    36. [36]

      Parthasarathi, R.; Padmanabhan, J.; Subramanian, V.; Maiti, B.; Chattaraj, P. K. Curr. Sci. 2004, 86, 535.
       

    37. [37]

      Parthasarathi, R.; Subramanian, V.; Roy, D. R.; Chattaraj, P. K. Biorg. Med. Chem. 2004, 12, 5533. doi: 10.1016/j.bmc.2004.08.013  doi: 10.1016/j.bmc.2004.08.013

    38. [38]

      Rétey, J. Biochim. Biophys. Acta 2003, 1647, 179.doi: 10.1016/S1570-9639(03)00091-8  doi: 10.1016/S1570-9639(03)00091-8

    39. [39]

      Rosenkranz, H. S.; Klopman, G.; Zhang, Y.; Graham, C.; Karol, M. H. Environ. Health Perspect. 1999, 107, 129.  doi: 10.1289/ehp.99107129

    40. [40]

      Miranda-Quintana, R. A. J. Chem. Phys. 2017, 146, 046101.doi: 10.1063/1.4974987  doi: 10.1063/1.4974987

    41. [41]

      Pan, S.; Sola, M.; Chattaraj, P. K. J. Phys. Chem. A 2013, 117, 1843. doi: 10.1021/jp312750n  doi: 10.1021/jp312750n

    42. [42]

      Morell, C.; Labet, V.; Grand, A.; Chermette, H. Phys. Chem. Chem. Phys. 2009, 11, 3414. doi: 10.1039/B818534D  doi: 10.1039/B818534D

    43. [43]

      Chattaraj, P. K. Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci. 2007, 81, 871
       

    44. [44]

      Miranda-Quintana, R. A.; Chattaraj, P. K.; Ayers, P. W. J. Chem. Phys. 2017, 147, 124103. doi: 10.1063/1.4996443  doi: 10.1063/1.4996443

    45. [45]

      Gazquez, J. L.; Cedillo, A.; Vela, A. J. Phys. Chem. A 2007, 111, 1966. doi: 10.1021/jp065459f  doi: 10.1021/jp065459f

    46. [46]

      Chamorro, E.; Duque-Noreña, M.; Perez, P. J. Mol. Struct. 2009, 896, 73. doi: 10.1016/j.theochem.2008.11.009  doi: 10.1016/j.theochem.2008.11.009

    47. [47]

      Chamorro, E.; Duque-Noreña, M.; Perez, P. J. Mol. Struct. 2009, 901, 145. doi: 10.1016/j.theochem.2009.01.014  doi: 10.1016/j.theochem.2009.01.014

    48. [48]

      Franco-Pérez, M.; Gazquez, J. L.; Ayers, P. W. Acta Phys. -Chim. Sin. 2018, submitted.

    49. [49]

      Miranda-Quintana, R. A. J. Chem. Phys. 2017, 146, 214113.doi: 10.1063/1.4984611  doi: 10.1063/1.4984611

    50. [50]

      Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512.doi: 10.1021/ja00364a005  doi: 10.1021/ja00364a005

    51. [51]

      Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801. doi: 10.1063/1.436185  doi: 10.1063/1.436185

    52. [52]

      Sanderson, R. T. Science 1951, 114, 670. doi: 10.1126/science.114.2973.670  doi: 10.1126/science.114.2973.670

    53. [53]

      Galvan, M.; Vela, A.; Gazquez, J. L. J. Phys. Chem. 1988, 92, 6470. doi: 10.1021/j100333a056  doi: 10.1021/j100333a056

    54. [54]

      Vargas, R.; Galvan, M.; Vela, A. J. Phys. Chem. A 1998, 102, 3134. doi: 10.1021/jp972984t  doi: 10.1021/jp972984t

    55. [55]

      Galvan, M.; Vargas, R. J. Phys. Chem. 1992, 96, 1625.doi: 10.1021/j100183a026  doi: 10.1021/j100183a026

    56. [56]

      Ghanty, T. K.; Ghosh, S. K. J. Am. Chem. Soc. 1994, 116, 3943. doi: 10.1021/ja00088a033  doi: 10.1021/ja00088a033

    57. [57]

      Chamorro, E.; Santos, J. C.; Escobar, C. A.; Perez, P. Chem. Phys. Lett. 2006, 431, 210. doi: 10.1016/j.cplett.2006.09.072  doi: 10.1016/j.cplett.2006.09.072

    58. [58]

      Chamorro, E.; Perez, P.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2006, 124, 044105. doi: 10.1063/1.2161187  doi: 10.1063/1.2161187

    59. [59]

      Perez, P.; Chamorro, E.; Ayers, P. W. J. Chem. Phys. 2008, 128, 204108. doi: 10.1063/1.2916714  doi: 10.1063/1.2916714

    60. [60]

      Miranda-Quintana, R. A.; Ayers, P. W. Theor. Chem. Acc. 2016, 135, 239. doi: 10.1007/s00214-016-1995-5  doi: 10.1007/s00214-016-1995-5

    61. [61]

      Cardenas, C.; Heidar Zadeh, F.; Ayers, P. W. Phys. Chem. Chem. Phys. 2016, 18, 25721. doi: 10.1039/C6CP04533B  doi: 10.1039/C6CP04533B

    62. [62]

      Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr. Phys. Rev. Lett. 1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691  doi: 10.1103/PhysRevLett.49.1691

    63. [63]

      Heidar Zadeh, F.; Miranda-Quintana, R. A.; Verstraelen, T.; Bultinck, P.; Ayers, P. W. J. Chem. Theory Comp. 2016, 12, 5777. doi: 10.1021/acs.jctc.6b00494  doi: 10.1021/acs.jctc.6b00494

    64. [64]

      Miranda-Quintana, R. A.; Ayers, P. W. Conceptual Density Functional Theory and Its Applications in the Chemical Domain; Islam, N., Kaya, S., Eds.; Apple Academic Press: NJ, USA, in press.
       

    65. [65]

      Miranda-Quintana, R. A.; Ayers, P. W. J. Chem. Phys. 2016, 144, 244112. doi: 10.1063/1.4953557  doi: 10.1063/1.4953557

    66. [66]

      Ayers, P. W.; Parr, R. G. J. Chem. Phys. 2008, 129, 054111. doi: 10.1063/1.2957900  doi: 10.1063/1.2957900

    67. [67]

      Ayers, P. W.; Parr, R. G. J. Chem. Phys. 2008, 128, 184108. doi: 10.1063/1.2918731  doi: 10.1063/1.2918731

    68. [68]

      Franco-Pérez, M.; Ayers, P. W.; Gazquez, J. L.; Vela, A. J. Chem. Phys. 2017, 147, 094105. doi: 10.1063/1.4999761  doi: 10.1063/1.4999761

    69. [69]

      Franco-Pérez, M.; Heidar-Zadeh, F.; Ayers, P. W.; Gazquez, J. L.; Vela, A. Phys. Chem. Chem. Phys. 2017, 19, 11588.doi: 10.1039/C7CP00224F  doi: 10.1039/C7CP00224F

    70. [70]

      Franco-Pérez, M.; Ayers, P. W.; Gazquez, J. L.; Vela, A. Phys. Chem. Chem. Phys. 2017, 19, 13687. doi: 10.1039/C7CP00692F  doi: 10.1039/C7CP00692F

    71. [71]

      Polanco-Ramírez, C. A.; Franco-Pérez, M.; Carmona-Espíndola, J.; Gazquez, J. L.; Ayers, P. W. Phys. Chem. Chem. Phys. 2017, 19, 12355. doi: 10.1039/C7CP00691H  doi: 10.1039/C7CP00691H

    72. [72]

      Franco-Pérez, M.; Ayers, P.; Gazquez, J. L.; Vela, A. J. Chem. Phys. 2015, 143, 244117. doi: 10.1063/1.4938422  doi: 10.1063/1.4938422

    73. [73]

      Franco-Pérez, M.; Gazquez, J. L.; Ayers, P.; Vela, A. J. Chem. Phys. 2015, 143, 154103. doi: 10.1063/1.4932539  doi: 10.1063/1.4932539

    74. [74]

      Malek, A.; Balawender, R. J. Chem. Phys. 2015, 142, 054104.doi: 10.1063/1.4906555  doi: 10.1063/1.4906555

    75. [75]

      Miranda-Quintana, R. A.; Ayers, P. W. Phys. Chem. Chem. Phys. 2016, 18, 15070. doi: 10.1039/c6cp00939e  doi: 10.1039/c6cp00939e

    76. [76]

      Miranda-Quintana, R. A. Theor. Chem. Acc. 2017, 136, 76.doi: 10.1007/s00214-017-2109-8  doi: 10.1007/s00214-017-2109-8

    77. [77]

      Miranda-Quintana, R. A.; Ayers, P. W. Theor. Chem. Acc. 2016, 135, 172. doi: 10.1007/s00214-016-1924-7  doi: 10.1007/s00214-016-1924-7

    78. [78]

      Miranda-Quintana, R. A. Theor. Chem. Acc. 2016, 135, 189.doi: 10.1007/s00214-016-1945-2  doi: 10.1007/s00214-016-1945-2

    79. [79]

      Miranda-Quintana, R. A.; González, M. M.; Ayers, P. W. Phys. Chem. Chem. Phys. 2016, 18, 22235. doi: 10.1039/c6cp03213c  doi: 10.1039/c6cp03213c

    80. [80]

      Klopman, G. J. Am. Chem. Soc. 1968, 90, 223.doi: 10.1021/ja01004a002  doi: 10.1021/ja01004a002

    81. [81]

      Klopman, G.; Hudson, R. F. Theor. Chim. Act. 1967, 8, 165.doi: 10.1007/bf00526373  doi: 10.1007/bf00526373

    82. [82]

      Klopman, G.; Klopman, G. Chemical Reactivity and Reaction Paths; Wiley-Interscience: New York, NY, USA, 1974; p. 55.

    83. [83]

      Hudson, R. F.; Klopman, G. Tetrahedron Lett. 1967, 12, 1103.doi: 10.1016/S0040-4039(00)90645-2  doi: 10.1016/S0040-4039(00)90645-2

    84. [84]

      Salem, L. J. Am. Chem. Soc. 1968, 90, 553.doi: 10.1021/ja01005a002  doi: 10.1021/ja01005a002

    85. [85]

      Salem, L. J. Am. Chem. Soc. 1968, 90, 543.doi: 10.1021/ja01005a001  doi: 10.1021/ja01005a001

    86. [86]

      Salem, L. Chem. Br. 1969, 5, 449.

    87. [87]

      Witten, I. H.; Frank, E.; Hall, M. A.; Pal, C. J. Data Mining: Practical Machine Learning Tools and Techniques, 4th ed.; Elsevier: Cambridge, MA, USA, 2017.

    88. [88]

      Gertrudes, J. C.; Maltarollo, V. G.; Silva, R. A.; Oliveira, P. R.; Honorio, K. M.; da Silva, A. B. F. Curr. Med. Chem. 2012, 19, 4289. doi: 10.2174/092986712802884259  doi: 10.2174/092986712802884259

    89. [89]

      Carrera, G.; Gupta, S.; Aires-de-Sousa, J. J. Comput. Aided Mol. Des. 2009, 23, 419. doi: 10.1007/s10822-009-9275-2  doi: 10.1007/s10822-009-9275-2

    90. [90]

      Dietterich, T. G. Ai Mag. 1997, 18, 97. doi: 10.1609/aimag.v18i4.1324  doi: 10.1609/aimag.v18i4.1324

    91. [91]

      Carbonell, J. G.; Michalski, R. S.; Mitchell, T. M. Machine Learning: an Artificial Intelligence Approach; Michalski, R. S., Carbonell, J. G., Mitchell, T. M., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, Germany, 1983; p. 3.doi: 10.1007/978-3-662-12405-5_1  doi: 10.1007/978-3-662-12405-5_1

    92. [92]

      Lino, A.; Rocha, A.; Sizo, A. J. Intell. Fuzzy Syst. 2016, 31, 2061. doi: 10.3233/JIFS-169045  doi: 10.3233/JIFS-169045

    93. [93]

      Affenzeller, M.; Winkler, S. M.; Kronberger, G.; Kommenda, M.; Burlacu, B.; Wagner, S. Genetic Programming Theory and Practice XI; Riolo, R., Moore, J. H., Kotanchek, M., Eds.; Springer New York: New York, NY, USA, 2014; p. 175.doi: 10.1007/978-1-4939-0375-7_10  doi: 10.1007/978-1-4939-0375-7_10

    94. [94]

      Billard, L.; Diday, E. Classification, Clustering, and Data Analysis: Recent Advances and Applications; Jajuga, K., Sokolowski, A., Bock, H. H., Eds.; Springer-Verlag: Berlin, Germany, 2012.

    95. [95]

      Billard, L.; Diday, E. J. Am. Stat. Assoc. 2003, 98, 470.doi: 10.1198/016214503000242  doi: 10.1198/016214503000242

    96. [96]

      Billard, L.; Diday, E. Data Analysis, Classification, and Related Methods; Kiers, H. A. L., Rasson, J.-P., Groenen, P. J. F., Schader, M., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, Germany, 2000; p. 369. doi: 10.1007/978-3-642-59789-3_58  doi: 10.1007/978-3-642-59789-3_58

    97. [97]

      Schmidt, M. D.; Vallabhajosyula, R. R.; Jenkins, J. W.; Hood, J. E.; Soni, A. S.; Wikswo, J. P.; Lipson, H. Phys. Biol. 2011, 8, 055011. doi: 10.1088/1478-3975/8/5/055011  doi: 10.1088/1478-3975/8/5/055011

    98. [98]

      Schmidt, M. W.; Lipson, H. Science 2009, 324, 81.doi: 10.1126/science.1165893  doi: 10.1126/science.1165893

    99. [99]

      Bongard, J.; Lipson, H. Proc. Natl. Acad. Sci. USA 2007, 104, 9943.doi: 10.1073/pnas.0609476104  doi: 10.1073/pnas.0609476104

    100. [100]

      Quade, M.; Abel, M.; Shafi, K.; Niven, R. K. Phys. Rev. B 2016, 94, 012214. doi: 10.1103/PhysRevE.94.012214  doi: 10.1103/PhysRevE.94.012214

    101. [101]

      Koza, J. R. 2nd International IEEE Conference on Tools for Artificial Intelligence, 1990; p. 819.

    102. [102]

      Sharma, S.; Tambe, S. S. Biochem. Eng. J. 2014, 85, 89.doi: 10.1016/j.bej.2014.02.007  doi: 10.1016/j.bej.2014.02.007

    103. [103]

      Langdon, W. B.; Poli, R. Found. Genet. Program.; Springer-Verlag: Berlin, Germany, 2013.

    104. [104]

      O'Neil, M.; Ryan, C. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language; Springer US: Boston, MA, USA, 2003; p. 33. doi: 10.1007/978-1-4615-0447-4_4  doi: 10.1007/978-1-4615-0447-4_4

    105. [105]

      O'Neil, M.; Ryan, C. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language; Springer US: Boston, MA, USA, 2003; p. 79. doi: 10.1007/978-1-4615-0447-4_7  doi: 10.1007/978-1-4615-0447-4_7

    106. [106]

      Ryan, C.; Collins, J.; Neill, M. O. Genetic Programming: First European Workshop, EuroGP'98 Paris, France, April 14–15, 1998 Proceedings; Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T. C., Eds.; Springer: Berlin, Heidelberg, Germany, 1998;, p. 83.doi: 10.1007/BFb0055930  doi: 10.1007/BFb0055930

    107. [107]

      Luke, S.; Spector, L. Genetic Programming 1997: Proceedings of the Second Annual Conference (GP97); Koza, J., Ed.; San Francisco, CA, USA, 1997; p. 240.

    108. [108]

      Spears, W. M.; Anand, V. Methodologies for Intelligent Systems: 6th International Symposium, ISMIS '91 Charlotte, N. C., USA, October 16–19, 1991 Proceedings; Ras, Z. W., Zemankova, M., Eds.; Springer: Berlin, Heidelberg, Germany, 1991; p. 409.doi: 10.1007/3-540-54563-8_104  doi: 10.1007/3-540-54563-8_104

    109. [109]

      Chomsky, N. IRE Trans. Inf. Theory 1956, 2, 113. doi: 10.1109/TIT.1956.1056813  doi: 10.1109/TIT.1956.1056813

    110. [110]

      Ginsburg, S. The Mathematical Theory of Context Free Languages; McGraw-Hill, New York, NY, USA, 1966.

    111. [111]

      Temkin, J. M.; Gilder, M. R. Bioinformatics 2003, 19, 2046.doi: 10.1093/bioinformatics/btg279  doi: 10.1093/bioinformatics/btg279

    112. [112]

      Trelea, I. C. Inf. Proc. Lett. 2003, 85, 317.doi: 10.1016/S0020-0190(02)00447-7  doi: 10.1016/S0020-0190(02)00447-7

    113. [113]

      Mayr, H. http://www.cup.lmu.de/oc/mayr/reaktionsdatenbank/; Vol. 2017 (accessed Oct 30, 2017).
       

    114. [114]

      Mayr, H. http://www.cup.uni-muenchen.de/oc/mayr/DBintro.html; Vol. 2017 (accessed Oct 30, 2017).
       

    115. [115]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09; Gaussian Inc.: Wallingford, CT, USA, 2009.
       

    116. [116]

      Wagner, S.; Kronberger, G.; Beham, A.; Kommenda, M.; Scheibenpflug, A.; Pitzer, E.; Vonolfen, S.; Kofler, M.; Winkler, S.; Dorfer, V.; et al. Advanced Methods and Applications in Computational Intelligence; Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z., Eds.; Springer International Publishing: Heidelberg, Germany, 2014; p. 197. doi: 10.1007/978-3-319-01436-4_10  doi: 10.1007/978-3-319-01436-4_10

    117. [117]

      Yang, W. T.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708.doi: 10.1021/ja00279a008  doi: 10.1021/ja00279a008

    118. [118]

      Miranda-Quintana, R. A. Chem. Phys. Lett. 2016, 658, 328.doi: 10.1016/j.cplett.2016.06.068  doi: 10.1016/j.cplett.2016.06.068

    119. [119]

      Zielinski, F.; Tognetti, V.; Joubert, L. Chem. Phys. Lett. 2012, 527, 67. doi: 10.1016/j.cplett.2012.01.011  doi: 10.1016/j.cplett.2012.01.011

    120. [120]

      Bultinck, P.; Fias, S.; Alsenoy, C. V.; Ayers, P. W.; Carbó-Dorca, R. J. Chem. Phys. 2007, 127, 034102. doi: 10.1063/1.2749518  doi: 10.1063/1.2749518

    1. [1]

      Miller, B. Advanced Organic Chemistry: Reactions and Mechanisms; Prentice-Hall: Upper Saddle River, NJ, USA, 1998.doi: 10.1021/ed075p1558  doi: 10.1021/ed075p1558

    2. [2]

      March, J. Advanced Organic Chemistry; Wiley-Interscience: New York, NY, USA, 1992. doi: 10.1002/0470084960  doi: 10.1002/0470084960

    3. [3]

      Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66.doi: 10.1021/ar020094c  doi: 10.1021/ar020094c

    4. [4]

      Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; et al. J. Am. Chem. Soc. 2001, 123, 9500. doi: 10.1021/ja010890y  doi: 10.1021/ja010890y

    5. [5]

      Mayr, H.; Patz, M. Angew. Chem. Int. Ed. 1994, 33, 938.doi: 10.1002/anie.199409381  doi: 10.1002/anie.199409381

    6. [6]

      Mayr, H.; Ofial, A. R. J. Phys. Org. Chem. 2008, 21, 584.doi: 10.1002/poc.1325  doi: 10.1002/poc.1325

    7. [7]

      Mayr, H.; Ofial, A. R. Pure Appl. Chem. 2005, 77, 1807.doi: 10.1351/pac200577111807  doi: 10.1351/pac200577111807

    8. [8]

      Liu, S. B. In Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K., Ed.; Taylor and Francis: Boca Raton, FL, USA, 2009; p. 179.

    9. [9]

      Chattaraj, P. K.; Giri, S. Ann. Rep. Prog. Chem. C 2009, 105, 13.doi: 10.1039/B802832J  doi: 10.1039/B802832J

    10. [10]

      Chattaraj, P. K.; Giri, S.; Duley, S. Chem. Rev. 2011, 111, PR43.doi: 10.1021/cr100149p  doi: 10.1021/cr100149p

    11. [11]

      Maynard, A. T.; Huang, M.; Rice, W. G.; Covell, D. G. Proc. Natl. Acad. Sci. USA 1998, 95, 11578. doi: 10.1073/pnas.95.20.11578  doi: 10.1073/pnas.95.20.11578

    12. [12]

      Parr, R. G.; von Szentpály, L.; Liu, S. B. J. Am. Chem. Soc. 1999, 121, 1922. doi: 10.1021/ja983494x  doi: 10.1021/ja983494x

    13. [13]

      Chermette, H. J. Comput. Chem. 1999, 20, 129.doi: 10.1002/(SICI)1096-987X(19990115)20:1 < 129::AID-JCC13 > 3.0.CO; 2-A  doi: 10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A

    14. [14]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford UP: New York, NY, USA, 1989.
       

    15. [15]

      Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029  doi: 10.1021/cr990029

    16. [16]

      Johnson, P. A.; Bartolotti, L. J.; Ayers, P. W.; Fievez, T.; Geerlings, P. Modern Charge Density Analysis; Gatti, C., Macchi, P., Eds.; Springer: New York, NY, USA, 2012; p. 715.
       

    17. [17]

      Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520. doi: 10.1002/qua.20307  doi: 10.1002/qua.20307

    18. [18]

      Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2000, 122, 2010.doi: 10.1021/ja9924039  doi: 10.1021/ja9924039

    19. [19]

      Miranda-Quintana, R. A. Conceptual Density Functional Theory and its Applications in the Chemical Domain; Islam, N., Kaya, S., Eds.; Apple Academic Press: NJ, USA, in press.
       

    20. [20]

      Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K., Ed.; CRC Press: Boca Raton, FL, USA, 2009.

    21. [21]

      Fuentealba, P.; Cárdenas, C. Chemical Modelling; Springborg, M., Ed.; The Royal Society of Chemistry: London, UK, 2015; Vol. 11, p. 151.
       

    22. [22]

      Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. doi: 10.3866/PKU.WHXB20090332  doi: 10.3866/PKU.WHXB20090332

    23. [23]

      Gazquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.

    24. [24]

      Domingo, L. R.; Perez, P.; Saez, J. A. RSC Adv. 2013, 3, 1486.doi: 10.1039/C2RA22886F  doi: 10.1039/C2RA22886F

    25. [25]

      Domingo, L. R.; Zaragoza, R. J.; Saez, J. A.; Arno, M. Molecules 2012, 17, 1335. doi: 10.3390/molecules17021335  doi: 10.3390/molecules17021335

    26. [26]

      Domingo, L. R.; Perez, P.; Contreras, R. Tetrahedron 2004, 60, 6585. doi: 10.1016/j.tet.2004.06.003  doi: 10.1016/j.tet.2004.06.003

    27. [27]

      Domingo, L. R.; Aurell, M. J.; Perez, P.; Contreras, R. J. Phys. Chem. A 2002, 106, 6871. doi: 10.1021/jp020715j  doi: 10.1021/jp020715j

    28. [28]

      Anderson, J. S. M.; Liu, Y. L.; Thomson, J. W.; Ayers, P. W. J. Mol. Struct.: THEOCHEM 2010, 943, 168.doi: 10.1016/j.theochem.2009.12.013  doi: 10.1016/j.theochem.2009.12.013

    29. [29]

      Ayers, P. W.; Anderson, J. S. M.; Rodriguez, J. I.; Jawed, Z. Phys. Chem. Chem. Phys. 2005, 7, 1918. doi: 10.1039/B500996K  doi: 10.1039/B500996K

    30. [30]

      Chamorro, E.; Chattaraj, P. K.; Fuentealba, P. J. Phys. Chem. A 2003, 107, 7068. doi: 10.1021/jp035435y  doi: 10.1021/jp035435y

    31. [31]

      Parthasarathi, R.; Elango, M.; Subramanian, V.; Chattaraj, P. K. Theor. Chem. Acc. 2005, 113, 257. doi: 10.1007/s00214-005-0634-3  doi: 10.1007/s00214-005-0634-3

    32. [32]

      González, M. M.; Hernández-Castillo, D.; Montero-Cabrera, L. A.; Miranda-Quintana, R. A. Int. J. Quantum Chem. 2017, e25444.doi: 10.1002/qua.25444  doi: 10.1002/qua.25444

    33. [33]

      Moens, J.; Jaque, P.; De Proft, F.; Geerlings, P. J. Phys. Chem. A 2008, 112, 6023. doi: 10.1021/jp711652a  doi: 10.1021/jp711652a

    34. [34]

      Moens, J.; Geerlings, P.; Roos, G. Chem. -A Eur. J. 2007, 13, 8174. doi: 10.1002/chem.200601896  doi: 10.1002/chem.200601896

    35. [35]

      Moens, J.; Roos, G.; Jaque, P.; Proft, F.; Geerlings, P. Chem. -A Eur. J. 2007, 13, 9331. doi: 10.1002/chem.200700547  doi: 10.1002/chem.200700547

    36. [36]

      Parthasarathi, R.; Padmanabhan, J.; Subramanian, V.; Maiti, B.; Chattaraj, P. K. Curr. Sci. 2004, 86, 535.
       

    37. [37]

      Parthasarathi, R.; Subramanian, V.; Roy, D. R.; Chattaraj, P. K. Biorg. Med. Chem. 2004, 12, 5533. doi: 10.1016/j.bmc.2004.08.013  doi: 10.1016/j.bmc.2004.08.013

    38. [38]

      Rétey, J. Biochim. Biophys. Acta 2003, 1647, 179.doi: 10.1016/S1570-9639(03)00091-8  doi: 10.1016/S1570-9639(03)00091-8

    39. [39]

      Rosenkranz, H. S.; Klopman, G.; Zhang, Y.; Graham, C.; Karol, M. H. Environ. Health Perspect. 1999, 107, 129.  doi: 10.1289/ehp.99107129

    40. [40]

      Miranda-Quintana, R. A. J. Chem. Phys. 2017, 146, 046101.doi: 10.1063/1.4974987  doi: 10.1063/1.4974987

    41. [41]

      Pan, S.; Sola, M.; Chattaraj, P. K. J. Phys. Chem. A 2013, 117, 1843. doi: 10.1021/jp312750n  doi: 10.1021/jp312750n

    42. [42]

      Morell, C.; Labet, V.; Grand, A.; Chermette, H. Phys. Chem. Chem. Phys. 2009, 11, 3414. doi: 10.1039/B818534D  doi: 10.1039/B818534D

    43. [43]

      Chattaraj, P. K. Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci. 2007, 81, 871
       

    44. [44]

      Miranda-Quintana, R. A.; Chattaraj, P. K.; Ayers, P. W. J. Chem. Phys. 2017, 147, 124103. doi: 10.1063/1.4996443  doi: 10.1063/1.4996443

    45. [45]

      Gazquez, J. L.; Cedillo, A.; Vela, A. J. Phys. Chem. A 2007, 111, 1966. doi: 10.1021/jp065459f  doi: 10.1021/jp065459f

    46. [46]

      Chamorro, E.; Duque-Noreña, M.; Perez, P. J. Mol. Struct. 2009, 896, 73. doi: 10.1016/j.theochem.2008.11.009  doi: 10.1016/j.theochem.2008.11.009

    47. [47]

      Chamorro, E.; Duque-Noreña, M.; Perez, P. J. Mol. Struct. 2009, 901, 145. doi: 10.1016/j.theochem.2009.01.014  doi: 10.1016/j.theochem.2009.01.014

    48. [48]

      Franco-Pérez, M.; Gazquez, J. L.; Ayers, P. W. Acta Phys. -Chim. Sin. 2018, submitted.

    49. [49]

      Miranda-Quintana, R. A. J. Chem. Phys. 2017, 146, 214113.doi: 10.1063/1.4984611  doi: 10.1063/1.4984611

    50. [50]

      Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512.doi: 10.1021/ja00364a005  doi: 10.1021/ja00364a005

    51. [51]

      Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801. doi: 10.1063/1.436185  doi: 10.1063/1.436185

    52. [52]

      Sanderson, R. T. Science 1951, 114, 670. doi: 10.1126/science.114.2973.670  doi: 10.1126/science.114.2973.670

    53. [53]

      Galvan, M.; Vela, A.; Gazquez, J. L. J. Phys. Chem. 1988, 92, 6470. doi: 10.1021/j100333a056  doi: 10.1021/j100333a056

    54. [54]

      Vargas, R.; Galvan, M.; Vela, A. J. Phys. Chem. A 1998, 102, 3134. doi: 10.1021/jp972984t  doi: 10.1021/jp972984t

    55. [55]

      Galvan, M.; Vargas, R. J. Phys. Chem. 1992, 96, 1625.doi: 10.1021/j100183a026  doi: 10.1021/j100183a026

    56. [56]

      Ghanty, T. K.; Ghosh, S. K. J. Am. Chem. Soc. 1994, 116, 3943. doi: 10.1021/ja00088a033  doi: 10.1021/ja00088a033

    57. [57]

      Chamorro, E.; Santos, J. C.; Escobar, C. A.; Perez, P. Chem. Phys. Lett. 2006, 431, 210. doi: 10.1016/j.cplett.2006.09.072  doi: 10.1016/j.cplett.2006.09.072

    58. [58]

      Chamorro, E.; Perez, P.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2006, 124, 044105. doi: 10.1063/1.2161187  doi: 10.1063/1.2161187

    59. [59]

      Perez, P.; Chamorro, E.; Ayers, P. W. J. Chem. Phys. 2008, 128, 204108. doi: 10.1063/1.2916714  doi: 10.1063/1.2916714

    60. [60]

      Miranda-Quintana, R. A.; Ayers, P. W. Theor. Chem. Acc. 2016, 135, 239. doi: 10.1007/s00214-016-1995-5  doi: 10.1007/s00214-016-1995-5

    61. [61]

      Cardenas, C.; Heidar Zadeh, F.; Ayers, P. W. Phys. Chem. Chem. Phys. 2016, 18, 25721. doi: 10.1039/C6CP04533B  doi: 10.1039/C6CP04533B

    62. [62]

      Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr. Phys. Rev. Lett. 1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691  doi: 10.1103/PhysRevLett.49.1691

    63. [63]

      Heidar Zadeh, F.; Miranda-Quintana, R. A.; Verstraelen, T.; Bultinck, P.; Ayers, P. W. J. Chem. Theory Comp. 2016, 12, 5777. doi: 10.1021/acs.jctc.6b00494  doi: 10.1021/acs.jctc.6b00494

    64. [64]

      Miranda-Quintana, R. A.; Ayers, P. W. Conceptual Density Functional Theory and Its Applications in the Chemical Domain; Islam, N., Kaya, S., Eds.; Apple Academic Press: NJ, USA, in press.
       

    65. [65]

      Miranda-Quintana, R. A.; Ayers, P. W. J. Chem. Phys. 2016, 144, 244112. doi: 10.1063/1.4953557  doi: 10.1063/1.4953557

    66. [66]

      Ayers, P. W.; Parr, R. G. J. Chem. Phys. 2008, 129, 054111. doi: 10.1063/1.2957900  doi: 10.1063/1.2957900

    67. [67]

      Ayers, P. W.; Parr, R. G. J. Chem. Phys. 2008, 128, 184108. doi: 10.1063/1.2918731  doi: 10.1063/1.2918731

    68. [68]

      Franco-Pérez, M.; Ayers, P. W.; Gazquez, J. L.; Vela, A. J. Chem. Phys. 2017, 147, 094105. doi: 10.1063/1.4999761  doi: 10.1063/1.4999761

    69. [69]

      Franco-Pérez, M.; Heidar-Zadeh, F.; Ayers, P. W.; Gazquez, J. L.; Vela, A. Phys. Chem. Chem. Phys. 2017, 19, 11588.doi: 10.1039/C7CP00224F  doi: 10.1039/C7CP00224F

    70. [70]

      Franco-Pérez, M.; Ayers, P. W.; Gazquez, J. L.; Vela, A. Phys. Chem. Chem. Phys. 2017, 19, 13687. doi: 10.1039/C7CP00692F  doi: 10.1039/C7CP00692F

    71. [71]

      Polanco-Ramírez, C. A.; Franco-Pérez, M.; Carmona-Espíndola, J.; Gazquez, J. L.; Ayers, P. W. Phys. Chem. Chem. Phys. 2017, 19, 12355. doi: 10.1039/C7CP00691H  doi: 10.1039/C7CP00691H

    72. [72]

      Franco-Pérez, M.; Ayers, P.; Gazquez, J. L.; Vela, A. J. Chem. Phys. 2015, 143, 244117. doi: 10.1063/1.4938422  doi: 10.1063/1.4938422

    73. [73]

      Franco-Pérez, M.; Gazquez, J. L.; Ayers, P.; Vela, A. J. Chem. Phys. 2015, 143, 154103. doi: 10.1063/1.4932539  doi: 10.1063/1.4932539

    74. [74]

      Malek, A.; Balawender, R. J. Chem. Phys. 2015, 142, 054104.doi: 10.1063/1.4906555  doi: 10.1063/1.4906555

    75. [75]

      Miranda-Quintana, R. A.; Ayers, P. W. Phys. Chem. Chem. Phys. 2016, 18, 15070. doi: 10.1039/c6cp00939e  doi: 10.1039/c6cp00939e

    76. [76]

      Miranda-Quintana, R. A. Theor. Chem. Acc. 2017, 136, 76.doi: 10.1007/s00214-017-2109-8  doi: 10.1007/s00214-017-2109-8

    77. [77]

      Miranda-Quintana, R. A.; Ayers, P. W. Theor. Chem. Acc. 2016, 135, 172. doi: 10.1007/s00214-016-1924-7  doi: 10.1007/s00214-016-1924-7

    78. [78]

      Miranda-Quintana, R. A. Theor. Chem. Acc. 2016, 135, 189.doi: 10.1007/s00214-016-1945-2  doi: 10.1007/s00214-016-1945-2

    79. [79]

      Miranda-Quintana, R. A.; González, M. M.; Ayers, P. W. Phys. Chem. Chem. Phys. 2016, 18, 22235. doi: 10.1039/c6cp03213c  doi: 10.1039/c6cp03213c

    80. [80]

      Klopman, G. J. Am. Chem. Soc. 1968, 90, 223.doi: 10.1021/ja01004a002  doi: 10.1021/ja01004a002

    81. [81]

      Klopman, G.; Hudson, R. F. Theor. Chim. Act. 1967, 8, 165.doi: 10.1007/bf00526373  doi: 10.1007/bf00526373

    82. [82]

      Klopman, G.; Klopman, G. Chemical Reactivity and Reaction Paths; Wiley-Interscience: New York, NY, USA, 1974; p. 55.

    83. [83]

      Hudson, R. F.; Klopman, G. Tetrahedron Lett. 1967, 12, 1103.doi: 10.1016/S0040-4039(00)90645-2  doi: 10.1016/S0040-4039(00)90645-2

    84. [84]

      Salem, L. J. Am. Chem. Soc. 1968, 90, 553.doi: 10.1021/ja01005a002  doi: 10.1021/ja01005a002

    85. [85]

      Salem, L. J. Am. Chem. Soc. 1968, 90, 543.doi: 10.1021/ja01005a001  doi: 10.1021/ja01005a001

    86. [86]

      Salem, L. Chem. Br. 1969, 5, 449.

    87. [87]

      Witten, I. H.; Frank, E.; Hall, M. A.; Pal, C. J. Data Mining: Practical Machine Learning Tools and Techniques, 4th ed.; Elsevier: Cambridge, MA, USA, 2017.

    88. [88]

      Gertrudes, J. C.; Maltarollo, V. G.; Silva, R. A.; Oliveira, P. R.; Honorio, K. M.; da Silva, A. B. F. Curr. Med. Chem. 2012, 19, 4289. doi: 10.2174/092986712802884259  doi: 10.2174/092986712802884259

    89. [89]

      Carrera, G.; Gupta, S.; Aires-de-Sousa, J. J. Comput. Aided Mol. Des. 2009, 23, 419. doi: 10.1007/s10822-009-9275-2  doi: 10.1007/s10822-009-9275-2

    90. [90]

      Dietterich, T. G. Ai Mag. 1997, 18, 97. doi: 10.1609/aimag.v18i4.1324  doi: 10.1609/aimag.v18i4.1324

    91. [91]

      Carbonell, J. G.; Michalski, R. S.; Mitchell, T. M. Machine Learning: an Artificial Intelligence Approach; Michalski, R. S., Carbonell, J. G., Mitchell, T. M., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, Germany, 1983; p. 3.doi: 10.1007/978-3-662-12405-5_1  doi: 10.1007/978-3-662-12405-5_1

    92. [92]

      Lino, A.; Rocha, A.; Sizo, A. J. Intell. Fuzzy Syst. 2016, 31, 2061. doi: 10.3233/JIFS-169045  doi: 10.3233/JIFS-169045

    93. [93]

      Affenzeller, M.; Winkler, S. M.; Kronberger, G.; Kommenda, M.; Burlacu, B.; Wagner, S. Genetic Programming Theory and Practice XI; Riolo, R., Moore, J. H., Kotanchek, M., Eds.; Springer New York: New York, NY, USA, 2014; p. 175.doi: 10.1007/978-1-4939-0375-7_10  doi: 10.1007/978-1-4939-0375-7_10

    94. [94]

      Billard, L.; Diday, E. Classification, Clustering, and Data Analysis: Recent Advances and Applications; Jajuga, K., Sokolowski, A., Bock, H. H., Eds.; Springer-Verlag: Berlin, Germany, 2012.

    95. [95]

      Billard, L.; Diday, E. J. Am. Stat. Assoc. 2003, 98, 470.doi: 10.1198/016214503000242  doi: 10.1198/016214503000242

    96. [96]

      Billard, L.; Diday, E. Data Analysis, Classification, and Related Methods; Kiers, H. A. L., Rasson, J.-P., Groenen, P. J. F., Schader, M., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, Germany, 2000; p. 369. doi: 10.1007/978-3-642-59789-3_58  doi: 10.1007/978-3-642-59789-3_58

    97. [97]

      Schmidt, M. D.; Vallabhajosyula, R. R.; Jenkins, J. W.; Hood, J. E.; Soni, A. S.; Wikswo, J. P.; Lipson, H. Phys. Biol. 2011, 8, 055011. doi: 10.1088/1478-3975/8/5/055011  doi: 10.1088/1478-3975/8/5/055011

    98. [98]

      Schmidt, M. W.; Lipson, H. Science 2009, 324, 81.doi: 10.1126/science.1165893  doi: 10.1126/science.1165893

    99. [99]

      Bongard, J.; Lipson, H. Proc. Natl. Acad. Sci. USA 2007, 104, 9943.doi: 10.1073/pnas.0609476104  doi: 10.1073/pnas.0609476104

    100. [100]

      Quade, M.; Abel, M.; Shafi, K.; Niven, R. K. Phys. Rev. B 2016, 94, 012214. doi: 10.1103/PhysRevE.94.012214  doi: 10.1103/PhysRevE.94.012214

    101. [101]

      Koza, J. R. 2nd International IEEE Conference on Tools for Artificial Intelligence, 1990; p. 819.

    102. [102]

      Sharma, S.; Tambe, S. S. Biochem. Eng. J. 2014, 85, 89.doi: 10.1016/j.bej.2014.02.007  doi: 10.1016/j.bej.2014.02.007

    103. [103]

      Langdon, W. B.; Poli, R. Found. Genet. Program.; Springer-Verlag: Berlin, Germany, 2013.

    104. [104]

      O'Neil, M.; Ryan, C. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language; Springer US: Boston, MA, USA, 2003; p. 33. doi: 10.1007/978-1-4615-0447-4_4  doi: 10.1007/978-1-4615-0447-4_4

    105. [105]

      O'Neil, M.; Ryan, C. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language; Springer US: Boston, MA, USA, 2003; p. 79. doi: 10.1007/978-1-4615-0447-4_7  doi: 10.1007/978-1-4615-0447-4_7

    106. [106]

      Ryan, C.; Collins, J.; Neill, M. O. Genetic Programming: First European Workshop, EuroGP'98 Paris, France, April 14–15, 1998 Proceedings; Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T. C., Eds.; Springer: Berlin, Heidelberg, Germany, 1998;, p. 83.doi: 10.1007/BFb0055930  doi: 10.1007/BFb0055930

    107. [107]

      Luke, S.; Spector, L. Genetic Programming 1997: Proceedings of the Second Annual Conference (GP97); Koza, J., Ed.; San Francisco, CA, USA, 1997; p. 240.

    108. [108]

      Spears, W. M.; Anand, V. Methodologies for Intelligent Systems: 6th International Symposium, ISMIS '91 Charlotte, N. C., USA, October 16–19, 1991 Proceedings; Ras, Z. W., Zemankova, M., Eds.; Springer: Berlin, Heidelberg, Germany, 1991; p. 409.doi: 10.1007/3-540-54563-8_104  doi: 10.1007/3-540-54563-8_104

    109. [109]

      Chomsky, N. IRE Trans. Inf. Theory 1956, 2, 113. doi: 10.1109/TIT.1956.1056813  doi: 10.1109/TIT.1956.1056813

    110. [110]

      Ginsburg, S. The Mathematical Theory of Context Free Languages; McGraw-Hill, New York, NY, USA, 1966.

    111. [111]

      Temkin, J. M.; Gilder, M. R. Bioinformatics 2003, 19, 2046.doi: 10.1093/bioinformatics/btg279  doi: 10.1093/bioinformatics/btg279

    112. [112]

      Trelea, I. C. Inf. Proc. Lett. 2003, 85, 317.doi: 10.1016/S0020-0190(02)00447-7  doi: 10.1016/S0020-0190(02)00447-7

    113. [113]

      Mayr, H. http://www.cup.lmu.de/oc/mayr/reaktionsdatenbank/; Vol. 2017 (accessed Oct 30, 2017).
       

    114. [114]

      Mayr, H. http://www.cup.uni-muenchen.de/oc/mayr/DBintro.html; Vol. 2017 (accessed Oct 30, 2017).
       

    115. [115]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09; Gaussian Inc.: Wallingford, CT, USA, 2009.
       

    116. [116]

      Wagner, S.; Kronberger, G.; Beham, A.; Kommenda, M.; Scheibenpflug, A.; Pitzer, E.; Vonolfen, S.; Kofler, M.; Winkler, S.; Dorfer, V.; et al. Advanced Methods and Applications in Computational Intelligence; Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z., Eds.; Springer International Publishing: Heidelberg, Germany, 2014; p. 197. doi: 10.1007/978-3-319-01436-4_10  doi: 10.1007/978-3-319-01436-4_10

    117. [117]

      Yang, W. T.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708.doi: 10.1021/ja00279a008  doi: 10.1021/ja00279a008

    118. [118]

      Miranda-Quintana, R. A. Chem. Phys. Lett. 2016, 658, 328.doi: 10.1016/j.cplett.2016.06.068  doi: 10.1016/j.cplett.2016.06.068

    119. [119]

      Zielinski, F.; Tognetti, V.; Joubert, L. Chem. Phys. Lett. 2012, 527, 67. doi: 10.1016/j.cplett.2012.01.011  doi: 10.1016/j.cplett.2012.01.011

    120. [120]

      Bultinck, P.; Fias, S.; Alsenoy, C. V.; Ayers, P. W.; Carbó-Dorca, R. J. Chem. Phys. 2007, 127, 034102. doi: 10.1063/1.2749518  doi: 10.1063/1.2749518

  • 加载中
    1. [1]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    2. [2]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    3. [3]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    4. [4]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    5. [5]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    6. [6]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    7. [7]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    8. [8]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    9. [9]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    10. [10]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    11. [11]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    12. [12]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    13. [13]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    14. [14]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    15. [15]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    16. [16]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    17. [17]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    18. [18]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    19. [19]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    20. [20]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

Metrics
  • PDF Downloads(7)
  • Abstract views(400)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return